Home | History | Annotate | Download | only in enc
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Macroblock analysis
     11 //
     12 // Author: Skal (pascal.massimino (at) gmail.com)
     13 
     14 #include <stdlib.h>
     15 #include <string.h>
     16 #include <assert.h>
     17 
     18 #include "src/enc/vp8i_enc.h"
     19 #include "src/enc/cost_enc.h"
     20 #include "src/utils/utils.h"
     21 
     22 #define MAX_ITERS_K_MEANS  6
     23 
     24 //------------------------------------------------------------------------------
     25 // Smooth the segment map by replacing isolated block by the majority of its
     26 // neighbours.
     27 
     28 static void SmoothSegmentMap(VP8Encoder* const enc) {
     29   int n, x, y;
     30   const int w = enc->mb_w_;
     31   const int h = enc->mb_h_;
     32   const int majority_cnt_3_x_3_grid = 5;
     33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
     34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
     35 
     36   if (tmp == NULL) return;
     37   for (y = 1; y < h - 1; ++y) {
     38     for (x = 1; x < w - 1; ++x) {
     39       int cnt[NUM_MB_SEGMENTS] = { 0 };
     40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     41       int majority_seg = mb->segment_;
     42       // Check the 8 neighbouring segment values.
     43       cnt[mb[-w - 1].segment_]++;  // top-left
     44       cnt[mb[-w + 0].segment_]++;  // top
     45       cnt[mb[-w + 1].segment_]++;  // top-right
     46       cnt[mb[   - 1].segment_]++;  // left
     47       cnt[mb[   + 1].segment_]++;  // right
     48       cnt[mb[ w - 1].segment_]++;  // bottom-left
     49       cnt[mb[ w + 0].segment_]++;  // bottom
     50       cnt[mb[ w + 1].segment_]++;  // bottom-right
     51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
     52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
     53           majority_seg = n;
     54           break;
     55         }
     56       }
     57       tmp[x + y * w] = majority_seg;
     58     }
     59   }
     60   for (y = 1; y < h - 1; ++y) {
     61     for (x = 1; x < w - 1; ++x) {
     62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
     63       mb->segment_ = tmp[x + y * w];
     64     }
     65   }
     66   WebPSafeFree(tmp);
     67 }
     68 
     69 //------------------------------------------------------------------------------
     70 // set segment susceptibility alpha_ / beta_
     71 
     72 static WEBP_INLINE int clip(int v, int m, int M) {
     73   return (v < m) ? m : (v > M) ? M : v;
     74 }
     75 
     76 static void SetSegmentAlphas(VP8Encoder* const enc,
     77                              const int centers[NUM_MB_SEGMENTS],
     78                              int mid) {
     79   const int nb = enc->segment_hdr_.num_segments_;
     80   int min = centers[0], max = centers[0];
     81   int n;
     82 
     83   if (nb > 1) {
     84     for (n = 0; n < nb; ++n) {
     85       if (min > centers[n]) min = centers[n];
     86       if (max < centers[n]) max = centers[n];
     87     }
     88   }
     89   if (max == min) max = min + 1;
     90   assert(mid <= max && mid >= min);
     91   for (n = 0; n < nb; ++n) {
     92     const int alpha = 255 * (centers[n] - mid) / (max - min);
     93     const int beta = 255 * (centers[n] - min) / (max - min);
     94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
     95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
     96   }
     97 }
     98 
     99 //------------------------------------------------------------------------------
    100 // Compute susceptibility based on DCT-coeff histograms:
    101 // the higher, the "easier" the macroblock is to compress.
    102 
    103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
    104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
    105 #define DEFAULT_ALPHA (-1)
    106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
    107 
    108 static int FinalAlphaValue(int alpha) {
    109   alpha = MAX_ALPHA - alpha;
    110   return clip(alpha, 0, MAX_ALPHA);
    111 }
    112 
    113 static int GetAlpha(const VP8Histogram* const histo) {
    114   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
    115   // values which happen to be mostly noise. This leaves the maximum precision
    116   // for handling the useful small values which contribute most.
    117   const int max_value = histo->max_value;
    118   const int last_non_zero = histo->last_non_zero;
    119   const int alpha =
    120       (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
    121   return alpha;
    122 }
    123 
    124 static void InitHistogram(VP8Histogram* const histo) {
    125   histo->max_value = 0;
    126   histo->last_non_zero = 1;
    127 }
    128 
    129 static void MergeHistograms(const VP8Histogram* const in,
    130                             VP8Histogram* const out) {
    131   if (in->max_value > out->max_value) {
    132     out->max_value = in->max_value;
    133   }
    134   if (in->last_non_zero > out->last_non_zero) {
    135     out->last_non_zero = in->last_non_zero;
    136   }
    137 }
    138 
    139 //------------------------------------------------------------------------------
    140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
    141 
    142 static void AssignSegments(VP8Encoder* const enc,
    143                            const int alphas[MAX_ALPHA + 1]) {
    144   // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
    145   // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
    146   // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
    147   const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
    148                  enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
    149   int centers[NUM_MB_SEGMENTS];
    150   int weighted_average = 0;
    151   int map[MAX_ALPHA + 1];
    152   int a, n, k;
    153   int min_a = 0, max_a = MAX_ALPHA, range_a;
    154   // 'int' type is ok for histo, and won't overflow
    155   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
    156 
    157   assert(nb >= 1);
    158   assert(nb <= NUM_MB_SEGMENTS);
    159 
    160   // bracket the input
    161   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
    162   min_a = n;
    163   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
    164   max_a = n;
    165   range_a = max_a - min_a;
    166 
    167   // Spread initial centers evenly
    168   for (k = 0, n = 1; k < nb; ++k, n += 2) {
    169     assert(n < 2 * nb);
    170     centers[k] = min_a + (n * range_a) / (2 * nb);
    171   }
    172 
    173   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
    174     int total_weight;
    175     int displaced;
    176     // Reset stats
    177     for (n = 0; n < nb; ++n) {
    178       accum[n] = 0;
    179       dist_accum[n] = 0;
    180     }
    181     // Assign nearest center for each 'a'
    182     n = 0;    // track the nearest center for current 'a'
    183     for (a = min_a; a <= max_a; ++a) {
    184       if (alphas[a]) {
    185         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
    186           n++;
    187         }
    188         map[a] = n;
    189         // accumulate contribution into best centroid
    190         dist_accum[n] += a * alphas[a];
    191         accum[n] += alphas[a];
    192       }
    193     }
    194     // All point are classified. Move the centroids to the
    195     // center of their respective cloud.
    196     displaced = 0;
    197     weighted_average = 0;
    198     total_weight = 0;
    199     for (n = 0; n < nb; ++n) {
    200       if (accum[n]) {
    201         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
    202         displaced += abs(centers[n] - new_center);
    203         centers[n] = new_center;
    204         weighted_average += new_center * accum[n];
    205         total_weight += accum[n];
    206       }
    207     }
    208     weighted_average = (weighted_average + total_weight / 2) / total_weight;
    209     if (displaced < 5) break;   // no need to keep on looping...
    210   }
    211 
    212   // Map each original value to the closest centroid
    213   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    214     VP8MBInfo* const mb = &enc->mb_info_[n];
    215     const int alpha = mb->alpha_;
    216     mb->segment_ = map[alpha];
    217     mb->alpha_ = centers[map[alpha]];  // for the record.
    218   }
    219 
    220   if (nb > 1) {
    221     const int smooth = (enc->config_->preprocessing & 1);
    222     if (smooth) SmoothSegmentMap(enc);
    223   }
    224 
    225   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
    226 }
    227 
    228 //------------------------------------------------------------------------------
    229 // Macroblock analysis: collect histogram for each mode, deduce the maximal
    230 // susceptibility and set best modes for this macroblock.
    231 // Segment assignment is done later.
    232 
    233 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
    234 // the possible modes during the analysis phase: we risk falling into a local
    235 // optimum, or be subject to boundary effect
    236 #define MAX_INTRA16_MODE 2
    237 #define MAX_INTRA4_MODE  2
    238 #define MAX_UV_MODE      2
    239 
    240 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
    241   const int max_mode = MAX_INTRA16_MODE;
    242   int mode;
    243   int best_alpha = DEFAULT_ALPHA;
    244   int best_mode = 0;
    245 
    246   VP8MakeLuma16Preds(it);
    247   for (mode = 0; mode < max_mode; ++mode) {
    248     VP8Histogram histo;
    249     int alpha;
    250 
    251     InitHistogram(&histo);
    252     VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
    253                         it->yuv_p_ + VP8I16ModeOffsets[mode],
    254                         0, 16, &histo);
    255     alpha = GetAlpha(&histo);
    256     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    257       best_alpha = alpha;
    258       best_mode = mode;
    259     }
    260   }
    261   VP8SetIntra16Mode(it, best_mode);
    262   return best_alpha;
    263 }
    264 
    265 static int FastMBAnalyze(VP8EncIterator* const it) {
    266   // Empirical cut-off value, should be around 16 (~=block size). We use the
    267   // [8-17] range and favor intra4 at high quality, intra16 for low quality.
    268   const int q = (int)it->enc_->config_->quality;
    269   const uint32_t kThreshold = 8 + (17 - 8) * q / 100;
    270   int k;
    271   uint32_t dc[16], m, m2;
    272   for (k = 0; k < 16; k += 4) {
    273     VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]);
    274   }
    275   for (m = 0, m2 = 0, k = 0; k < 16; ++k) {
    276     m += dc[k];
    277     m2 += dc[k] * dc[k];
    278   }
    279   if (kThreshold * m2 < m * m) {
    280     VP8SetIntra16Mode(it, 0);   // DC16
    281   } else {
    282     const uint8_t modes[16] = { 0 };  // DC4
    283     VP8SetIntra4Mode(it, modes);
    284   }
    285   return 0;
    286 }
    287 
    288 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
    289                                    int best_alpha) {
    290   uint8_t modes[16];
    291   const int max_mode = MAX_INTRA4_MODE;
    292   int i4_alpha;
    293   VP8Histogram total_histo;
    294   int cur_histo = 0;
    295   InitHistogram(&total_histo);
    296 
    297   VP8IteratorStartI4(it);
    298   do {
    299     int mode;
    300     int best_mode_alpha = DEFAULT_ALPHA;
    301     VP8Histogram histos[2];
    302     const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
    303 
    304     VP8MakeIntra4Preds(it);
    305     for (mode = 0; mode < max_mode; ++mode) {
    306       int alpha;
    307 
    308       InitHistogram(&histos[cur_histo]);
    309       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
    310                           0, 1, &histos[cur_histo]);
    311       alpha = GetAlpha(&histos[cur_histo]);
    312       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
    313         best_mode_alpha = alpha;
    314         modes[it->i4_] = mode;
    315         cur_histo ^= 1;   // keep track of best histo so far.
    316       }
    317     }
    318     // accumulate best histogram
    319     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
    320     // Note: we reuse the original samples for predictors
    321   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC));
    322 
    323   i4_alpha = GetAlpha(&total_histo);
    324   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
    325     VP8SetIntra4Mode(it, modes);
    326     best_alpha = i4_alpha;
    327   }
    328   return best_alpha;
    329 }
    330 
    331 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
    332   int best_alpha = DEFAULT_ALPHA;
    333   int smallest_alpha = 0;
    334   int best_mode = 0;
    335   const int max_mode = MAX_UV_MODE;
    336   int mode;
    337 
    338   VP8MakeChroma8Preds(it);
    339   for (mode = 0; mode < max_mode; ++mode) {
    340     VP8Histogram histo;
    341     int alpha;
    342     InitHistogram(&histo);
    343     VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
    344                         it->yuv_p_ + VP8UVModeOffsets[mode],
    345                         16, 16 + 4 + 4, &histo);
    346     alpha = GetAlpha(&histo);
    347     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
    348       best_alpha = alpha;
    349     }
    350     // The best prediction mode tends to be the one with the smallest alpha.
    351     if (mode == 0 || alpha < smallest_alpha) {
    352       smallest_alpha = alpha;
    353       best_mode = mode;
    354     }
    355   }
    356   VP8SetIntraUVMode(it, best_mode);
    357   return best_alpha;
    358 }
    359 
    360 static void MBAnalyze(VP8EncIterator* const it,
    361                       int alphas[MAX_ALPHA + 1],
    362                       int* const alpha, int* const uv_alpha) {
    363   const VP8Encoder* const enc = it->enc_;
    364   int best_alpha, best_uv_alpha;
    365 
    366   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
    367   VP8SetSkip(it, 0);         // not skipped
    368   VP8SetSegment(it, 0);      // default segment, spec-wise.
    369 
    370   if (enc->method_ <= 1) {
    371     best_alpha = FastMBAnalyze(it);
    372   } else {
    373     best_alpha = MBAnalyzeBestIntra16Mode(it);
    374     if (enc->method_ >= 5) {
    375       // We go and make a fast decision for intra4/intra16.
    376       // It's usually not a good and definitive pick, but helps seeding the
    377       // stats about level bit-cost.
    378       // TODO(skal): improve criterion.
    379       best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
    380     }
    381   }
    382   best_uv_alpha = MBAnalyzeBestUVMode(it);
    383 
    384   // Final susceptibility mix
    385   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
    386   best_alpha = FinalAlphaValue(best_alpha);
    387   alphas[best_alpha]++;
    388   it->mb_->alpha_ = best_alpha;   // for later remapping.
    389 
    390   // Accumulate for later complexity analysis.
    391   *alpha += best_alpha;   // mixed susceptibility (not just luma)
    392   *uv_alpha += best_uv_alpha;
    393 }
    394 
    395 static void DefaultMBInfo(VP8MBInfo* const mb) {
    396   mb->type_ = 1;     // I16x16
    397   mb->uv_mode_ = 0;
    398   mb->skip_ = 0;     // not skipped
    399   mb->segment_ = 0;  // default segment
    400   mb->alpha_ = 0;
    401 }
    402 
    403 //------------------------------------------------------------------------------
    404 // Main analysis loop:
    405 // Collect all susceptibilities for each macroblock and record their
    406 // distribution in alphas[]. Segments is assigned a-posteriori, based on
    407 // this histogram.
    408 // We also pick an intra16 prediction mode, which shouldn't be considered
    409 // final except for fast-encode settings. We can also pick some intra4 modes
    410 // and decide intra4/intra16, but that's usually almost always a bad choice at
    411 // this stage.
    412 
    413 static void ResetAllMBInfo(VP8Encoder* const enc) {
    414   int n;
    415   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
    416     DefaultMBInfo(&enc->mb_info_[n]);
    417   }
    418   // Default susceptibilities.
    419   enc->dqm_[0].alpha_ = 0;
    420   enc->dqm_[0].beta_ = 0;
    421   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
    422   enc->alpha_ = 0;
    423   enc->uv_alpha_ = 0;
    424   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
    425 }
    426 
    427 // struct used to collect job result
    428 typedef struct {
    429   WebPWorker worker;
    430   int alphas[MAX_ALPHA + 1];
    431   int alpha, uv_alpha;
    432   VP8EncIterator it;
    433   int delta_progress;
    434 } SegmentJob;
    435 
    436 // main work call
    437 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
    438   int ok = 1;
    439   if (!VP8IteratorIsDone(it)) {
    440     uint8_t tmp[32 + WEBP_ALIGN_CST];
    441     uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
    442     do {
    443       // Let's pretend we have perfect lossless reconstruction.
    444       VP8IteratorImport(it, scratch);
    445       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
    446       ok = VP8IteratorProgress(it, job->delta_progress);
    447     } while (ok && VP8IteratorNext(it));
    448   }
    449   return ok;
    450 }
    451 
    452 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
    453   int i;
    454   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
    455   dst->alpha += src->alpha;
    456   dst->uv_alpha += src->uv_alpha;
    457 }
    458 
    459 // initialize the job struct with some TODOs
    460 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
    461                            int start_row, int end_row) {
    462   WebPGetWorkerInterface()->Init(&job->worker);
    463   job->worker.data1 = job;
    464   job->worker.data2 = &job->it;
    465   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
    466   VP8IteratorInit(enc, &job->it);
    467   VP8IteratorSetRow(&job->it, start_row);
    468   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
    469   memset(job->alphas, 0, sizeof(job->alphas));
    470   job->alpha = 0;
    471   job->uv_alpha = 0;
    472   // only one of both jobs can record the progress, since we don't
    473   // expect the user's hook to be multi-thread safe
    474   job->delta_progress = (start_row == 0) ? 20 : 0;
    475 }
    476 
    477 // main entry point
    478 int VP8EncAnalyze(VP8Encoder* const enc) {
    479   int ok = 1;
    480   const int do_segments =
    481       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
    482       (enc->segment_hdr_.num_segments_ > 1) ||
    483       (enc->method_ <= 1);  // for method 0 - 1, we need preds_[] to be filled.
    484   if (do_segments) {
    485     const int last_row = enc->mb_h_;
    486     // We give a little more than a half work to the main thread.
    487     const int split_row = (9 * last_row + 15) >> 4;
    488     const int total_mb = last_row * enc->mb_w_;
    489 #ifdef WEBP_USE_THREAD
    490     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
    491     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
    492 #else
    493     const int do_mt = 0;
    494 #endif
    495     const WebPWorkerInterface* const worker_interface =
    496         WebPGetWorkerInterface();
    497     SegmentJob main_job;
    498     if (do_mt) {
    499       SegmentJob side_job;
    500       // Note the use of '&' instead of '&&' because we must call the functions
    501       // no matter what.
    502       InitSegmentJob(enc, &main_job, 0, split_row);
    503       InitSegmentJob(enc, &side_job, split_row, last_row);
    504       // we don't need to call Reset() on main_job.worker, since we're calling
    505       // WebPWorkerExecute() on it
    506       ok &= worker_interface->Reset(&side_job.worker);
    507       // launch the two jobs in parallel
    508       if (ok) {
    509         worker_interface->Launch(&side_job.worker);
    510         worker_interface->Execute(&main_job.worker);
    511         ok &= worker_interface->Sync(&side_job.worker);
    512         ok &= worker_interface->Sync(&main_job.worker);
    513       }
    514       worker_interface->End(&side_job.worker);
    515       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
    516     } else {
    517       // Even for single-thread case, we use the generic Worker tools.
    518       InitSegmentJob(enc, &main_job, 0, last_row);
    519       worker_interface->Execute(&main_job.worker);
    520       ok &= worker_interface->Sync(&main_job.worker);
    521     }
    522     worker_interface->End(&main_job.worker);
    523     if (ok) {
    524       enc->alpha_ = main_job.alpha / total_mb;
    525       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
    526       AssignSegments(enc, main_job.alphas);
    527     }
    528   } else {   // Use only one default segment.
    529     ResetAllMBInfo(enc);
    530   }
    531   return ok;
    532 }
    533 
    534