Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.android.layoutlib.bridge.util;
     18 
     19 
     20 import com.android.internal.util.ArrayUtils;
     21 import com.android.internal.util.GrowingArrayUtils;
     22 
     23 import android.util.SparseArray;
     24 
     25 import java.lang.ref.WeakReference;
     26 
     27 /**
     28  * This is a custom {@link SparseArray} that uses {@link WeakReference} around the objects added
     29  * to it. When the array is compacted, not only deleted indices but also empty references
     30  * are removed, making the array efficient at removing references that were reclaimed.
     31  *
     32  * The code is taken from {@link SparseArray} directly and adapted to use weak references.
     33  *
     34  * Because our usage means that we never actually call {@link #remove(long)} or
     35  * {@link #delete(long)}, we must manually check if there are reclaimed references to
     36  * trigger an internal compact step (which is normally only triggered when an item is manually
     37  * removed).
     38  *
     39  * SparseArrays map integral values to Objects.  Unlike a normal array of Objects,
     40  * there can be gaps in the indices.  It is intended to be more efficient
     41  * than using a HashMap to map Integers (or Longs) to Objects.
     42  */
     43 @SuppressWarnings("unchecked")
     44 public class SparseWeakArray<E> {
     45 
     46     private static final Object DELETED_REF = new Object();
     47     private static final WeakReference<?> DELETED = new WeakReference(DELETED_REF);
     48     private boolean mGarbage = false;
     49 
     50     /**
     51      * Creates a new SparseArray containing no mappings.
     52      */
     53     public SparseWeakArray() {
     54         this(10);
     55     }
     56 
     57     /**
     58      * Creates a new SparseArray containing no mappings that will not
     59      * require any additional memory allocation to store the specified
     60      * number of mappings.
     61      */
     62     public SparseWeakArray(int initialCapacity) {
     63         mKeys = ArrayUtils.newUnpaddedLongArray(initialCapacity);
     64         mValues = new WeakReference[mKeys.length];
     65         mSize = 0;
     66     }
     67 
     68     /**
     69      * Gets the Object mapped from the specified key, or <code>null</code>
     70      * if no such mapping has been made.
     71      */
     72     public E get(long key) {
     73         return get(key, null);
     74     }
     75 
     76     /**
     77      * Gets the Object mapped from the specified key, or the specified Object
     78      * if no such mapping has been made.
     79      */
     80     public E get(long key, E valueIfKeyNotFound) {
     81         int i = binarySearch(mKeys, 0, mSize, key);
     82 
     83         if (i < 0 || mValues[i] == DELETED || mValues[i].get() == null) {
     84             return valueIfKeyNotFound;
     85         } else {
     86             return (E) mValues[i].get();
     87         }
     88     }
     89 
     90     /**
     91      * Removes the mapping from the specified key, if there was any.
     92      */
     93     public void delete(long key) {
     94         int i = binarySearch(mKeys, 0, mSize, key);
     95 
     96         if (i >= 0) {
     97             if (mValues[i] != DELETED) {
     98                 mValues[i] = DELETED;
     99                 mGarbage = true;
    100             }
    101         }
    102     }
    103 
    104     /**
    105      * Alias for {@link #delete(long)}.
    106      */
    107     public void remove(long key) {
    108         delete(key);
    109     }
    110 
    111     /**
    112      * Removes the mapping at the specified index.
    113      */
    114     public void removeAt(int index) {
    115         if (mValues[index] != DELETED) {
    116             mValues[index] = DELETED;
    117             mGarbage = true;
    118         }
    119     }
    120 
    121     private void gc() {
    122         int n = mSize;
    123         int o = 0;
    124         long[] keys = mKeys;
    125         WeakReference<?>[] values = mValues;
    126 
    127         for (int i = 0; i < n; i++) {
    128             WeakReference<?> val = values[i];
    129 
    130             // Don't keep any non DELETED values, but only the one that still have a valid
    131             // reference.
    132             if (val != DELETED && val.get() != null) {
    133                 if (i != o) {
    134                     keys[o] = keys[i];
    135                     values[o] = val;
    136                 }
    137 
    138                 o++;
    139             }
    140         }
    141 
    142         mGarbage = false;
    143         mSize = o;
    144     }
    145 
    146     /**
    147      * Adds a mapping from the specified key to the specified value,
    148      * replacing the previous mapping from the specified key if there
    149      * was one.
    150      */
    151     public void put(long key, E value) {
    152         int i = binarySearch(mKeys, 0, mSize, key);
    153 
    154         if (i >= 0) {
    155             mValues[i] = new WeakReference(value);
    156         } else {
    157             i = ~i;
    158 
    159             if (i < mSize && (mValues[i] == DELETED || mValues[i].get() == null)) {
    160                 mKeys[i] = key;
    161                 mValues[i] = new WeakReference(value);
    162                 return;
    163             }
    164 
    165             if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) {
    166                 gc();
    167 
    168                 // Search again because indices may have changed.
    169                 i = ~binarySearch(mKeys, 0, mSize, key);
    170             }
    171 
    172             mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);
    173             mValues = GrowingArrayUtils.insert(mValues, mSize, i, new WeakReference(value));
    174             mSize++;
    175         }
    176     }
    177 
    178     /**
    179      * Returns the number of key-value mappings that this SparseArray
    180      * currently stores.
    181      */
    182     public int size() {
    183         if (mGarbage) {
    184             gc();
    185         }
    186 
    187         return mSize;
    188     }
    189 
    190     /**
    191      * Given an index in the range <code>0...size()-1</code>, returns
    192      * the key from the <code>index</code>th key-value mapping that this
    193      * SparseArray stores.
    194      */
    195     public long keyAt(int index) {
    196         if (mGarbage) {
    197             gc();
    198         }
    199 
    200         return mKeys[index];
    201     }
    202 
    203     /**
    204      * Given an index in the range <code>0...size()-1</code>, returns
    205      * the value from the <code>index</code>th key-value mapping that this
    206      * SparseArray stores.
    207      */
    208     public E valueAt(int index) {
    209         if (mGarbage) {
    210             gc();
    211         }
    212 
    213         return (E) mValues[index].get();
    214     }
    215 
    216     /**
    217      * Given an index in the range <code>0...size()-1</code>, sets a new
    218      * value for the <code>index</code>th key-value mapping that this
    219      * SparseArray stores.
    220      */
    221     public void setValueAt(int index, E value) {
    222         if (mGarbage) {
    223             gc();
    224         }
    225 
    226         mValues[index] = new WeakReference(value);
    227     }
    228 
    229     /**
    230      * Returns the index for which {@link #keyAt} would return the
    231      * specified key, or a negative number if the specified
    232      * key is not mapped.
    233      */
    234     public int indexOfKey(long key) {
    235         if (mGarbage) {
    236             gc();
    237         }
    238 
    239         return binarySearch(mKeys, 0, mSize, key);
    240     }
    241 
    242     /**
    243      * Returns an index for which {@link #valueAt} would return the
    244      * specified key, or a negative number if no keys map to the
    245      * specified value.
    246      * Beware that this is a linear search, unlike lookups by key,
    247      * and that multiple keys can map to the same value and this will
    248      * find only one of them.
    249      */
    250     public int indexOfValue(E value) {
    251         if (mGarbage) {
    252             gc();
    253         }
    254 
    255         for (int i = 0; i < mSize; i++)
    256             if (mValues[i].get() == value)
    257                 return i;
    258 
    259         return -1;
    260     }
    261 
    262     /**
    263      * Removes all key-value mappings from this SparseArray.
    264      */
    265     public void clear() {
    266         int n = mSize;
    267         WeakReference<?>[] values = mValues;
    268 
    269         for (int i = 0; i < n; i++) {
    270             values[i] = null;
    271         }
    272 
    273         mSize = 0;
    274         mGarbage = false;
    275     }
    276 
    277     /**
    278      * Puts a key/value pair into the array, optimizing for the case where
    279      * the key is greater than all existing keys in the array.
    280      */
    281     public void append(long key, E value) {
    282         if (mSize != 0 && key <= mKeys[mSize - 1]) {
    283             put(key, value);
    284             return;
    285         }
    286 
    287         if (mSize >= mKeys.length && (mGarbage || hasReclaimedRefs())) {
    288             gc();
    289         }
    290 
    291         mKeys = GrowingArrayUtils.append(mKeys, mSize, key);
    292         mValues = GrowingArrayUtils.append(mValues, mSize, new WeakReference(value));
    293         mSize++;
    294     }
    295 
    296     private boolean hasReclaimedRefs() {
    297         for (int i = 0 ; i < mSize ; i++) {
    298             if (mValues[i].get() == null) { // DELETED.get() never returns null.
    299                 return true;
    300             }
    301         }
    302 
    303         return false;
    304     }
    305 
    306     private static int binarySearch(long[] a, int start, int len, long key) {
    307         int high = start + len, low = start - 1, guess;
    308 
    309         while (high - low > 1) {
    310             guess = (high + low) / 2;
    311 
    312             if (a[guess] < key)
    313                 low = guess;
    314             else
    315                 high = guess;
    316         }
    317 
    318         if (high == start + len)
    319             return ~(start + len);
    320         else if (a[high] == key)
    321             return high;
    322         else
    323             return ~high;
    324     }
    325 
    326     private long[] mKeys;
    327     private WeakReference<?>[] mValues;
    328     private int mSize;
    329 }
    330