Home | History | Annotate | Download | only in Target
      1 //===-- llvm/Target/TargetData.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines target properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_TARGET_TARGETDATA_H
     21 #define LLVM_TARGET_TARGETDATA_H
     22 
     23 #include "llvm/Pass.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/DataTypes.h"
     26 
     27 namespace llvm {
     28 
     29 class Value;
     30 class Type;
     31 class IntegerType;
     32 class StructType;
     33 class StructLayout;
     34 class GlobalVariable;
     35 class LLVMContext;
     36 template<typename T>
     37 class ArrayRef;
     38 
     39 /// Enum used to categorize the alignment types stored by TargetAlignElem
     40 enum AlignTypeEnum {
     41   INTEGER_ALIGN = 'i',               ///< Integer type alignment
     42   VECTOR_ALIGN = 'v',                ///< Vector type alignment
     43   FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
     44   AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
     45   STACK_ALIGN = 's'                  ///< Stack objects alignment
     46 };
     47 
     48 /// Target alignment element.
     49 ///
     50 /// Stores the alignment data associated with a given alignment type (pointer,
     51 /// integer, vector, float) and type bit width.
     52 ///
     53 /// @note The unusual order of elements in the structure attempts to reduce
     54 /// padding and make the structure slightly more cache friendly.
     55 struct TargetAlignElem {
     56   AlignTypeEnum       AlignType : 8;  //< Alignment type (AlignTypeEnum)
     57   unsigned            ABIAlign;       //< ABI alignment for this type/bitw
     58   unsigned            PrefAlign;      //< Pref. alignment for this type/bitw
     59   uint32_t            TypeBitWidth;   //< Type bit width
     60 
     61   /// Initializer
     62   static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     63                              unsigned pref_align, uint32_t bit_width);
     64   /// Equality predicate
     65   bool operator==(const TargetAlignElem &rhs) const;
     66 };
     67 
     68 /// TargetData - This class holds a parsed version of the target data layout
     69 /// string in a module and provides methods for querying it.  The target data
     70 /// layout string is specified *by the target* - a frontend generating LLVM IR
     71 /// is required to generate the right target data for the target being codegen'd
     72 /// to.  If some measure of portability is desired, an empty string may be
     73 /// specified in the module.
     74 class TargetData : public ImmutablePass {
     75 private:
     76   bool          LittleEndian;          ///< Defaults to false
     77   unsigned      PointerMemSize;        ///< Pointer size in bytes
     78   unsigned      PointerABIAlign;       ///< Pointer ABI alignment
     79   unsigned      PointerPrefAlign;      ///< Pointer preferred alignment
     80   unsigned      StackNaturalAlign;     ///< Stack natural alignment
     81 
     82   SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
     83 
     84   /// Alignments- Where the primitive type alignment data is stored.
     85   ///
     86   /// @sa init().
     87   /// @note Could support multiple size pointer alignments, e.g., 32-bit
     88   /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now,
     89   /// we don't.
     90   SmallVector<TargetAlignElem, 16> Alignments;
     91 
     92   /// InvalidAlignmentElem - This member is a signal that a requested alignment
     93   /// type and bit width were not found in the SmallVector.
     94   static const TargetAlignElem InvalidAlignmentElem;
     95 
     96   // The StructType -> StructLayout map.
     97   mutable void *LayoutMap;
     98 
     99   //! Set/initialize target alignments
    100   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    101                     unsigned pref_align, uint32_t bit_width);
    102   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    103                             bool ABIAlign, Type *Ty) const;
    104   //! Internal helper method that returns requested alignment for type.
    105   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    106 
    107   /// Valid alignment predicate.
    108   ///
    109   /// Predicate that tests a TargetAlignElem reference returned by get() against
    110   /// InvalidAlignmentElem.
    111   bool validAlignment(const TargetAlignElem &align) const {
    112     return &align != &InvalidAlignmentElem;
    113   }
    114 
    115 public:
    116   /// Default ctor.
    117   ///
    118   /// @note This has to exist, because this is a pass, but it should never be
    119   /// used.
    120   TargetData();
    121 
    122   /// Constructs a TargetData from a specification string. See init().
    123   explicit TargetData(StringRef TargetDescription)
    124     : ImmutablePass(ID) {
    125     init(TargetDescription);
    126   }
    127 
    128   /// Initialize target data from properties stored in the module.
    129   explicit TargetData(const Module *M);
    130 
    131   TargetData(const TargetData &TD) :
    132     ImmutablePass(ID),
    133     LittleEndian(TD.isLittleEndian()),
    134     PointerMemSize(TD.PointerMemSize),
    135     PointerABIAlign(TD.PointerABIAlign),
    136     PointerPrefAlign(TD.PointerPrefAlign),
    137     LegalIntWidths(TD.LegalIntWidths),
    138     Alignments(TD.Alignments),
    139     LayoutMap(0)
    140   { }
    141 
    142   ~TargetData();  // Not virtual, do not subclass this class
    143 
    144   //! Parse a target data layout string and initialize TargetData alignments.
    145   void init(StringRef TargetDescription);
    146 
    147   /// Target endianness...
    148   bool isLittleEndian() const { return LittleEndian; }
    149   bool isBigEndian() const { return !LittleEndian; }
    150 
    151   /// getStringRepresentation - Return the string representation of the
    152   /// TargetData.  This representation is in the same format accepted by the
    153   /// string constructor above.
    154   std::string getStringRepresentation() const;
    155 
    156   /// isLegalInteger - This function returns true if the specified type is
    157   /// known to be a native integer type supported by the CPU.  For example,
    158   /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
    159   /// one.  This returns false if the integer width is not legal.
    160   ///
    161   /// The width is specified in bits.
    162   ///
    163   bool isLegalInteger(unsigned Width) const {
    164     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    165       if (LegalIntWidths[i] == Width)
    166         return true;
    167     return false;
    168   }
    169 
    170   bool isIllegalInteger(unsigned Width) const {
    171     return !isLegalInteger(Width);
    172   }
    173 
    174   /// Returns true if the given alignment exceeds the natural stack alignment.
    175   bool exceedsNaturalStackAlignment(unsigned Align) const {
    176     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    177   }
    178 
    179   /// fitsInLegalInteger - This function returns true if the specified type fits
    180   /// in a native integer type supported by the CPU.  For example, if the CPU
    181   /// only supports i32 as a native integer type, then i27 fits in a legal
    182   // integer type but i45 does not.
    183   bool fitsInLegalInteger(unsigned Width) const {
    184     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    185       if (Width <= LegalIntWidths[i])
    186         return true;
    187     return false;
    188   }
    189 
    190   /// Target pointer alignment
    191   unsigned getPointerABIAlignment() const { return PointerABIAlign; }
    192   /// Return target's alignment for stack-based pointers
    193   unsigned getPointerPrefAlignment() const { return PointerPrefAlign; }
    194   /// Target pointer size
    195   unsigned getPointerSize()         const { return PointerMemSize; }
    196   /// Target pointer size, in bits
    197   unsigned getPointerSizeInBits()   const { return 8*PointerMemSize; }
    198 
    199   /// Size examples:
    200   ///
    201   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    202   /// ----        ----------  ---------------  ---------------
    203   ///  i1            1           8                8
    204   ///  i8            8           8                8
    205   ///  i19          19          24               32
    206   ///  i32          32          32               32
    207   ///  i100        100         104              128
    208   ///  i128        128         128              128
    209   ///  Float        32          32               32
    210   ///  Double       64          64               64
    211   ///  X86_FP80     80          80               96
    212   ///
    213   /// [*] The alloc size depends on the alignment, and thus on the target.
    214   ///     These values are for x86-32 linux.
    215 
    216   /// getTypeSizeInBits - Return the number of bits necessary to hold the
    217   /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
    218   uint64_t getTypeSizeInBits(Type* Ty) const;
    219 
    220   /// getTypeStoreSize - Return the maximum number of bytes that may be
    221   /// overwritten by storing the specified type.  For example, returns 5
    222   /// for i36 and 10 for x86_fp80.
    223   uint64_t getTypeStoreSize(Type *Ty) const {
    224     return (getTypeSizeInBits(Ty)+7)/8;
    225   }
    226 
    227   /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
    228   /// overwritten by storing the specified type; always a multiple of 8.  For
    229   /// example, returns 40 for i36 and 80 for x86_fp80.
    230   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    231     return 8*getTypeStoreSize(Ty);
    232   }
    233 
    234   /// getTypeAllocSize - Return the offset in bytes between successive objects
    235   /// of the specified type, including alignment padding.  This is the amount
    236   /// that alloca reserves for this type.  For example, returns 12 or 16 for
    237   /// x86_fp80, depending on alignment.
    238   uint64_t getTypeAllocSize(Type* Ty) const {
    239     // Round up to the next alignment boundary.
    240     return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    241   }
    242 
    243   /// getTypeAllocSizeInBits - Return the offset in bits between successive
    244   /// objects of the specified type, including alignment padding; always a
    245   /// multiple of 8.  This is the amount that alloca reserves for this type.
    246   /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
    247   uint64_t getTypeAllocSizeInBits(Type* Ty) const {
    248     return 8*getTypeAllocSize(Ty);
    249   }
    250 
    251   /// getABITypeAlignment - Return the minimum ABI-required alignment for the
    252   /// specified type.
    253   unsigned getABITypeAlignment(Type *Ty) const;
    254 
    255   /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
    256   /// an integer type of the specified bitwidth.
    257   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    258 
    259 
    260   /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
    261   /// for the specified type when it is part of a call frame.
    262   unsigned getCallFrameTypeAlignment(Type *Ty) const;
    263 
    264 
    265   /// getPrefTypeAlignment - Return the preferred stack/global alignment for
    266   /// the specified type.  This is always at least as good as the ABI alignment.
    267   unsigned getPrefTypeAlignment(Type *Ty) const;
    268 
    269   /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
    270   /// specified type, returned as log2 of the value (a shift amount).
    271   ///
    272   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    273 
    274   /// getIntPtrType - Return an unsigned integer type that is the same size or
    275   /// greater to the host pointer size.
    276   ///
    277   IntegerType *getIntPtrType(LLVMContext &C) const;
    278 
    279   /// getIndexedOffset - return the offset from the beginning of the type for
    280   /// the specified indices.  This is used to implement getelementptr.
    281   ///
    282   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
    283 
    284   /// getStructLayout - Return a StructLayout object, indicating the alignment
    285   /// of the struct, its size, and the offsets of its fields.  Note that this
    286   /// information is lazily cached.
    287   const StructLayout *getStructLayout(StructType *Ty) const;
    288 
    289   /// getPreferredAlignment - Return the preferred alignment of the specified
    290   /// global.  This includes an explicitly requested alignment (if the global
    291   /// has one).
    292   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    293 
    294   /// getPreferredAlignmentLog - Return the preferred alignment of the
    295   /// specified global, returned in log form.  This includes an explicitly
    296   /// requested alignment (if the global has one).
    297   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    298 
    299   /// RoundUpAlignment - Round the specified value up to the next alignment
    300   /// boundary specified by Alignment.  For example, 7 rounded up to an
    301   /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
    302   /// is 8 because it is already aligned.
    303   template <typename UIntTy>
    304   static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
    305     assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
    306     return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
    307   }
    308 
    309   static char ID; // Pass identification, replacement for typeid
    310 };
    311 
    312 /// StructLayout - used to lazily calculate structure layout information for a
    313 /// target machine, based on the TargetData structure.
    314 ///
    315 class StructLayout {
    316   uint64_t StructSize;
    317   unsigned StructAlignment;
    318   unsigned NumElements;
    319   uint64_t MemberOffsets[1];  // variable sized array!
    320 public:
    321 
    322   uint64_t getSizeInBytes() const {
    323     return StructSize;
    324   }
    325 
    326   uint64_t getSizeInBits() const {
    327     return 8*StructSize;
    328   }
    329 
    330   unsigned getAlignment() const {
    331     return StructAlignment;
    332   }
    333 
    334   /// getElementContainingOffset - Given a valid byte offset into the structure,
    335   /// return the structure index that contains it.
    336   ///
    337   unsigned getElementContainingOffset(uint64_t Offset) const;
    338 
    339   uint64_t getElementOffset(unsigned Idx) const {
    340     assert(Idx < NumElements && "Invalid element idx!");
    341     return MemberOffsets[Idx];
    342   }
    343 
    344   uint64_t getElementOffsetInBits(unsigned Idx) const {
    345     return getElementOffset(Idx)*8;
    346   }
    347 
    348 private:
    349   friend class TargetData;   // Only TargetData can create this class
    350   StructLayout(StructType *ST, const TargetData &TD);
    351 };
    352 
    353 } // End llvm namespace
    354 
    355 #endif
    356