1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities for loops with run-time 11 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time 12 // trip counts. 13 // 14 // The functions in this file are used to generate extra code when the 15 // run-time trip count modulo the unroll factor is not 0. When this is the 16 // case, we need to generate code to execute these 'left over' iterations. 17 // 18 // The current strategy generates an if-then-else sequence prior to the 19 // unrolled loop to execute the 'left over' iterations before or after the 20 // unrolled loop. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/Utils/UnrollLoop.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 #include "llvm/Analysis/LoopPass.h" 29 #include "llvm/Analysis/ScalarEvolution.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Transforms/Scalar.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include <algorithm> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "loop-unroll" 45 46 STATISTIC(NumRuntimeUnrolled, 47 "Number of loops unrolled with run-time trip counts"); 48 49 /// Connect the unrolling prolog code to the original loop. 50 /// The unrolling prolog code contains code to execute the 51 /// 'extra' iterations if the run-time trip count modulo the 52 /// unroll count is non-zero. 53 /// 54 /// This function performs the following: 55 /// - Create PHI nodes at prolog end block to combine values 56 /// that exit the prolog code and jump around the prolog. 57 /// - Add a PHI operand to a PHI node at the loop exit block 58 /// for values that exit the prolog and go around the loop. 59 /// - Branch around the original loop if the trip count is less 60 /// than the unroll factor. 61 /// 62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, 63 BasicBlock *PrologExit, BasicBlock *PreHeader, 64 BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, 65 DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { 66 BasicBlock *Latch = L->getLoopLatch(); 67 assert(Latch && "Loop must have a latch"); 68 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); 69 70 // Create a PHI node for each outgoing value from the original loop 71 // (which means it is an outgoing value from the prolog code too). 72 // The new PHI node is inserted in the prolog end basic block. 73 // The new PHI node value is added as an operand of a PHI node in either 74 // the loop header or the loop exit block. 75 for (BasicBlock *Succ : successors(Latch)) { 76 for (Instruction &BBI : *Succ) { 77 PHINode *PN = dyn_cast<PHINode>(&BBI); 78 // Exit when we passed all PHI nodes. 79 if (!PN) 80 break; 81 // Add a new PHI node to the prolog end block and add the 82 // appropriate incoming values. 83 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 84 PrologExit->getFirstNonPHI()); 85 // Adding a value to the new PHI node from the original loop preheader. 86 // This is the value that skips all the prolog code. 87 if (L->contains(PN)) { 88 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), 89 PreHeader); 90 } else { 91 NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 92 } 93 94 Value *V = PN->getIncomingValueForBlock(Latch); 95 if (Instruction *I = dyn_cast<Instruction>(V)) { 96 if (L->contains(I)) { 97 V = VMap.lookup(I); 98 } 99 } 100 // Adding a value to the new PHI node from the last prolog block 101 // that was created. 102 NewPN->addIncoming(V, PrologLatch); 103 104 // Update the existing PHI node operand with the value from the 105 // new PHI node. How this is done depends on if the existing 106 // PHI node is in the original loop block, or the exit block. 107 if (L->contains(PN)) { 108 PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN); 109 } else { 110 PN->addIncoming(NewPN, PrologExit); 111 } 112 } 113 } 114 115 // Create a branch around the original loop, which is taken if there are no 116 // iterations remaining to be executed after running the prologue. 117 Instruction *InsertPt = PrologExit->getTerminator(); 118 IRBuilder<> B(InsertPt); 119 120 assert(Count != 0 && "nonsensical Count!"); 121 122 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) 123 // This means %xtraiter is (BECount + 1) and all of the iterations of this 124 // loop were executed by the prologue. Note that if BECount <u (Count - 1) 125 // then (BECount + 1) cannot unsigned-overflow. 126 Value *BrLoopExit = 127 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); 128 BasicBlock *Exit = L->getUniqueExitBlock(); 129 assert(Exit && "Loop must have a single exit block only"); 130 // Split the exit to maintain loop canonicalization guarantees 131 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 132 SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI, 133 PreserveLCSSA); 134 // Add the branch to the exit block (around the unrolled loop) 135 B.CreateCondBr(BrLoopExit, Exit, NewPreHeader); 136 InsertPt->eraseFromParent(); 137 } 138 139 /// Connect the unrolling epilog code to the original loop. 140 /// The unrolling epilog code contains code to execute the 141 /// 'extra' iterations if the run-time trip count modulo the 142 /// unroll count is non-zero. 143 /// 144 /// This function performs the following: 145 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit 146 /// - Create PHI nodes at the unrolling loop exit to combine 147 /// values that exit the unrolling loop code and jump around it. 148 /// - Update PHI operands in the epilog loop by the new PHI nodes 149 /// - Branch around the epilog loop if extra iters (ModVal) is zero. 150 /// 151 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, 152 BasicBlock *Exit, BasicBlock *PreHeader, 153 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, 154 ValueToValueMapTy &VMap, DominatorTree *DT, 155 LoopInfo *LI, bool PreserveLCSSA) { 156 BasicBlock *Latch = L->getLoopLatch(); 157 assert(Latch && "Loop must have a latch"); 158 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); 159 160 // Loop structure should be the following: 161 // 162 // PreHeader 163 // NewPreHeader 164 // Header 165 // ... 166 // Latch 167 // NewExit (PN) 168 // EpilogPreHeader 169 // EpilogHeader 170 // ... 171 // EpilogLatch 172 // Exit (EpilogPN) 173 174 // Update PHI nodes at NewExit and Exit. 175 for (Instruction &BBI : *NewExit) { 176 PHINode *PN = dyn_cast<PHINode>(&BBI); 177 // Exit when we passed all PHI nodes. 178 if (!PN) 179 break; 180 // PN should be used in another PHI located in Exit block as 181 // Exit was split by SplitBlockPredecessors into Exit and NewExit 182 // Basicaly it should look like: 183 // NewExit: 184 // PN = PHI [I, Latch] 185 // ... 186 // Exit: 187 // EpilogPN = PHI [PN, EpilogPreHeader] 188 // 189 // There is EpilogPreHeader incoming block instead of NewExit as 190 // NewExit was spilt 1 more time to get EpilogPreHeader. 191 assert(PN->hasOneUse() && "The phi should have 1 use"); 192 PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser()); 193 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); 194 195 // Add incoming PreHeader from branch around the Loop 196 PN->addIncoming(UndefValue::get(PN->getType()), PreHeader); 197 198 Value *V = PN->getIncomingValueForBlock(Latch); 199 Instruction *I = dyn_cast<Instruction>(V); 200 if (I && L->contains(I)) 201 // If value comes from an instruction in the loop add VMap value. 202 V = VMap.lookup(I); 203 // For the instruction out of the loop, constant or undefined value 204 // insert value itself. 205 EpilogPN->addIncoming(V, EpilogLatch); 206 207 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && 208 "EpilogPN should have EpilogPreHeader incoming block"); 209 // Change EpilogPreHeader incoming block to NewExit. 210 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), 211 NewExit); 212 // Now PHIs should look like: 213 // NewExit: 214 // PN = PHI [I, Latch], [undef, PreHeader] 215 // ... 216 // Exit: 217 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] 218 } 219 220 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). 221 // Update corresponding PHI nodes in epilog loop. 222 for (BasicBlock *Succ : successors(Latch)) { 223 // Skip this as we already updated phis in exit blocks. 224 if (!L->contains(Succ)) 225 continue; 226 for (Instruction &BBI : *Succ) { 227 PHINode *PN = dyn_cast<PHINode>(&BBI); 228 // Exit when we passed all PHI nodes. 229 if (!PN) 230 break; 231 // Add new PHI nodes to the loop exit block and update epilog 232 // PHIs with the new PHI values. 233 PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr", 234 NewExit->getFirstNonPHI()); 235 // Adding a value to the new PHI node from the unrolling loop preheader. 236 NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader); 237 // Adding a value to the new PHI node from the unrolling loop latch. 238 NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch); 239 240 // Update the existing PHI node operand with the value from the new PHI 241 // node. Corresponding instruction in epilog loop should be PHI. 242 PHINode *VPN = cast<PHINode>(VMap[&BBI]); 243 VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN); 244 } 245 } 246 247 Instruction *InsertPt = NewExit->getTerminator(); 248 IRBuilder<> B(InsertPt); 249 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); 250 assert(Exit && "Loop must have a single exit block only"); 251 // Split the exit to maintain loop canonicalization guarantees 252 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 253 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, 254 PreserveLCSSA); 255 // Add the branch to the exit block (around the unrolling loop) 256 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); 257 InsertPt->eraseFromParent(); 258 } 259 260 /// Create a clone of the blocks in a loop and connect them together. 261 /// If CreateRemainderLoop is false, loop structure will not be cloned, 262 /// otherwise a new loop will be created including all cloned blocks, and the 263 /// iterator of it switches to count NewIter down to 0. 264 /// The cloned blocks should be inserted between InsertTop and InsertBot. 265 /// If loop structure is cloned InsertTop should be new preheader, InsertBot 266 /// new loop exit. 267 /// 268 static void CloneLoopBlocks(Loop *L, Value *NewIter, 269 const bool CreateRemainderLoop, 270 const bool UseEpilogRemainder, 271 BasicBlock *InsertTop, BasicBlock *InsertBot, 272 BasicBlock *Preheader, 273 std::vector<BasicBlock *> &NewBlocks, 274 LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, 275 LoopInfo *LI) { 276 StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; 277 BasicBlock *Header = L->getHeader(); 278 BasicBlock *Latch = L->getLoopLatch(); 279 Function *F = Header->getParent(); 280 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); 281 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); 282 Loop *NewLoop = nullptr; 283 Loop *ParentLoop = L->getParentLoop(); 284 if (CreateRemainderLoop) { 285 NewLoop = new Loop(); 286 if (ParentLoop) 287 ParentLoop->addChildLoop(NewLoop); 288 else 289 LI->addTopLevelLoop(NewLoop); 290 } 291 292 // For each block in the original loop, create a new copy, 293 // and update the value map with the newly created values. 294 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 295 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); 296 NewBlocks.push_back(NewBB); 297 298 if (NewLoop) 299 NewLoop->addBasicBlockToLoop(NewBB, *LI); 300 else if (ParentLoop) 301 ParentLoop->addBasicBlockToLoop(NewBB, *LI); 302 303 VMap[*BB] = NewBB; 304 if (Header == *BB) { 305 // For the first block, add a CFG connection to this newly 306 // created block. 307 InsertTop->getTerminator()->setSuccessor(0, NewBB); 308 } 309 310 if (Latch == *BB) { 311 // For the last block, if CreateRemainderLoop is false, create a direct 312 // jump to InsertBot. If not, create a loop back to cloned head. 313 VMap.erase((*BB)->getTerminator()); 314 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); 315 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); 316 IRBuilder<> Builder(LatchBR); 317 if (!CreateRemainderLoop) { 318 Builder.CreateBr(InsertBot); 319 } else { 320 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, 321 suffix + ".iter", 322 FirstLoopBB->getFirstNonPHI()); 323 Value *IdxSub = 324 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 325 NewIdx->getName() + ".sub"); 326 Value *IdxCmp = 327 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); 328 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); 329 NewIdx->addIncoming(NewIter, InsertTop); 330 NewIdx->addIncoming(IdxSub, NewBB); 331 } 332 LatchBR->eraseFromParent(); 333 } 334 } 335 336 // Change the incoming values to the ones defined in the preheader or 337 // cloned loop. 338 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 339 PHINode *NewPHI = cast<PHINode>(VMap[&*I]); 340 if (!CreateRemainderLoop) { 341 if (UseEpilogRemainder) { 342 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 343 NewPHI->setIncomingBlock(idx, InsertTop); 344 NewPHI->removeIncomingValue(Latch, false); 345 } else { 346 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); 347 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); 348 } 349 } else { 350 unsigned idx = NewPHI->getBasicBlockIndex(Preheader); 351 NewPHI->setIncomingBlock(idx, InsertTop); 352 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); 353 idx = NewPHI->getBasicBlockIndex(Latch); 354 Value *InVal = NewPHI->getIncomingValue(idx); 355 NewPHI->setIncomingBlock(idx, NewLatch); 356 if (Value *V = VMap.lookup(InVal)) 357 NewPHI->setIncomingValue(idx, V); 358 } 359 } 360 if (NewLoop) { 361 // Add unroll disable metadata to disable future unrolling for this loop. 362 SmallVector<Metadata *, 4> MDs; 363 // Reserve first location for self reference to the LoopID metadata node. 364 MDs.push_back(nullptr); 365 MDNode *LoopID = NewLoop->getLoopID(); 366 if (LoopID) { 367 // First remove any existing loop unrolling metadata. 368 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 369 bool IsUnrollMetadata = false; 370 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 371 if (MD) { 372 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 373 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll."); 374 } 375 if (!IsUnrollMetadata) 376 MDs.push_back(LoopID->getOperand(i)); 377 } 378 } 379 380 LLVMContext &Context = NewLoop->getHeader()->getContext(); 381 SmallVector<Metadata *, 1> DisableOperands; 382 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable")); 383 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 384 MDs.push_back(DisableNode); 385 386 MDNode *NewLoopID = MDNode::get(Context, MDs); 387 // Set operand 0 to refer to the loop id itself. 388 NewLoopID->replaceOperandWith(0, NewLoopID); 389 NewLoop->setLoopID(NewLoopID); 390 } 391 } 392 393 /// Insert code in the prolog/epilog code when unrolling a loop with a 394 /// run-time trip-count. 395 /// 396 /// This method assumes that the loop unroll factor is total number 397 /// of loop bodies in the loop after unrolling. (Some folks refer 398 /// to the unroll factor as the number of *extra* copies added). 399 /// We assume also that the loop unroll factor is a power-of-two. So, after 400 /// unrolling the loop, the number of loop bodies executed is 2, 401 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch 402 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for 403 /// the switch instruction is generated. 404 /// 405 /// ***Prolog case*** 406 /// extraiters = tripcount % loopfactor 407 /// if (extraiters == 0) jump Loop: 408 /// else jump Prol: 409 /// Prol: LoopBody; 410 /// extraiters -= 1 // Omitted if unroll factor is 2. 411 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. 412 /// if (tripcount < loopfactor) jump End: 413 /// Loop: 414 /// ... 415 /// End: 416 /// 417 /// ***Epilog case*** 418 /// extraiters = tripcount % loopfactor 419 /// if (tripcount < loopfactor) jump LoopExit: 420 /// unroll_iters = tripcount - extraiters 421 /// Loop: LoopBody; (executes unroll_iter times); 422 /// unroll_iter -= 1 423 /// if (unroll_iter != 0) jump Loop: 424 /// LoopExit: 425 /// if (extraiters == 0) jump EpilExit: 426 /// Epil: LoopBody; (executes extraiters times) 427 /// extraiters -= 1 // Omitted if unroll factor is 2. 428 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. 429 /// EpilExit: 430 431 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, 432 bool AllowExpensiveTripCount, 433 bool UseEpilogRemainder, 434 LoopInfo *LI, ScalarEvolution *SE, 435 DominatorTree *DT, bool PreserveLCSSA) { 436 // for now, only unroll loops that contain a single exit 437 if (!L->getExitingBlock()) 438 return false; 439 440 // Make sure the loop is in canonical form, and there is a single 441 // exit block only. 442 if (!L->isLoopSimplifyForm()) 443 return false; 444 BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop 445 if (!Exit) 446 return false; 447 448 // Use Scalar Evolution to compute the trip count. This allows more loops to 449 // be unrolled than relying on induction var simplification. 450 if (!SE) 451 return false; 452 453 // Only unroll loops with a computable trip count, and the trip count needs 454 // to be an int value (allowing a pointer type is a TODO item). 455 const SCEV *BECountSC = SE->getBackedgeTakenCount(L); 456 if (isa<SCEVCouldNotCompute>(BECountSC) || 457 !BECountSC->getType()->isIntegerTy()) 458 return false; 459 460 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); 461 462 // Add 1 since the backedge count doesn't include the first loop iteration. 463 const SCEV *TripCountSC = 464 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); 465 if (isa<SCEVCouldNotCompute>(TripCountSC)) 466 return false; 467 468 BasicBlock *Header = L->getHeader(); 469 BasicBlock *PreHeader = L->getLoopPreheader(); 470 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 471 const DataLayout &DL = Header->getModule()->getDataLayout(); 472 SCEVExpander Expander(*SE, DL, "loop-unroll"); 473 if (!AllowExpensiveTripCount && 474 Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR)) 475 return false; 476 477 // This constraint lets us deal with an overflowing trip count easily; see the 478 // comment on ModVal below. 479 if (Log2_32(Count) > BEWidth) 480 return false; 481 482 // If this loop is nested, then the loop unroller changes the code in the 483 // parent loop, so the Scalar Evolution pass needs to be run again. 484 if (Loop *ParentLoop = L->getParentLoop()) 485 SE->forgetLoop(ParentLoop); 486 487 BasicBlock *Latch = L->getLoopLatch(); 488 489 // Loop structure is the following: 490 // 491 // PreHeader 492 // Header 493 // ... 494 // Latch 495 // Exit 496 497 BasicBlock *NewPreHeader; 498 BasicBlock *NewExit = nullptr; 499 BasicBlock *PrologExit = nullptr; 500 BasicBlock *EpilogPreHeader = nullptr; 501 BasicBlock *PrologPreHeader = nullptr; 502 503 if (UseEpilogRemainder) { 504 // If epilog remainder 505 // Split PreHeader to insert a branch around loop for unrolling. 506 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); 507 NewPreHeader->setName(PreHeader->getName() + ".new"); 508 // Split Exit to create phi nodes from branch above. 509 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); 510 NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", 511 DT, LI, PreserveLCSSA); 512 // Split NewExit to insert epilog remainder loop. 513 EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI); 514 EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); 515 } else { 516 // If prolog remainder 517 // Split the original preheader twice to insert prolog remainder loop 518 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); 519 PrologPreHeader->setName(Header->getName() + ".prol.preheader"); 520 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), 521 DT, LI); 522 PrologExit->setName(Header->getName() + ".prol.loopexit"); 523 // Split PrologExit to get NewPreHeader. 524 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); 525 NewPreHeader->setName(PreHeader->getName() + ".new"); 526 } 527 // Loop structure should be the following: 528 // Epilog Prolog 529 // 530 // PreHeader PreHeader 531 // *NewPreHeader *PrologPreHeader 532 // Header *PrologExit 533 // ... *NewPreHeader 534 // Latch Header 535 // *NewExit ... 536 // *EpilogPreHeader Latch 537 // Exit Exit 538 539 // Calculate conditions for branch around loop for unrolling 540 // in epilog case and around prolog remainder loop in prolog case. 541 // Compute the number of extra iterations required, which is: 542 // extra iterations = run-time trip count % loop unroll factor 543 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 544 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), 545 PreHeaderBR); 546 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), 547 PreHeaderBR); 548 IRBuilder<> B(PreHeaderBR); 549 Value *ModVal; 550 // Calculate ModVal = (BECount + 1) % Count. 551 // Note that TripCount is BECount + 1. 552 if (isPowerOf2_32(Count)) { 553 // When Count is power of 2 we don't BECount for epilog case, however we'll 554 // need it for a branch around unrolling loop for prolog case. 555 ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); 556 // 1. There are no iterations to be run in the prolog/epilog loop. 557 // OR 558 // 2. The addition computing TripCount overflowed. 559 // 560 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so 561 // the number of iterations that remain to be run in the original loop is a 562 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we 563 // explicitly check this above). 564 } else { 565 // As (BECount + 1) can potentially unsigned overflow we count 566 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. 567 Value *ModValTmp = B.CreateURem(BECount, 568 ConstantInt::get(BECount->getType(), 569 Count)); 570 Value *ModValAdd = B.CreateAdd(ModValTmp, 571 ConstantInt::get(ModValTmp->getType(), 1)); 572 // At that point (BECount % Count) + 1 could be equal to Count. 573 // To handle this case we need to take mod by Count one more time. 574 ModVal = B.CreateURem(ModValAdd, 575 ConstantInt::get(BECount->getType(), Count), 576 "xtraiter"); 577 } 578 Value *BranchVal = 579 UseEpilogRemainder ? B.CreateICmpULT(BECount, 580 ConstantInt::get(BECount->getType(), 581 Count - 1)) : 582 B.CreateIsNotNull(ModVal, "lcmp.mod"); 583 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; 584 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; 585 // Branch to either remainder (extra iterations) loop or unrolling loop. 586 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); 587 PreHeaderBR->eraseFromParent(); 588 Function *F = Header->getParent(); 589 // Get an ordered list of blocks in the loop to help with the ordering of the 590 // cloned blocks in the prolog/epilog code 591 LoopBlocksDFS LoopBlocks(L); 592 LoopBlocks.perform(LI); 593 594 // 595 // For each extra loop iteration, create a copy of the loop's basic blocks 596 // and generate a condition that branches to the copy depending on the 597 // number of 'left over' iterations. 598 // 599 std::vector<BasicBlock *> NewBlocks; 600 ValueToValueMapTy VMap; 601 602 // For unroll factor 2 remainder loop will have 1 iterations. 603 // Do not create 1 iteration loop. 604 bool CreateRemainderLoop = (Count != 2); 605 606 // Clone all the basic blocks in the loop. If Count is 2, we don't clone 607 // the loop, otherwise we create a cloned loop to execute the extra 608 // iterations. This function adds the appropriate CFG connections. 609 BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit; 610 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; 611 CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop, 612 InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI); 613 614 // Insert the cloned blocks into the function. 615 F->getBasicBlockList().splice(InsertBot->getIterator(), 616 F->getBasicBlockList(), 617 NewBlocks[0]->getIterator(), 618 F->end()); 619 620 // Loop structure should be the following: 621 // Epilog Prolog 622 // 623 // PreHeader PreHeader 624 // NewPreHeader PrologPreHeader 625 // Header PrologHeader 626 // ... ... 627 // Latch PrologLatch 628 // NewExit PrologExit 629 // EpilogPreHeader NewPreHeader 630 // EpilogHeader Header 631 // ... ... 632 // EpilogLatch Latch 633 // Exit Exit 634 635 // Rewrite the cloned instruction operands to use the values created when the 636 // clone is created. 637 for (BasicBlock *BB : NewBlocks) { 638 for (Instruction &I : *BB) { 639 RemapInstruction(&I, VMap, 640 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 641 } 642 } 643 644 if (UseEpilogRemainder) { 645 // Connect the epilog code to the original loop and update the 646 // PHI functions. 647 ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader, 648 EpilogPreHeader, NewPreHeader, VMap, DT, LI, 649 PreserveLCSSA); 650 651 // Update counter in loop for unrolling. 652 // I should be multiply of Count. 653 IRBuilder<> B2(NewPreHeader->getTerminator()); 654 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); 655 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); 656 B2.SetInsertPoint(LatchBR); 657 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", 658 Header->getFirstNonPHI()); 659 Value *IdxSub = 660 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), 661 NewIdx->getName() + ".nsub"); 662 Value *IdxCmp; 663 if (LatchBR->getSuccessor(0) == Header) 664 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); 665 else 666 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); 667 NewIdx->addIncoming(TestVal, NewPreHeader); 668 NewIdx->addIncoming(IdxSub, Latch); 669 LatchBR->setCondition(IdxCmp); 670 } else { 671 // Connect the prolog code to the original loop and update the 672 // PHI functions. 673 ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader, 674 VMap, DT, LI, PreserveLCSSA); 675 } 676 NumRuntimeUnrolled++; 677 return true; 678 } 679