Home | History | Annotate | Download | only in legacy
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 /* digital_agc.c
     12  *
     13  */
     14 
     15 #include "webrtc/modules/audio_processing/agc/legacy/digital_agc.h"
     16 
     17 #include <assert.h>
     18 #include <string.h>
     19 #ifdef WEBRTC_AGC_DEBUG_DUMP
     20 #include <stdio.h>
     21 #endif
     22 
     23 #include "webrtc/modules/audio_processing/agc/legacy/gain_control.h"
     24 
     25 // To generate the gaintable, copy&paste the following lines to a Matlab window:
     26 // MaxGain = 6; MinGain = 0; CompRatio = 3; Knee = 1;
     27 // zeros = 0:31; lvl = 2.^(1-zeros);
     28 // A = -10*log10(lvl) * (CompRatio - 1) / CompRatio;
     29 // B = MaxGain - MinGain;
     30 // gains = round(2^16*10.^(0.05 * (MinGain + B * ( log(exp(-Knee*A)+exp(-Knee*B)) - log(1+exp(-Knee*B)) ) / log(1/(1+exp(Knee*B))))));
     31 // fprintf(1, '\t%i, %i, %i, %i,\n', gains);
     32 // % Matlab code for plotting the gain and input/output level characteristic (copy/paste the following 3 lines):
     33 // in = 10*log10(lvl); out = 20*log10(gains/65536);
     34 // subplot(121); plot(in, out); axis([-30, 0, -5, 20]); grid on; xlabel('Input (dB)'); ylabel('Gain (dB)');
     35 // subplot(122); plot(in, in+out); axis([-30, 0, -30, 5]); grid on; xlabel('Input (dB)'); ylabel('Output (dB)');
     36 // zoom on;
     37 
     38 // Generator table for y=log2(1+e^x) in Q8.
     39 enum { kGenFuncTableSize = 128 };
     40 static const uint16_t kGenFuncTable[kGenFuncTableSize] = {
     41           256,   485,   786,  1126,  1484,  1849,  2217,  2586,
     42          2955,  3324,  3693,  4063,  4432,  4801,  5171,  5540,
     43          5909,  6279,  6648,  7017,  7387,  7756,  8125,  8495,
     44          8864,  9233,  9603,  9972, 10341, 10711, 11080, 11449,
     45         11819, 12188, 12557, 12927, 13296, 13665, 14035, 14404,
     46         14773, 15143, 15512, 15881, 16251, 16620, 16989, 17359,
     47         17728, 18097, 18466, 18836, 19205, 19574, 19944, 20313,
     48         20682, 21052, 21421, 21790, 22160, 22529, 22898, 23268,
     49         23637, 24006, 24376, 24745, 25114, 25484, 25853, 26222,
     50         26592, 26961, 27330, 27700, 28069, 28438, 28808, 29177,
     51         29546, 29916, 30285, 30654, 31024, 31393, 31762, 32132,
     52         32501, 32870, 33240, 33609, 33978, 34348, 34717, 35086,
     53         35456, 35825, 36194, 36564, 36933, 37302, 37672, 38041,
     54         38410, 38780, 39149, 39518, 39888, 40257, 40626, 40996,
     55         41365, 41734, 42104, 42473, 42842, 43212, 43581, 43950,
     56         44320, 44689, 45058, 45428, 45797, 46166, 46536, 46905
     57 };
     58 
     59 static const int16_t kAvgDecayTime = 250; // frames; < 3000
     60 
     61 int32_t WebRtcAgc_CalculateGainTable(int32_t *gainTable, // Q16
     62                                      int16_t digCompGaindB, // Q0
     63                                      int16_t targetLevelDbfs,// Q0
     64                                      uint8_t limiterEnable,
     65                                      int16_t analogTarget) // Q0
     66 {
     67     // This function generates the compressor gain table used in the fixed digital part.
     68     uint32_t tmpU32no1, tmpU32no2, absInLevel, logApprox;
     69     int32_t inLevel, limiterLvl;
     70     int32_t tmp32, tmp32no1, tmp32no2, numFIX, den, y32;
     71     const uint16_t kLog10 = 54426; // log2(10)     in Q14
     72     const uint16_t kLog10_2 = 49321; // 10*log10(2)  in Q14
     73     const uint16_t kLogE_1 = 23637; // log2(e)      in Q14
     74     uint16_t constMaxGain;
     75     uint16_t tmpU16, intPart, fracPart;
     76     const int16_t kCompRatio = 3;
     77     const int16_t kSoftLimiterLeft = 1;
     78     int16_t limiterOffset = 0; // Limiter offset
     79     int16_t limiterIdx, limiterLvlX;
     80     int16_t constLinApprox, zeroGainLvl, maxGain, diffGain;
     81     int16_t i, tmp16, tmp16no1;
     82     int zeros, zerosScale;
     83 
     84     // Constants
     85 //    kLogE_1 = 23637; // log2(e)      in Q14
     86 //    kLog10 = 54426; // log2(10)     in Q14
     87 //    kLog10_2 = 49321; // 10*log10(2)  in Q14
     88 
     89     // Calculate maximum digital gain and zero gain level
     90     tmp32no1 = (digCompGaindB - analogTarget) * (kCompRatio - 1);
     91     tmp16no1 = analogTarget - targetLevelDbfs;
     92     tmp16no1 += WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
     93     maxGain = WEBRTC_SPL_MAX(tmp16no1, (analogTarget - targetLevelDbfs));
     94     tmp32no1 = maxGain * kCompRatio;
     95     zeroGainLvl = digCompGaindB;
     96     zeroGainLvl -= WebRtcSpl_DivW32W16ResW16(tmp32no1 + ((kCompRatio - 1) >> 1),
     97                                              kCompRatio - 1);
     98     if ((digCompGaindB <= analogTarget) && (limiterEnable))
     99     {
    100         zeroGainLvl += (analogTarget - digCompGaindB + kSoftLimiterLeft);
    101         limiterOffset = 0;
    102     }
    103 
    104     // Calculate the difference between maximum gain and gain at 0dB0v:
    105     //  diffGain = maxGain + (compRatio-1)*zeroGainLvl/compRatio
    106     //           = (compRatio-1)*digCompGaindB/compRatio
    107     tmp32no1 = digCompGaindB * (kCompRatio - 1);
    108     diffGain = WebRtcSpl_DivW32W16ResW16(tmp32no1 + (kCompRatio >> 1), kCompRatio);
    109     if (diffGain < 0 || diffGain >= kGenFuncTableSize)
    110     {
    111         assert(0);
    112         return -1;
    113     }
    114 
    115     // Calculate the limiter level and index:
    116     //  limiterLvlX = analogTarget - limiterOffset
    117     //  limiterLvl  = targetLevelDbfs + limiterOffset/compRatio
    118     limiterLvlX = analogTarget - limiterOffset;
    119     limiterIdx =
    120         2 + WebRtcSpl_DivW32W16ResW16((int32_t)limiterLvlX << 13, kLog10_2 / 2);
    121     tmp16no1 = WebRtcSpl_DivW32W16ResW16(limiterOffset + (kCompRatio >> 1), kCompRatio);
    122     limiterLvl = targetLevelDbfs + tmp16no1;
    123 
    124     // Calculate (through table lookup):
    125     //  constMaxGain = log2(1+2^(log2(e)*diffGain)); (in Q8)
    126     constMaxGain = kGenFuncTable[diffGain]; // in Q8
    127 
    128     // Calculate a parameter used to approximate the fractional part of 2^x with a
    129     // piecewise linear function in Q14:
    130     //  constLinApprox = round(3/2*(4*(3-2*sqrt(2))/(log(2)^2)-0.5)*2^14);
    131     constLinApprox = 22817; // in Q14
    132 
    133     // Calculate a denominator used in the exponential part to convert from dB to linear scale:
    134     //  den = 20*constMaxGain (in Q8)
    135     den = WEBRTC_SPL_MUL_16_U16(20, constMaxGain); // in Q8
    136 
    137     for (i = 0; i < 32; i++)
    138     {
    139         // Calculate scaled input level (compressor):
    140         //  inLevel = fix((-constLog10_2*(compRatio-1)*(1-i)+fix(compRatio/2))/compRatio)
    141         tmp16 = (int16_t)((kCompRatio - 1) * (i - 1));  // Q0
    142         tmp32 = WEBRTC_SPL_MUL_16_U16(tmp16, kLog10_2) + 1; // Q14
    143         inLevel = WebRtcSpl_DivW32W16(tmp32, kCompRatio); // Q14
    144 
    145         // Calculate diffGain-inLevel, to map using the genFuncTable
    146         inLevel = ((int32_t)diffGain << 14) - inLevel;  // Q14
    147 
    148         // Make calculations on abs(inLevel) and compensate for the sign afterwards.
    149         absInLevel = (uint32_t)WEBRTC_SPL_ABS_W32(inLevel); // Q14
    150 
    151         // LUT with interpolation
    152         intPart = (uint16_t)(absInLevel >> 14);
    153         fracPart = (uint16_t)(absInLevel & 0x00003FFF); // extract the fractional part
    154         tmpU16 = kGenFuncTable[intPart + 1] - kGenFuncTable[intPart]; // Q8
    155         tmpU32no1 = tmpU16 * fracPart;  // Q22
    156         tmpU32no1 += (uint32_t)kGenFuncTable[intPart] << 14;  // Q22
    157         logApprox = tmpU32no1 >> 8;  // Q14
    158         // Compensate for negative exponent using the relation:
    159         //  log2(1 + 2^-x) = log2(1 + 2^x) - x
    160         if (inLevel < 0)
    161         {
    162             zeros = WebRtcSpl_NormU32(absInLevel);
    163             zerosScale = 0;
    164             if (zeros < 15)
    165             {
    166                 // Not enough space for multiplication
    167                 tmpU32no2 = absInLevel >> (15 - zeros);  // Q(zeros-1)
    168                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(tmpU32no2, kLogE_1); // Q(zeros+13)
    169                 if (zeros < 9)
    170                 {
    171                     zerosScale = 9 - zeros;
    172                     tmpU32no1 >>= zerosScale;  // Q(zeros+13)
    173                 } else
    174                 {
    175                     tmpU32no2 >>= zeros - 9;  // Q22
    176                 }
    177             } else
    178             {
    179                 tmpU32no2 = WEBRTC_SPL_UMUL_32_16(absInLevel, kLogE_1); // Q28
    180                 tmpU32no2 >>= 6;  // Q22
    181             }
    182             logApprox = 0;
    183             if (tmpU32no2 < tmpU32no1)
    184             {
    185                 logApprox = (tmpU32no1 - tmpU32no2) >> (8 - zerosScale);  //Q14
    186             }
    187         }
    188         numFIX = (maxGain * constMaxGain) << 6;  // Q14
    189         numFIX -= (int32_t)logApprox * diffGain;  // Q14
    190 
    191         // Calculate ratio
    192         // Shift |numFIX| as much as possible.
    193         // Ensure we avoid wrap-around in |den| as well.
    194         if (numFIX > (den >> 8))  // |den| is Q8.
    195         {
    196             zeros = WebRtcSpl_NormW32(numFIX);
    197         } else
    198         {
    199             zeros = WebRtcSpl_NormW32(den) + 8;
    200         }
    201         numFIX <<= zeros;  // Q(14+zeros)
    202 
    203         // Shift den so we end up in Qy1
    204         tmp32no1 = WEBRTC_SPL_SHIFT_W32(den, zeros - 8); // Q(zeros)
    205         if (numFIX < 0)
    206         {
    207             numFIX -= tmp32no1 / 2;
    208         } else
    209         {
    210             numFIX += tmp32no1 / 2;
    211         }
    212         y32 = numFIX / tmp32no1;  // in Q14
    213         if (limiterEnable && (i < limiterIdx))
    214         {
    215             tmp32 = WEBRTC_SPL_MUL_16_U16(i - 1, kLog10_2); // Q14
    216             tmp32 -= limiterLvl << 14;  // Q14
    217             y32 = WebRtcSpl_DivW32W16(tmp32 + 10, 20);
    218         }
    219         if (y32 > 39000)
    220         {
    221             tmp32 = (y32 >> 1) * kLog10 + 4096;  // in Q27
    222             tmp32 >>= 13;  // In Q14.
    223         } else
    224         {
    225             tmp32 = y32 * kLog10 + 8192;  // in Q28
    226             tmp32 >>= 14;  // In Q14.
    227         }
    228         tmp32 += 16 << 14;  // in Q14 (Make sure final output is in Q16)
    229 
    230         // Calculate power
    231         if (tmp32 > 0)
    232         {
    233             intPart = (int16_t)(tmp32 >> 14);
    234             fracPart = (uint16_t)(tmp32 & 0x00003FFF); // in Q14
    235             if ((fracPart >> 13) != 0)
    236             {
    237                 tmp16 = (2 << 14) - constLinApprox;
    238                 tmp32no2 = (1 << 14) - fracPart;
    239                 tmp32no2 *= tmp16;
    240                 tmp32no2 >>= 13;
    241                 tmp32no2 = (1 << 14) - tmp32no2;
    242             } else
    243             {
    244                 tmp16 = constLinApprox - (1 << 14);
    245                 tmp32no2 = (fracPart * tmp16) >> 13;
    246             }
    247             fracPart = (uint16_t)tmp32no2;
    248             gainTable[i] =
    249                 (1 << intPart) + WEBRTC_SPL_SHIFT_W32(fracPart, intPart - 14);
    250         } else
    251         {
    252             gainTable[i] = 0;
    253         }
    254     }
    255 
    256     return 0;
    257 }
    258 
    259 int32_t WebRtcAgc_InitDigital(DigitalAgc* stt, int16_t agcMode) {
    260     if (agcMode == kAgcModeFixedDigital)
    261     {
    262         // start at minimum to find correct gain faster
    263         stt->capacitorSlow = 0;
    264     } else
    265     {
    266         // start out with 0 dB gain
    267         stt->capacitorSlow = 134217728; // (int32_t)(0.125f * 32768.0f * 32768.0f);
    268     }
    269     stt->capacitorFast = 0;
    270     stt->gain = 65536;
    271     stt->gatePrevious = 0;
    272     stt->agcMode = agcMode;
    273 #ifdef WEBRTC_AGC_DEBUG_DUMP
    274     stt->frameCounter = 0;
    275 #endif
    276 
    277     // initialize VADs
    278     WebRtcAgc_InitVad(&stt->vadNearend);
    279     WebRtcAgc_InitVad(&stt->vadFarend);
    280 
    281     return 0;
    282 }
    283 
    284 int32_t WebRtcAgc_AddFarendToDigital(DigitalAgc* stt,
    285                                      const int16_t* in_far,
    286                                      size_t nrSamples) {
    287     assert(stt != NULL);
    288     // VAD for far end
    289     WebRtcAgc_ProcessVad(&stt->vadFarend, in_far, nrSamples);
    290 
    291     return 0;
    292 }
    293 
    294 int32_t WebRtcAgc_ProcessDigital(DigitalAgc* stt,
    295                                  const int16_t* const* in_near,
    296                                  size_t num_bands,
    297                                  int16_t* const* out,
    298                                  uint32_t FS,
    299                                  int16_t lowlevelSignal) {
    300     // array for gains (one value per ms, incl start & end)
    301     int32_t gains[11];
    302 
    303     int32_t out_tmp, tmp32;
    304     int32_t env[10];
    305     int32_t max_nrg;
    306     int32_t cur_level;
    307     int32_t gain32, delta;
    308     int16_t logratio;
    309     int16_t lower_thr, upper_thr;
    310     int16_t zeros = 0, zeros_fast, frac = 0;
    311     int16_t decay;
    312     int16_t gate, gain_adj;
    313     int16_t k;
    314     size_t n, i, L;
    315     int16_t L2; // samples/subframe
    316 
    317     // determine number of samples per ms
    318     if (FS == 8000)
    319     {
    320         L = 8;
    321         L2 = 3;
    322     } else if (FS == 16000 || FS == 32000 || FS == 48000)
    323     {
    324         L = 16;
    325         L2 = 4;
    326     } else
    327     {
    328         return -1;
    329     }
    330 
    331     for (i = 0; i < num_bands; ++i)
    332     {
    333         if (in_near[i] != out[i])
    334         {
    335             // Only needed if they don't already point to the same place.
    336             memcpy(out[i], in_near[i], 10 * L * sizeof(in_near[i][0]));
    337         }
    338     }
    339     // VAD for near end
    340     logratio = WebRtcAgc_ProcessVad(&stt->vadNearend, out[0], L * 10);
    341 
    342     // Account for far end VAD
    343     if (stt->vadFarend.counter > 10)
    344     {
    345         tmp32 = 3 * logratio;
    346         logratio = (int16_t)((tmp32 - stt->vadFarend.logRatio) >> 2);
    347     }
    348 
    349     // Determine decay factor depending on VAD
    350     //  upper_thr = 1.0f;
    351     //  lower_thr = 0.25f;
    352     upper_thr = 1024; // Q10
    353     lower_thr = 0; // Q10
    354     if (logratio > upper_thr)
    355     {
    356         // decay = -2^17 / DecayTime;  ->  -65
    357         decay = -65;
    358     } else if (logratio < lower_thr)
    359     {
    360         decay = 0;
    361     } else
    362     {
    363         // decay = (int16_t)(((lower_thr - logratio)
    364         //       * (2^27/(DecayTime*(upper_thr-lower_thr)))) >> 10);
    365         // SUBSTITUTED: 2^27/(DecayTime*(upper_thr-lower_thr))  ->  65
    366         tmp32 = (lower_thr - logratio) * 65;
    367         decay = (int16_t)(tmp32 >> 10);
    368     }
    369 
    370     // adjust decay factor for long silence (detected as low standard deviation)
    371     // This is only done in the adaptive modes
    372     if (stt->agcMode != kAgcModeFixedDigital)
    373     {
    374         if (stt->vadNearend.stdLongTerm < 4000)
    375         {
    376             decay = 0;
    377         } else if (stt->vadNearend.stdLongTerm < 8096)
    378         {
    379             // decay = (int16_t)(((stt->vadNearend.stdLongTerm - 4000) * decay) >> 12);
    380             tmp32 = (stt->vadNearend.stdLongTerm - 4000) * decay;
    381             decay = (int16_t)(tmp32 >> 12);
    382         }
    383 
    384         if (lowlevelSignal != 0)
    385         {
    386             decay = 0;
    387         }
    388     }
    389 #ifdef WEBRTC_AGC_DEBUG_DUMP
    390     stt->frameCounter++;
    391     fprintf(stt->logFile,
    392             "%5.2f\t%d\t%d\t%d\t",
    393             (float)(stt->frameCounter) / 100,
    394             logratio,
    395             decay,
    396             stt->vadNearend.stdLongTerm);
    397 #endif
    398     // Find max amplitude per sub frame
    399     // iterate over sub frames
    400     for (k = 0; k < 10; k++)
    401     {
    402         // iterate over samples
    403         max_nrg = 0;
    404         for (n = 0; n < L; n++)
    405         {
    406             int32_t nrg = out[0][k * L + n] * out[0][k * L + n];
    407             if (nrg > max_nrg)
    408             {
    409                 max_nrg = nrg;
    410             }
    411         }
    412         env[k] = max_nrg;
    413     }
    414 
    415     // Calculate gain per sub frame
    416     gains[0] = stt->gain;
    417     for (k = 0; k < 10; k++)
    418     {
    419         // Fast envelope follower
    420         //  decay time = -131000 / -1000 = 131 (ms)
    421         stt->capacitorFast = AGC_SCALEDIFF32(-1000, stt->capacitorFast, stt->capacitorFast);
    422         if (env[k] > stt->capacitorFast)
    423         {
    424             stt->capacitorFast = env[k];
    425         }
    426         // Slow envelope follower
    427         if (env[k] > stt->capacitorSlow)
    428         {
    429             // increase capacitorSlow
    430             stt->capacitorSlow
    431                     = AGC_SCALEDIFF32(500, (env[k] - stt->capacitorSlow), stt->capacitorSlow);
    432         } else
    433         {
    434             // decrease capacitorSlow
    435             stt->capacitorSlow
    436                     = AGC_SCALEDIFF32(decay, stt->capacitorSlow, stt->capacitorSlow);
    437         }
    438 
    439         // use maximum of both capacitors as current level
    440         if (stt->capacitorFast > stt->capacitorSlow)
    441         {
    442             cur_level = stt->capacitorFast;
    443         } else
    444         {
    445             cur_level = stt->capacitorSlow;
    446         }
    447         // Translate signal level into gain, using a piecewise linear approximation
    448         // find number of leading zeros
    449         zeros = WebRtcSpl_NormU32((uint32_t)cur_level);
    450         if (cur_level == 0)
    451         {
    452             zeros = 31;
    453         }
    454         tmp32 = (cur_level << zeros) & 0x7FFFFFFF;
    455         frac = (int16_t)(tmp32 >> 19);  // Q12.
    456         tmp32 = (stt->gainTable[zeros-1] - stt->gainTable[zeros]) * frac;
    457         gains[k + 1] = stt->gainTable[zeros] + (tmp32 >> 12);
    458 #ifdef WEBRTC_AGC_DEBUG_DUMP
    459         if (k == 0) {
    460           fprintf(stt->logFile,
    461                   "%d\t%d\t%d\t%d\t%d\n",
    462                   env[0],
    463                   cur_level,
    464                   stt->capacitorFast,
    465                   stt->capacitorSlow,
    466                   zeros);
    467         }
    468 #endif
    469     }
    470 
    471     // Gate processing (lower gain during absence of speech)
    472     zeros = (zeros << 9) - (frac >> 3);
    473     // find number of leading zeros
    474     zeros_fast = WebRtcSpl_NormU32((uint32_t)stt->capacitorFast);
    475     if (stt->capacitorFast == 0)
    476     {
    477         zeros_fast = 31;
    478     }
    479     tmp32 = (stt->capacitorFast << zeros_fast) & 0x7FFFFFFF;
    480     zeros_fast <<= 9;
    481     zeros_fast -= (int16_t)(tmp32 >> 22);
    482 
    483     gate = 1000 + zeros_fast - zeros - stt->vadNearend.stdShortTerm;
    484 
    485     if (gate < 0)
    486     {
    487         stt->gatePrevious = 0;
    488     } else
    489     {
    490         tmp32 = stt->gatePrevious * 7;
    491         gate = (int16_t)((gate + tmp32) >> 3);
    492         stt->gatePrevious = gate;
    493     }
    494     // gate < 0     -> no gate
    495     // gate > 2500  -> max gate
    496     if (gate > 0)
    497     {
    498         if (gate < 2500)
    499         {
    500             gain_adj = (2500 - gate) >> 5;
    501         } else
    502         {
    503             gain_adj = 0;
    504         }
    505         for (k = 0; k < 10; k++)
    506         {
    507             if ((gains[k + 1] - stt->gainTable[0]) > 8388608)
    508             {
    509                 // To prevent wraparound
    510                 tmp32 = (gains[k + 1] - stt->gainTable[0]) >> 8;
    511                 tmp32 *= 178 + gain_adj;
    512             } else
    513             {
    514                 tmp32 = (gains[k+1] - stt->gainTable[0]) * (178 + gain_adj);
    515                 tmp32 >>= 8;
    516             }
    517             gains[k + 1] = stt->gainTable[0] + tmp32;
    518         }
    519     }
    520 
    521     // Limit gain to avoid overload distortion
    522     for (k = 0; k < 10; k++)
    523     {
    524         // To prevent wrap around
    525         zeros = 10;
    526         if (gains[k + 1] > 47453132)
    527         {
    528             zeros = 16 - WebRtcSpl_NormW32(gains[k + 1]);
    529         }
    530         gain32 = (gains[k + 1] >> zeros) + 1;
    531         gain32 *= gain32;
    532         // check for overflow
    533         while (AGC_MUL32((env[k] >> 12) + 1, gain32)
    534                 > WEBRTC_SPL_SHIFT_W32((int32_t)32767, 2 * (1 - zeros + 10)))
    535         {
    536             // multiply by 253/256 ==> -0.1 dB
    537             if (gains[k + 1] > 8388607)
    538             {
    539                 // Prevent wrap around
    540                 gains[k + 1] = (gains[k+1] / 256) * 253;
    541             } else
    542             {
    543                 gains[k + 1] = (gains[k+1] * 253) / 256;
    544             }
    545             gain32 = (gains[k + 1] >> zeros) + 1;
    546             gain32 *= gain32;
    547         }
    548     }
    549     // gain reductions should be done 1 ms earlier than gain increases
    550     for (k = 1; k < 10; k++)
    551     {
    552         if (gains[k] > gains[k + 1])
    553         {
    554             gains[k] = gains[k + 1];
    555         }
    556     }
    557     // save start gain for next frame
    558     stt->gain = gains[10];
    559 
    560     // Apply gain
    561     // handle first sub frame separately
    562     delta = (gains[1] - gains[0]) << (4 - L2);
    563     gain32 = gains[0] << 4;
    564     // iterate over samples
    565     for (n = 0; n < L; n++)
    566     {
    567         for (i = 0; i < num_bands; ++i)
    568         {
    569             tmp32 = out[i][n] * ((gain32 + 127) >> 7);
    570             out_tmp = tmp32 >> 16;
    571             if (out_tmp > 4095)
    572             {
    573                 out[i][n] = (int16_t)32767;
    574             } else if (out_tmp < -4096)
    575             {
    576                 out[i][n] = (int16_t)-32768;
    577             } else
    578             {
    579                 tmp32 = out[i][n] * (gain32 >> 4);
    580                 out[i][n] = (int16_t)(tmp32 >> 16);
    581             }
    582         }
    583         //
    584 
    585         gain32 += delta;
    586     }
    587     // iterate over subframes
    588     for (k = 1; k < 10; k++)
    589     {
    590         delta = (gains[k+1] - gains[k]) << (4 - L2);
    591         gain32 = gains[k] << 4;
    592         // iterate over samples
    593         for (n = 0; n < L; n++)
    594         {
    595             for (i = 0; i < num_bands; ++i)
    596             {
    597                 tmp32 = out[i][k * L + n] * (gain32 >> 4);
    598                 out[i][k * L + n] = (int16_t)(tmp32 >> 16);
    599             }
    600             gain32 += delta;
    601         }
    602     }
    603 
    604     return 0;
    605 }
    606 
    607 void WebRtcAgc_InitVad(AgcVad* state) {
    608     int16_t k;
    609 
    610     state->HPstate = 0; // state of high pass filter
    611     state->logRatio = 0; // log( P(active) / P(inactive) )
    612     // average input level (Q10)
    613     state->meanLongTerm = 15 << 10;
    614 
    615     // variance of input level (Q8)
    616     state->varianceLongTerm = 500 << 8;
    617 
    618     state->stdLongTerm = 0; // standard deviation of input level in dB
    619     // short-term average input level (Q10)
    620     state->meanShortTerm = 15 << 10;
    621 
    622     // short-term variance of input level (Q8)
    623     state->varianceShortTerm = 500 << 8;
    624 
    625     state->stdShortTerm = 0; // short-term standard deviation of input level in dB
    626     state->counter = 3; // counts updates
    627     for (k = 0; k < 8; k++)
    628     {
    629         // downsampling filter
    630         state->downState[k] = 0;
    631     }
    632 }
    633 
    634 int16_t WebRtcAgc_ProcessVad(AgcVad* state,      // (i) VAD state
    635                              const int16_t* in,  // (i) Speech signal
    636                              size_t nrSamples)  // (i) number of samples
    637 {
    638     int32_t out, nrg, tmp32, tmp32b;
    639     uint16_t tmpU16;
    640     int16_t k, subfr, tmp16;
    641     int16_t buf1[8];
    642     int16_t buf2[4];
    643     int16_t HPstate;
    644     int16_t zeros, dB;
    645 
    646     // process in 10 sub frames of 1 ms (to save on memory)
    647     nrg = 0;
    648     HPstate = state->HPstate;
    649     for (subfr = 0; subfr < 10; subfr++)
    650     {
    651         // downsample to 4 kHz
    652         if (nrSamples == 160)
    653         {
    654             for (k = 0; k < 8; k++)
    655             {
    656                 tmp32 = (int32_t)in[2 * k] + (int32_t)in[2 * k + 1];
    657                 tmp32 >>= 1;
    658                 buf1[k] = (int16_t)tmp32;
    659             }
    660             in += 16;
    661 
    662             WebRtcSpl_DownsampleBy2(buf1, 8, buf2, state->downState);
    663         } else
    664         {
    665             WebRtcSpl_DownsampleBy2(in, 8, buf2, state->downState);
    666             in += 8;
    667         }
    668 
    669         // high pass filter and compute energy
    670         for (k = 0; k < 4; k++)
    671         {
    672             out = buf2[k] + HPstate;
    673             tmp32 = 600 * out;
    674             HPstate = (int16_t)((tmp32 >> 10) - buf2[k]);
    675             nrg += (out * out) >> 6;
    676         }
    677     }
    678     state->HPstate = HPstate;
    679 
    680     // find number of leading zeros
    681     if (!(0xFFFF0000 & nrg))
    682     {
    683         zeros = 16;
    684     } else
    685     {
    686         zeros = 0;
    687     }
    688     if (!(0xFF000000 & (nrg << zeros)))
    689     {
    690         zeros += 8;
    691     }
    692     if (!(0xF0000000 & (nrg << zeros)))
    693     {
    694         zeros += 4;
    695     }
    696     if (!(0xC0000000 & (nrg << zeros)))
    697     {
    698         zeros += 2;
    699     }
    700     if (!(0x80000000 & (nrg << zeros)))
    701     {
    702         zeros += 1;
    703     }
    704 
    705     // energy level (range {-32..30}) (Q10)
    706     dB = (15 - zeros) << 11;
    707 
    708     // Update statistics
    709 
    710     if (state->counter < kAvgDecayTime)
    711     {
    712         // decay time = AvgDecTime * 10 ms
    713         state->counter++;
    714     }
    715 
    716     // update short-term estimate of mean energy level (Q10)
    717     tmp32 = state->meanShortTerm * 15 + dB;
    718     state->meanShortTerm = (int16_t)(tmp32 >> 4);
    719 
    720     // update short-term estimate of variance in energy level (Q8)
    721     tmp32 = (dB * dB) >> 12;
    722     tmp32 += state->varianceShortTerm * 15;
    723     state->varianceShortTerm = tmp32 / 16;
    724 
    725     // update short-term estimate of standard deviation in energy level (Q10)
    726     tmp32 = state->meanShortTerm * state->meanShortTerm;
    727     tmp32 = (state->varianceShortTerm << 12) - tmp32;
    728     state->stdShortTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
    729 
    730     // update long-term estimate of mean energy level (Q10)
    731     tmp32 = state->meanLongTerm * state->counter + dB;
    732     state->meanLongTerm = WebRtcSpl_DivW32W16ResW16(
    733         tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
    734 
    735     // update long-term estimate of variance in energy level (Q8)
    736     tmp32 = (dB * dB) >> 12;
    737     tmp32 += state->varianceLongTerm * state->counter;
    738     state->varianceLongTerm = WebRtcSpl_DivW32W16(
    739         tmp32, WebRtcSpl_AddSatW16(state->counter, 1));
    740 
    741     // update long-term estimate of standard deviation in energy level (Q10)
    742     tmp32 = state->meanLongTerm * state->meanLongTerm;
    743     tmp32 = (state->varianceLongTerm << 12) - tmp32;
    744     state->stdLongTerm = (int16_t)WebRtcSpl_Sqrt(tmp32);
    745 
    746     // update voice activity measure (Q10)
    747     tmp16 = 3 << 12;
    748     // TODO(bjornv): (dB - state->meanLongTerm) can overflow, e.g., in
    749     // ApmTest.Process unit test. Previously the macro WEBRTC_SPL_MUL_16_16()
    750     // was used, which did an intermediate cast to (int16_t), hence losing
    751     // significant bits. This cause logRatio to max out positive, rather than
    752     // negative. This is a bug, but has very little significance.
    753     tmp32 = tmp16 * (int16_t)(dB - state->meanLongTerm);
    754     tmp32 = WebRtcSpl_DivW32W16(tmp32, state->stdLongTerm);
    755     tmpU16 = (13 << 12);
    756     tmp32b = WEBRTC_SPL_MUL_16_U16(state->logRatio, tmpU16);
    757     tmp32 += tmp32b >> 10;
    758 
    759     state->logRatio = (int16_t)(tmp32 >> 6);
    760 
    761     // limit
    762     if (state->logRatio > 2048)
    763     {
    764         state->logRatio = 2048;
    765     }
    766     if (state->logRatio < -2048)
    767     {
    768         state->logRatio = -2048;
    769     }
    770 
    771     return state->logRatio; // Q10
    772 }
    773