Home | History | Annotate | Download | only in Analysis
      1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  Note that the
     12 // loops identified may actually be several natural loops that share the same
     13 // header node... not just a single natural loop.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/LoopInfo.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Analysis/Dominators.h"
     21 #include "llvm/Analysis/LoopIterator.h"
     22 #include "llvm/Assembly/Writer.h"
     23 #include "llvm/Support/CFG.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/ADT/DepthFirstIterator.h"
     27 #include "llvm/ADT/SmallPtrSet.h"
     28 #include <algorithm>
     29 using namespace llvm;
     30 
     31 // Always verify loopinfo if expensive checking is enabled.
     32 #ifdef XDEBUG
     33 static bool VerifyLoopInfo = true;
     34 #else
     35 static bool VerifyLoopInfo = false;
     36 #endif
     37 static cl::opt<bool,true>
     38 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
     39                 cl::desc("Verify loop info (time consuming)"));
     40 
     41 char LoopInfo::ID = 0;
     42 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
     43 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     44 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
     45 
     46 //===----------------------------------------------------------------------===//
     47 // Loop implementation
     48 //
     49 
     50 /// isLoopInvariant - Return true if the specified value is loop invariant
     51 ///
     52 bool Loop::isLoopInvariant(Value *V) const {
     53   if (Instruction *I = dyn_cast<Instruction>(V))
     54     return !contains(I);
     55   return true;  // All non-instructions are loop invariant
     56 }
     57 
     58 /// hasLoopInvariantOperands - Return true if all the operands of the
     59 /// specified instruction are loop invariant.
     60 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
     61   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     62     if (!isLoopInvariant(I->getOperand(i)))
     63       return false;
     64 
     65   return true;
     66 }
     67 
     68 /// makeLoopInvariant - If the given value is an instruciton inside of the
     69 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     70 /// Return true if the value after any hoisting is loop invariant. This
     71 /// function can be used as a slightly more aggressive replacement for
     72 /// isLoopInvariant.
     73 ///
     74 /// If InsertPt is specified, it is the point to hoist instructions to.
     75 /// If null, the terminator of the loop preheader is used.
     76 ///
     77 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
     78                              Instruction *InsertPt) const {
     79   if (Instruction *I = dyn_cast<Instruction>(V))
     80     return makeLoopInvariant(I, Changed, InsertPt);
     81   return true;  // All non-instructions are loop-invariant.
     82 }
     83 
     84 /// makeLoopInvariant - If the given instruction is inside of the
     85 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
     86 /// Return true if the instruction after any hoisting is loop invariant. This
     87 /// function can be used as a slightly more aggressive replacement for
     88 /// isLoopInvariant.
     89 ///
     90 /// If InsertPt is specified, it is the point to hoist instructions to.
     91 /// If null, the terminator of the loop preheader is used.
     92 ///
     93 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
     94                              Instruction *InsertPt) const {
     95   // Test if the value is already loop-invariant.
     96   if (isLoopInvariant(I))
     97     return true;
     98   if (!I->isSafeToSpeculativelyExecute())
     99     return false;
    100   if (I->mayReadFromMemory())
    101     return false;
    102   // The landingpad instruction is immobile.
    103   if (isa<LandingPadInst>(I))
    104     return false;
    105   // Determine the insertion point, unless one was given.
    106   if (!InsertPt) {
    107     BasicBlock *Preheader = getLoopPreheader();
    108     // Without a preheader, hoisting is not feasible.
    109     if (!Preheader)
    110       return false;
    111     InsertPt = Preheader->getTerminator();
    112   }
    113   // Don't hoist instructions with loop-variant operands.
    114   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    115     if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
    116       return false;
    117 
    118   // Hoist.
    119   I->moveBefore(InsertPt);
    120   Changed = true;
    121   return true;
    122 }
    123 
    124 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    125 /// induction variable: an integer recurrence that starts at 0 and increments
    126 /// by one each time through the loop.  If so, return the phi node that
    127 /// corresponds to it.
    128 ///
    129 /// The IndVarSimplify pass transforms loops to have a canonical induction
    130 /// variable.
    131 ///
    132 PHINode *Loop::getCanonicalInductionVariable() const {
    133   BasicBlock *H = getHeader();
    134 
    135   BasicBlock *Incoming = 0, *Backedge = 0;
    136   pred_iterator PI = pred_begin(H);
    137   assert(PI != pred_end(H) &&
    138          "Loop must have at least one backedge!");
    139   Backedge = *PI++;
    140   if (PI == pred_end(H)) return 0;  // dead loop
    141   Incoming = *PI++;
    142   if (PI != pred_end(H)) return 0;  // multiple backedges?
    143 
    144   if (contains(Incoming)) {
    145     if (contains(Backedge))
    146       return 0;
    147     std::swap(Incoming, Backedge);
    148   } else if (!contains(Backedge))
    149     return 0;
    150 
    151   // Loop over all of the PHI nodes, looking for a canonical indvar.
    152   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
    153     PHINode *PN = cast<PHINode>(I);
    154     if (ConstantInt *CI =
    155         dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
    156       if (CI->isNullValue())
    157         if (Instruction *Inc =
    158             dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
    159           if (Inc->getOpcode() == Instruction::Add &&
    160                 Inc->getOperand(0) == PN)
    161             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
    162               if (CI->equalsInt(1))
    163                 return PN;
    164   }
    165   return 0;
    166 }
    167 
    168 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
    169 /// times the loop will be executed.  Note that this means that the backedge
    170 /// of the loop executes N-1 times.  If the trip-count cannot be determined,
    171 /// this returns null.
    172 ///
    173 /// The IndVarSimplify pass transforms loops to have a form that this
    174 /// function easily understands.
    175 ///
    176 Value *Loop::getTripCount() const {
    177   // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
    178   // canonical induction variable and V is the trip count of the loop.
    179   PHINode *IV = getCanonicalInductionVariable();
    180   if (IV == 0 || IV->getNumIncomingValues() != 2) return 0;
    181 
    182   bool P0InLoop = contains(IV->getIncomingBlock(0));
    183   Value *Inc = IV->getIncomingValue(!P0InLoop);
    184   BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop);
    185 
    186   if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
    187     if (BI->isConditional()) {
    188       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
    189         if (ICI->getOperand(0) == Inc) {
    190           if (BI->getSuccessor(0) == getHeader()) {
    191             if (ICI->getPredicate() == ICmpInst::ICMP_NE)
    192               return ICI->getOperand(1);
    193           } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
    194             return ICI->getOperand(1);
    195           }
    196         }
    197       }
    198     }
    199 
    200   return 0;
    201 }
    202 
    203 /// getSmallConstantTripCount - Returns the trip count of this loop as a
    204 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
    205 /// or not constant. Will also return 0 if the trip count is very large
    206 /// (>= 2^32)
    207 unsigned Loop::getSmallConstantTripCount() const {
    208   Value* TripCount = this->getTripCount();
    209   if (TripCount) {
    210     if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
    211       // Guard against huge trip counts.
    212       if (TripCountC->getValue().getActiveBits() <= 32) {
    213         return (unsigned)TripCountC->getZExtValue();
    214       }
    215     }
    216   }
    217   return 0;
    218 }
    219 
    220 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
    221 /// trip count of this loop as a normal unsigned value, if possible. This
    222 /// means that the actual trip count is always a multiple of the returned
    223 /// value (don't forget the trip count could very well be zero as well!).
    224 ///
    225 /// Returns 1 if the trip count is unknown or not guaranteed to be the
    226 /// multiple of a constant (which is also the case if the trip count is simply
    227 /// constant, use getSmallConstantTripCount for that case), Will also return 1
    228 /// if the trip count is very large (>= 2^32).
    229 unsigned Loop::getSmallConstantTripMultiple() const {
    230   Value* TripCount = this->getTripCount();
    231   // This will hold the ConstantInt result, if any
    232   ConstantInt *Result = NULL;
    233   if (TripCount) {
    234     // See if the trip count is constant itself
    235     Result = dyn_cast<ConstantInt>(TripCount);
    236     // if not, see if it is a multiplication
    237     if (!Result)
    238       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
    239         switch (BO->getOpcode()) {
    240         case BinaryOperator::Mul:
    241           Result = dyn_cast<ConstantInt>(BO->getOperand(1));
    242           break;
    243         case BinaryOperator::Shl:
    244           if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
    245             if (CI->getValue().getActiveBits() <= 5)
    246               return 1u << CI->getZExtValue();
    247           break;
    248         default:
    249           break;
    250         }
    251       }
    252   }
    253   // Guard against huge trip counts.
    254   if (Result && Result->getValue().getActiveBits() <= 32) {
    255     return (unsigned)Result->getZExtValue();
    256   } else {
    257     return 1;
    258   }
    259 }
    260 
    261 /// isLCSSAForm - Return true if the Loop is in LCSSA form
    262 bool Loop::isLCSSAForm(DominatorTree &DT) const {
    263   // Sort the blocks vector so that we can use binary search to do quick
    264   // lookups.
    265   SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end());
    266 
    267   for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
    268     BasicBlock *BB = *BI;
    269     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
    270       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
    271            ++UI) {
    272         User *U = *UI;
    273         BasicBlock *UserBB = cast<Instruction>(U)->getParent();
    274         if (PHINode *P = dyn_cast<PHINode>(U))
    275           UserBB = P->getIncomingBlock(UI);
    276 
    277         // Check the current block, as a fast-path, before checking whether
    278         // the use is anywhere in the loop.  Most values are used in the same
    279         // block they are defined in.  Also, blocks not reachable from the
    280         // entry are special; uses in them don't need to go through PHIs.
    281         if (UserBB != BB &&
    282             !LoopBBs.count(UserBB) &&
    283             DT.isReachableFromEntry(UserBB))
    284           return false;
    285       }
    286   }
    287 
    288   return true;
    289 }
    290 
    291 /// isLoopSimplifyForm - Return true if the Loop is in the form that
    292 /// the LoopSimplify form transforms loops to, which is sometimes called
    293 /// normal form.
    294 bool Loop::isLoopSimplifyForm() const {
    295   // Normal-form loops have a preheader, a single backedge, and all of their
    296   // exits have all their predecessors inside the loop.
    297   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
    298 }
    299 
    300 /// hasDedicatedExits - Return true if no exit block for the loop
    301 /// has a predecessor that is outside the loop.
    302 bool Loop::hasDedicatedExits() const {
    303   // Sort the blocks vector so that we can use binary search to do quick
    304   // lookups.
    305   SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end());
    306   // Each predecessor of each exit block of a normal loop is contained
    307   // within the loop.
    308   SmallVector<BasicBlock *, 4> ExitBlocks;
    309   getExitBlocks(ExitBlocks);
    310   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    311     for (pred_iterator PI = pred_begin(ExitBlocks[i]),
    312          PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
    313       if (!LoopBBs.count(*PI))
    314         return false;
    315   // All the requirements are met.
    316   return true;
    317 }
    318 
    319 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    320 /// These are the blocks _outside of the current loop_ which are branched to.
    321 /// This assumes that loop exits are in canonical form.
    322 ///
    323 void
    324 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
    325   assert(hasDedicatedExits() &&
    326          "getUniqueExitBlocks assumes the loop has canonical form exits!");
    327 
    328   // Sort the blocks vector so that we can use binary search to do quick
    329   // lookups.
    330   SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
    331   std::sort(LoopBBs.begin(), LoopBBs.end());
    332 
    333   SmallVector<BasicBlock *, 32> switchExitBlocks;
    334 
    335   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
    336 
    337     BasicBlock *current = *BI;
    338     switchExitBlocks.clear();
    339 
    340     for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
    341       // If block is inside the loop then it is not a exit block.
    342       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    343         continue;
    344 
    345       pred_iterator PI = pred_begin(*I);
    346       BasicBlock *firstPred = *PI;
    347 
    348       // If current basic block is this exit block's first predecessor
    349       // then only insert exit block in to the output ExitBlocks vector.
    350       // This ensures that same exit block is not inserted twice into
    351       // ExitBlocks vector.
    352       if (current != firstPred)
    353         continue;
    354 
    355       // If a terminator has more then two successors, for example SwitchInst,
    356       // then it is possible that there are multiple edges from current block
    357       // to one exit block.
    358       if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
    359         ExitBlocks.push_back(*I);
    360         continue;
    361       }
    362 
    363       // In case of multiple edges from current block to exit block, collect
    364       // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
    365       // duplicate edges.
    366       if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
    367           == switchExitBlocks.end()) {
    368         switchExitBlocks.push_back(*I);
    369         ExitBlocks.push_back(*I);
    370       }
    371     }
    372   }
    373 }
    374 
    375 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    376 /// block, return that block. Otherwise return null.
    377 BasicBlock *Loop::getUniqueExitBlock() const {
    378   SmallVector<BasicBlock *, 8> UniqueExitBlocks;
    379   getUniqueExitBlocks(UniqueExitBlocks);
    380   if (UniqueExitBlocks.size() == 1)
    381     return UniqueExitBlocks[0];
    382   return 0;
    383 }
    384 
    385 void Loop::dump() const {
    386   print(dbgs());
    387 }
    388 
    389 //===----------------------------------------------------------------------===//
    390 // UnloopUpdater implementation
    391 //
    392 
    393 namespace {
    394 /// Find the new parent loop for all blocks within the "unloop" whose last
    395 /// backedges has just been removed.
    396 class UnloopUpdater {
    397   Loop *Unloop;
    398   LoopInfo *LI;
    399 
    400   LoopBlocksDFS DFS;
    401 
    402   // Map unloop's immediate subloops to their nearest reachable parents. Nested
    403   // loops within these subloops will not change parents. However, an immediate
    404   // subloop's new parent will be the nearest loop reachable from either its own
    405   // exits *or* any of its nested loop's exits.
    406   DenseMap<Loop*, Loop*> SubloopParents;
    407 
    408   // Flag the presence of an irreducible backedge whose destination is a block
    409   // directly contained by the original unloop.
    410   bool FoundIB;
    411 
    412 public:
    413   UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
    414     Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
    415 
    416   void updateBlockParents();
    417 
    418   void removeBlocksFromAncestors();
    419 
    420   void updateSubloopParents();
    421 
    422 protected:
    423   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
    424 };
    425 } // end anonymous namespace
    426 
    427 /// updateBlockParents - Update the parent loop for all blocks that are directly
    428 /// contained within the original "unloop".
    429 void UnloopUpdater::updateBlockParents() {
    430   if (Unloop->getNumBlocks()) {
    431     // Perform a post order CFG traversal of all blocks within this loop,
    432     // propagating the nearest loop from sucessors to predecessors.
    433     LoopBlocksTraversal Traversal(DFS, LI);
    434     for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    435            POE = Traversal.end(); POI != POE; ++POI) {
    436 
    437       Loop *L = LI->getLoopFor(*POI);
    438       Loop *NL = getNearestLoop(*POI, L);
    439 
    440       if (NL != L) {
    441         // For reducible loops, NL is now an ancestor of Unloop.
    442         assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
    443                "uninitialized successor");
    444         LI->changeLoopFor(*POI, NL);
    445       }
    446       else {
    447         // Or the current block is part of a subloop, in which case its parent
    448         // is unchanged.
    449         assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
    450       }
    451     }
    452   }
    453   // Each irreducible loop within the unloop induces a round of iteration using
    454   // the DFS result cached by Traversal.
    455   bool Changed = FoundIB;
    456   for (unsigned NIters = 0; Changed; ++NIters) {
    457     assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
    458 
    459     // Iterate over the postorder list of blocks, propagating the nearest loop
    460     // from successors to predecessors as before.
    461     Changed = false;
    462     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
    463            POE = DFS.endPostorder(); POI != POE; ++POI) {
    464 
    465       Loop *L = LI->getLoopFor(*POI);
    466       Loop *NL = getNearestLoop(*POI, L);
    467       if (NL != L) {
    468         assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
    469                "uninitialized successor");
    470         LI->changeLoopFor(*POI, NL);
    471         Changed = true;
    472       }
    473     }
    474   }
    475 }
    476 
    477 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
    478 /// their new parents.
    479 void UnloopUpdater::removeBlocksFromAncestors() {
    480   // Remove unloop's blocks from all ancestors below their new parents.
    481   for (Loop::block_iterator BI = Unloop->block_begin(),
    482          BE = Unloop->block_end(); BI != BE; ++BI) {
    483     Loop *NewParent = LI->getLoopFor(*BI);
    484     // If this block is an immediate subloop, remove all blocks (including
    485     // nested subloops) from ancestors below the new parent loop.
    486     // Otherwise, if this block is in a nested subloop, skip it.
    487     if (SubloopParents.count(NewParent))
    488       NewParent = SubloopParents[NewParent];
    489     else if (Unloop->contains(NewParent))
    490       continue;
    491 
    492     // Remove blocks from former Ancestors except Unloop itself which will be
    493     // deleted.
    494     for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent;
    495          OldParent = OldParent->getParentLoop()) {
    496       assert(OldParent && "new loop is not an ancestor of the original");
    497       OldParent->removeBlockFromLoop(*BI);
    498     }
    499   }
    500 }
    501 
    502 /// updateSubloopParents - Update the parent loop for all subloops directly
    503 /// nested within unloop.
    504 void UnloopUpdater::updateSubloopParents() {
    505   while (!Unloop->empty()) {
    506     Loop *Subloop = *llvm::prior(Unloop->end());
    507     Unloop->removeChildLoop(llvm::prior(Unloop->end()));
    508 
    509     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
    510     if (SubloopParents[Subloop])
    511       SubloopParents[Subloop]->addChildLoop(Subloop);
    512     else
    513       LI->addTopLevelLoop(Subloop);
    514   }
    515 }
    516 
    517 /// getNearestLoop - Return the nearest parent loop among this block's
    518 /// successors. If a successor is a subloop header, consider its parent to be
    519 /// the nearest parent of the subloop's exits.
    520 ///
    521 /// For subloop blocks, simply update SubloopParents and return NULL.
    522 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
    523 
    524   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
    525   // is considered uninitialized.
    526   Loop *NearLoop = BBLoop;
    527 
    528   Loop *Subloop = 0;
    529   if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
    530     Subloop = NearLoop;
    531     // Find the subloop ancestor that is directly contained within Unloop.
    532     while (Subloop->getParentLoop() != Unloop) {
    533       Subloop = Subloop->getParentLoop();
    534       assert(Subloop && "subloop is not an ancestor of the original loop");
    535     }
    536     // Get the current nearest parent of the Subloop exits, initially Unloop.
    537     if (!SubloopParents.count(Subloop))
    538       SubloopParents[Subloop] = Unloop;
    539     NearLoop = SubloopParents[Subloop];
    540   }
    541 
    542   succ_iterator I = succ_begin(BB), E = succ_end(BB);
    543   if (I == E) {
    544     assert(!Subloop && "subloop blocks must have a successor");
    545     NearLoop = 0; // unloop blocks may now exit the function.
    546   }
    547   for (; I != E; ++I) {
    548     if (*I == BB)
    549       continue; // self loops are uninteresting
    550 
    551     Loop *L = LI->getLoopFor(*I);
    552     if (L == Unloop) {
    553       // This successor has not been processed. This path must lead to an
    554       // irreducible backedge.
    555       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
    556       FoundIB = true;
    557     }
    558     if (L != Unloop && Unloop->contains(L)) {
    559       // Successor is in a subloop.
    560       if (Subloop)
    561         continue; // Branching within subloops. Ignore it.
    562 
    563       // BB branches from the original into a subloop header.
    564       assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
    565 
    566       // Get the current nearest parent of the Subloop's exits.
    567       L = SubloopParents[L];
    568       // L could be Unloop if the only exit was an irreducible backedge.
    569     }
    570     if (L == Unloop) {
    571       continue;
    572     }
    573     // Handle critical edges from Unloop into a sibling loop.
    574     if (L && !L->contains(Unloop)) {
    575       L = L->getParentLoop();
    576     }
    577     // Remember the nearest parent loop among successors or subloop exits.
    578     if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
    579       NearLoop = L;
    580   }
    581   if (Subloop) {
    582     SubloopParents[Subloop] = NearLoop;
    583     return BBLoop;
    584   }
    585   return NearLoop;
    586 }
    587 
    588 //===----------------------------------------------------------------------===//
    589 // LoopInfo implementation
    590 //
    591 bool LoopInfo::runOnFunction(Function &) {
    592   releaseMemory();
    593   LI.Calculate(getAnalysis<DominatorTree>().getBase());    // Update
    594   return false;
    595 }
    596 
    597 /// updateUnloop - The last backedge has been removed from a loop--now the
    598 /// "unloop". Find a new parent for the blocks contained within unloop and
    599 /// update the loop tree. We don't necessarily have valid dominators at this
    600 /// point, but LoopInfo is still valid except for the removal of this loop.
    601 ///
    602 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
    603 /// checking first is illegal.
    604 void LoopInfo::updateUnloop(Loop *Unloop) {
    605 
    606   // First handle the special case of no parent loop to simplify the algorithm.
    607   if (!Unloop->getParentLoop()) {
    608     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
    609     for (Loop::block_iterator I = Unloop->block_begin(),
    610          E = Unloop->block_end(); I != E; ++I) {
    611 
    612       // Don't reparent blocks in subloops.
    613       if (getLoopFor(*I) != Unloop)
    614         continue;
    615 
    616       // Blocks no longer have a parent but are still referenced by Unloop until
    617       // the Unloop object is deleted.
    618       LI.changeLoopFor(*I, 0);
    619     }
    620 
    621     // Remove the loop from the top-level LoopInfo object.
    622     for (LoopInfo::iterator I = LI.begin();; ++I) {
    623       assert(I != LI.end() && "Couldn't find loop");
    624       if (*I == Unloop) {
    625         LI.removeLoop(I);
    626         break;
    627       }
    628     }
    629 
    630     // Move all of the subloops to the top-level.
    631     while (!Unloop->empty())
    632       LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
    633 
    634     return;
    635   }
    636 
    637   // Update the parent loop for all blocks within the loop. Blocks within
    638   // subloops will not change parents.
    639   UnloopUpdater Updater(Unloop, this);
    640   Updater.updateBlockParents();
    641 
    642   // Remove blocks from former ancestor loops.
    643   Updater.removeBlocksFromAncestors();
    644 
    645   // Add direct subloops as children in their new parent loop.
    646   Updater.updateSubloopParents();
    647 
    648   // Remove unloop from its parent loop.
    649   Loop *ParentLoop = Unloop->getParentLoop();
    650   for (Loop::iterator I = ParentLoop->begin();; ++I) {
    651     assert(I != ParentLoop->end() && "Couldn't find loop");
    652     if (*I == Unloop) {
    653       ParentLoop->removeChildLoop(I);
    654       break;
    655     }
    656   }
    657 }
    658 
    659 void LoopInfo::verifyAnalysis() const {
    660   // LoopInfo is a FunctionPass, but verifying every loop in the function
    661   // each time verifyAnalysis is called is very expensive. The
    662   // -verify-loop-info option can enable this. In order to perform some
    663   // checking by default, LoopPass has been taught to call verifyLoop
    664   // manually during loop pass sequences.
    665 
    666   if (!VerifyLoopInfo) return;
    667 
    668   DenseSet<const Loop*> Loops;
    669   for (iterator I = begin(), E = end(); I != E; ++I) {
    670     assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
    671     (*I)->verifyLoopNest(&Loops);
    672   }
    673 
    674   // Verify that blocks are mapped to valid loops.
    675   //
    676   // FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we
    677   // could also verify that the blocks are still in the correct loops.
    678   for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
    679          E = LI.BBMap.end(); I != E; ++I) {
    680     assert(Loops.count(I->second) && "orphaned loop");
    681     assert(I->second->contains(I->first) && "orphaned block");
    682   }
    683 }
    684 
    685 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
    686   AU.setPreservesAll();
    687   AU.addRequired<DominatorTree>();
    688 }
    689 
    690 void LoopInfo::print(raw_ostream &OS, const Module*) const {
    691   LI.print(OS);
    692 }
    693 
    694 //===----------------------------------------------------------------------===//
    695 // LoopBlocksDFS implementation
    696 //
    697 
    698 /// Traverse the loop blocks and store the DFS result.
    699 /// Useful for clients that just want the final DFS result and don't need to
    700 /// visit blocks during the initial traversal.
    701 void LoopBlocksDFS::perform(LoopInfo *LI) {
    702   LoopBlocksTraversal Traversal(*this, LI);
    703   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
    704          POE = Traversal.end(); POI != POE; ++POI) ;
    705 }
    706