Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This defines a set of argument wrappers and related factory methods that
      6 // can be used specify the refcounting and reference semantics of arguments
      7 // that are bound by the Bind() function in base/bind.h.
      8 //
      9 // It also defines a set of simple functions and utilities that people want
     10 // when using Callback<> and Bind().
     11 //
     12 //
     13 // ARGUMENT BINDING WRAPPERS
     14 //
     15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
     16 // base::ConstRef(), and base::IgnoreResult().
     17 //
     18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
     19 // refcounting on arguments that are refcounted objects.
     20 //
     21 // Owned() transfers ownership of an object to the Callback resulting from
     22 // bind; the object will be deleted when the Callback is deleted.
     23 //
     24 // Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr)
     25 // through a Callback. Logically, this signifies a destructive transfer of
     26 // the state of the argument into the target function.  Invoking
     27 // Callback::Run() twice on a Callback that was created with a Passed()
     28 // argument will CHECK() because the first invocation would have already
     29 // transferred ownership to the target function.
     30 //
     31 // RetainedRef() accepts a ref counted object and retains a reference to it.
     32 // When the callback is called, the object is passed as a raw pointer.
     33 //
     34 // ConstRef() allows binding a constant reference to an argument rather
     35 // than a copy.
     36 //
     37 // IgnoreResult() is used to adapt a function or Callback with a return type to
     38 // one with a void return. This is most useful if you have a function with,
     39 // say, a pesky ignorable bool return that you want to use with PostTask or
     40 // something else that expect a Callback with a void return.
     41 //
     42 // EXAMPLE OF Unretained():
     43 //
     44 //   class Foo {
     45 //    public:
     46 //     void func() { cout << "Foo:f" << endl; }
     47 //   };
     48 //
     49 //   // In some function somewhere.
     50 //   Foo foo;
     51 //   Closure foo_callback =
     52 //       Bind(&Foo::func, Unretained(&foo));
     53 //   foo_callback.Run();  // Prints "Foo:f".
     54 //
     55 // Without the Unretained() wrapper on |&foo|, the above call would fail
     56 // to compile because Foo does not support the AddRef() and Release() methods.
     57 //
     58 //
     59 // EXAMPLE OF Owned():
     60 //
     61 //   void foo(int* arg) { cout << *arg << endl }
     62 //
     63 //   int* pn = new int(1);
     64 //   Closure foo_callback = Bind(&foo, Owned(pn));
     65 //
     66 //   foo_callback.Run();  // Prints "1"
     67 //   foo_callback.Run();  // Prints "1"
     68 //   *n = 2;
     69 //   foo_callback.Run();  // Prints "2"
     70 //
     71 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
     72 //                          // |foo_callback| goes out of scope.
     73 //
     74 // Without Owned(), someone would have to know to delete |pn| when the last
     75 // reference to the Callback is deleted.
     76 //
     77 // EXAMPLE OF RetainedRef():
     78 //
     79 //    void foo(RefCountedBytes* bytes) {}
     80 //
     81 //    scoped_refptr<RefCountedBytes> bytes = ...;
     82 //    Closure callback = Bind(&foo, base::RetainedRef(bytes));
     83 //    callback.Run();
     84 //
     85 // Without RetainedRef, the scoped_refptr would try to implicitly convert to
     86 // a raw pointer and fail compilation:
     87 //
     88 //    Closure callback = Bind(&foo, bytes); // ERROR!
     89 //
     90 //
     91 // EXAMPLE OF ConstRef():
     92 //
     93 //   void foo(int arg) { cout << arg << endl }
     94 //
     95 //   int n = 1;
     96 //   Closure no_ref = Bind(&foo, n);
     97 //   Closure has_ref = Bind(&foo, ConstRef(n));
     98 //
     99 //   no_ref.Run();  // Prints "1"
    100 //   has_ref.Run();  // Prints "1"
    101 //
    102 //   n = 2;
    103 //   no_ref.Run();  // Prints "1"
    104 //   has_ref.Run();  // Prints "2"
    105 //
    106 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
    107 // its bound callbacks.
    108 //
    109 //
    110 // EXAMPLE OF IgnoreResult():
    111 //
    112 //   int DoSomething(int arg) { cout << arg << endl; }
    113 //
    114 //   // Assign to a Callback with a void return type.
    115 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
    116 //   cb->Run(1);  // Prints "1".
    117 //
    118 //   // Prints "1" on |ml|.
    119 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
    120 //
    121 //
    122 // EXAMPLE OF Passed():
    123 //
    124 //   void TakesOwnership(std::unique_ptr<Foo> arg) { }
    125 //   std::unique_ptr<Foo> CreateFoo() { return std::unique_ptr<Foo>(new Foo());
    126 //   }
    127 //
    128 //   std::unique_ptr<Foo> f(new Foo());
    129 //
    130 //   // |cb| is given ownership of Foo(). |f| is now NULL.
    131 //   // You can use std::move(f) in place of &f, but it's more verbose.
    132 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
    133 //
    134 //   // Run was never called so |cb| still owns Foo() and deletes
    135 //   // it on Reset().
    136 //   cb.Reset();
    137 //
    138 //   // |cb| is given a new Foo created by CreateFoo().
    139 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
    140 //
    141 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
    142 //   // no longer owns Foo() and, if reset, would not delete Foo().
    143 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
    144 //   cb.Run();  // This CHECK()s since Foo() already been used once.
    145 //
    146 // Passed() is particularly useful with PostTask() when you are transferring
    147 // ownership of an argument into a task, but don't necessarily know if the
    148 // task will always be executed. This can happen if the task is cancellable
    149 // or if it is posted to a TaskRunner.
    150 //
    151 //
    152 // SIMPLE FUNCTIONS AND UTILITIES.
    153 //
    154 //   DoNothing() - Useful for creating a Closure that does nothing when called.
    155 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
    156 //                        pointer when invoked. Only use this when necessary.
    157 //                        In most cases MessageLoop::DeleteSoon() is a better
    158 //                        fit.
    159 
    160 #ifndef BASE_BIND_HELPERS_H_
    161 #define BASE_BIND_HELPERS_H_
    162 
    163 #include <stddef.h>
    164 
    165 #include <type_traits>
    166 #include <utility>
    167 
    168 #include "base/callback.h"
    169 #include "base/memory/weak_ptr.h"
    170 #include "build/build_config.h"
    171 
    172 namespace base {
    173 
    174 template <typename T>
    175 struct IsWeakReceiver;
    176 
    177 template <typename>
    178 struct BindUnwrapTraits;
    179 
    180 namespace internal {
    181 
    182 template <typename Functor, typename SFINAE = void>
    183 struct FunctorTraits;
    184 
    185 template <typename T>
    186 class UnretainedWrapper {
    187  public:
    188   explicit UnretainedWrapper(T* o) : ptr_(o) {}
    189   T* get() const { return ptr_; }
    190  private:
    191   T* ptr_;
    192 };
    193 
    194 template <typename T>
    195 class ConstRefWrapper {
    196  public:
    197   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
    198   const T& get() const { return *ptr_; }
    199  private:
    200   const T* ptr_;
    201 };
    202 
    203 template <typename T>
    204 class RetainedRefWrapper {
    205  public:
    206   explicit RetainedRefWrapper(T* o) : ptr_(o) {}
    207   explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
    208   T* get() const { return ptr_.get(); }
    209  private:
    210   scoped_refptr<T> ptr_;
    211 };
    212 
    213 template <typename T>
    214 struct IgnoreResultHelper {
    215   explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
    216   explicit operator bool() const { return !!functor_; }
    217 
    218   T functor_;
    219 };
    220 
    221 // An alternate implementation is to avoid the destructive copy, and instead
    222 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
    223 // a class that is essentially a std::unique_ptr<>.
    224 //
    225 // The current implementation has the benefit though of leaving ParamTraits<>
    226 // fully in callback_internal.h as well as avoiding type conversions during
    227 // storage.
    228 template <typename T>
    229 class OwnedWrapper {
    230  public:
    231   explicit OwnedWrapper(T* o) : ptr_(o) {}
    232   ~OwnedWrapper() { delete ptr_; }
    233   T* get() const { return ptr_; }
    234   OwnedWrapper(OwnedWrapper&& other) {
    235     ptr_ = other.ptr_;
    236     other.ptr_ = NULL;
    237   }
    238 
    239  private:
    240   mutable T* ptr_;
    241 };
    242 
    243 // PassedWrapper is a copyable adapter for a scoper that ignores const.
    244 //
    245 // It is needed to get around the fact that Bind() takes a const reference to
    246 // all its arguments.  Because Bind() takes a const reference to avoid
    247 // unnecessary copies, it is incompatible with movable-but-not-copyable
    248 // types; doing a destructive "move" of the type into Bind() would violate
    249 // the const correctness.
    250 //
    251 // This conundrum cannot be solved without either C++11 rvalue references or
    252 // a O(2^n) blowup of Bind() templates to handle each combination of regular
    253 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
    254 // that is copyable to transmit the correct type information down into
    255 // BindState<>. Ignoring const in this type makes sense because it is only
    256 // created when we are explicitly trying to do a destructive move.
    257 //
    258 // Two notes:
    259 //  1) PassedWrapper supports any type that has a move constructor, however
    260 //     the type will need to be specifically whitelisted in order for it to be
    261 //     bound to a Callback. We guard this explicitly at the call of Passed()
    262 //     to make for clear errors. Things not given to Passed() will be forwarded
    263 //     and stored by value which will not work for general move-only types.
    264 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
    265 //     scoper to a Callback and allow the Callback to execute once.
    266 template <typename T>
    267 class PassedWrapper {
    268  public:
    269   explicit PassedWrapper(T&& scoper)
    270       : is_valid_(true), scoper_(std::move(scoper)) {}
    271   PassedWrapper(PassedWrapper&& other)
    272       : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
    273   T Take() const {
    274     CHECK(is_valid_);
    275     is_valid_ = false;
    276     return std::move(scoper_);
    277   }
    278 
    279  private:
    280   mutable bool is_valid_;
    281   mutable T scoper_;
    282 };
    283 
    284 template <typename T>
    285 using Unwrapper = BindUnwrapTraits<typename std::decay<T>::type>;
    286 
    287 template <typename T>
    288 auto Unwrap(T&& o) -> decltype(Unwrapper<T>::Unwrap(std::forward<T>(o))) {
    289   return Unwrapper<T>::Unwrap(std::forward<T>(o));
    290 }
    291 
    292 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
    293 // method.  It is used internally by Bind() to select the correct
    294 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
    295 // the target object is invalidated.
    296 //
    297 // The first argument should be the type of the object that will be received by
    298 // the method.
    299 template <bool is_method, typename... Args>
    300 struct IsWeakMethod : std::false_type {};
    301 
    302 template <typename T, typename... Args>
    303 struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
    304 
    305 // Packs a list of types to hold them in a single type.
    306 template <typename... Types>
    307 struct TypeList {};
    308 
    309 // Used for DropTypeListItem implementation.
    310 template <size_t n, typename List>
    311 struct DropTypeListItemImpl;
    312 
    313 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    314 template <size_t n, typename T, typename... List>
    315 struct DropTypeListItemImpl<n, TypeList<T, List...>>
    316     : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
    317 
    318 template <typename T, typename... List>
    319 struct DropTypeListItemImpl<0, TypeList<T, List...>> {
    320   using Type = TypeList<T, List...>;
    321 };
    322 
    323 template <>
    324 struct DropTypeListItemImpl<0, TypeList<>> {
    325   using Type = TypeList<>;
    326 };
    327 
    328 // A type-level function that drops |n| list item from given TypeList.
    329 template <size_t n, typename List>
    330 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
    331 
    332 // Used for TakeTypeListItem implementation.
    333 template <size_t n, typename List, typename... Accum>
    334 struct TakeTypeListItemImpl;
    335 
    336 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
    337 template <size_t n, typename T, typename... List, typename... Accum>
    338 struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
    339     : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
    340 
    341 template <typename T, typename... List, typename... Accum>
    342 struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
    343   using Type = TypeList<Accum...>;
    344 };
    345 
    346 template <typename... Accum>
    347 struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
    348   using Type = TypeList<Accum...>;
    349 };
    350 
    351 // A type-level function that takes first |n| list item from given TypeList.
    352 // E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
    353 // TypeList<A, B, C>.
    354 template <size_t n, typename List>
    355 using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
    356 
    357 // Used for ConcatTypeLists implementation.
    358 template <typename List1, typename List2>
    359 struct ConcatTypeListsImpl;
    360 
    361 template <typename... Types1, typename... Types2>
    362 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
    363   using Type = TypeList<Types1..., Types2...>;
    364 };
    365 
    366 // A type-level function that concats two TypeLists.
    367 template <typename List1, typename List2>
    368 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
    369 
    370 // Used for MakeFunctionType implementation.
    371 template <typename R, typename ArgList>
    372 struct MakeFunctionTypeImpl;
    373 
    374 template <typename R, typename... Args>
    375 struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
    376   // MSVC 2013 doesn't support Type Alias of function types.
    377   // Revisit this after we update it to newer version.
    378   typedef R Type(Args...);
    379 };
    380 
    381 // A type-level function that constructs a function type that has |R| as its
    382 // return type and has TypeLists items as its arguments.
    383 template <typename R, typename ArgList>
    384 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
    385 
    386 // Used for ExtractArgs and ExtractReturnType.
    387 template <typename Signature>
    388 struct ExtractArgsImpl;
    389 
    390 template <typename R, typename... Args>
    391 struct ExtractArgsImpl<R(Args...)> {
    392   using ReturnType = R;
    393   using ArgsList = TypeList<Args...>;
    394 };
    395 
    396 // A type-level function that extracts function arguments into a TypeList.
    397 // E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
    398 template <typename Signature>
    399 using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
    400 
    401 // A type-level function that extracts the return type of a function.
    402 // E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
    403 template <typename Signature>
    404 using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
    405 
    406 }  // namespace internal
    407 
    408 template <typename T>
    409 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
    410   return internal::UnretainedWrapper<T>(o);
    411 }
    412 
    413 template <typename T>
    414 static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
    415   return internal::RetainedRefWrapper<T>(o);
    416 }
    417 
    418 template <typename T>
    419 static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
    420   return internal::RetainedRefWrapper<T>(std::move(o));
    421 }
    422 
    423 template <typename T>
    424 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
    425   return internal::ConstRefWrapper<T>(o);
    426 }
    427 
    428 template <typename T>
    429 static inline internal::OwnedWrapper<T> Owned(T* o) {
    430   return internal::OwnedWrapper<T>(o);
    431 }
    432 
    433 // We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
    434 // is best suited for use with the return value of a function or other temporary
    435 // rvalues. The second takes a pointer to the scoper and is just syntactic sugar
    436 // to avoid having to write Passed(std::move(scoper)).
    437 //
    438 // Both versions of Passed() prevent T from being an lvalue reference. The first
    439 // via use of enable_if, and the second takes a T* which will not bind to T&.
    440 template <typename T,
    441           typename std::enable_if<!std::is_lvalue_reference<T>::value>::type* =
    442               nullptr>
    443 static inline internal::PassedWrapper<T> Passed(T&& scoper) {
    444   return internal::PassedWrapper<T>(std::move(scoper));
    445 }
    446 template <typename T>
    447 static inline internal::PassedWrapper<T> Passed(T* scoper) {
    448   return internal::PassedWrapper<T>(std::move(*scoper));
    449 }
    450 
    451 template <typename T>
    452 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
    453   return internal::IgnoreResultHelper<T>(std::move(data));
    454 }
    455 
    456 BASE_EXPORT void DoNothing();
    457 
    458 template<typename T>
    459 void DeletePointer(T* obj) {
    460   delete obj;
    461 }
    462 
    463 // An injection point to control |this| pointer behavior on a method invocation.
    464 // If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
    465 // method, base::Bind cancels the method invocation if the receiver is tested as
    466 // false.
    467 // E.g. Foo::bar() is not called:
    468 //   struct Foo : base::SupportsWeakPtr<Foo> {
    469 //     void bar() {}
    470 //   };
    471 //
    472 //   WeakPtr<Foo> oo = nullptr;
    473 //   base::Bind(&Foo::bar, oo).Run();
    474 template <typename T>
    475 struct IsWeakReceiver : std::false_type {};
    476 
    477 template <typename T>
    478 struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {};
    479 
    480 template <typename T>
    481 struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
    482 
    483 // An injection point to control how bound objects passed to the target
    484 // function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
    485 // before the target function is invoked.
    486 template <typename>
    487 struct BindUnwrapTraits {
    488   template <typename T>
    489   static T&& Unwrap(T&& o) { return std::forward<T>(o); }
    490 };
    491 
    492 template <typename T>
    493 struct BindUnwrapTraits<internal::UnretainedWrapper<T>> {
    494   static T* Unwrap(const internal::UnretainedWrapper<T>& o) {
    495     return o.get();
    496   }
    497 };
    498 
    499 template <typename T>
    500 struct BindUnwrapTraits<internal::ConstRefWrapper<T>> {
    501   static const T& Unwrap(const internal::ConstRefWrapper<T>& o) {
    502     return o.get();
    503   }
    504 };
    505 
    506 template <typename T>
    507 struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
    508   static T* Unwrap(const internal::RetainedRefWrapper<T>& o) {
    509     return o.get();
    510   }
    511 };
    512 
    513 template <typename T>
    514 struct BindUnwrapTraits<internal::OwnedWrapper<T>> {
    515   static T* Unwrap(const internal::OwnedWrapper<T>& o) {
    516     return o.get();
    517   }
    518 };
    519 
    520 template <typename T>
    521 struct BindUnwrapTraits<internal::PassedWrapper<T>> {
    522   static T Unwrap(const internal::PassedWrapper<T>& o) {
    523     return o.Take();
    524   }
    525 };
    526 
    527 // CallbackCancellationTraits allows customization of Callback's cancellation
    528 // semantics. By default, callbacks are not cancellable. A specialization should
    529 // set is_cancellable = true and implement an IsCancelled() that returns if the
    530 // callback should be cancelled.
    531 template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
    532 struct CallbackCancellationTraits {
    533   static constexpr bool is_cancellable = false;
    534 };
    535 
    536 // Specialization for method bound to weak pointer receiver.
    537 template <typename Functor, typename... BoundArgs>
    538 struct CallbackCancellationTraits<
    539     Functor,
    540     std::tuple<BoundArgs...>,
    541     typename std::enable_if<
    542         internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
    543                                BoundArgs...>::value>::type> {
    544   static constexpr bool is_cancellable = true;
    545 
    546   template <typename Receiver, typename... Args>
    547   static bool IsCancelled(const Functor&,
    548                           const Receiver& receiver,
    549                           const Args&...) {
    550     return !receiver;
    551   }
    552 };
    553 
    554 // Specialization for a nested bind.
    555 template <typename Signature,
    556           typename... BoundArgs,
    557           internal::CopyMode copy_mode,
    558           internal::RepeatMode repeat_mode>
    559 struct CallbackCancellationTraits<Callback<Signature, copy_mode, repeat_mode>,
    560                                   std::tuple<BoundArgs...>> {
    561   static constexpr bool is_cancellable = true;
    562 
    563   template <typename Functor>
    564   static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
    565     return functor.IsCancelled();
    566   }
    567 };
    568 
    569 }  // namespace base
    570 
    571 #endif  // BASE_BIND_HELPERS_H_
    572