Home | History | Annotate | Download | only in src
      1 //---------------------------------------------------------------------------------
      2 //
      3 //  Little Color Management System
      4 //  Copyright (c) 1998-2013 Marti Maria Saguer
      5 //
      6 // Permission is hereby granted, free of charge, to any person obtaining
      7 // a copy of this software and associated documentation files (the "Software"),
      8 // to deal in the Software without restriction, including without limitation
      9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10 // and/or sell copies of the Software, and to permit persons to whom the Software
     11 // is furnished to do so, subject to the following conditions:
     12 //
     13 // The above copyright notice and this permission notice shall be included in
     14 // all copies or substantial portions of the Software.
     15 //
     16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
     18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
     20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
     21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
     22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     23 //
     24 //---------------------------------------------------------------------------------
     25 //
     26 #include "lcms2_internal.h"
     27 
     28 // Tone curves are powerful constructs that can contain curves specified in diverse ways.
     29 // The curve is stored in segments, where each segment can be sampled or specified by parameters.
     30 // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
     31 // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
     32 // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
     33 // the plug-in should provide the type id, how many parameters each type has, and a pointer to
     34 // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
     35 // be called with the type id as a negative value, and a sampled version of the reversed curve
     36 // will be built.
     37 
     38 // ----------------------------------------------------------------- Implementation
     39 // Maxim number of nodes
     40 #define MAX_NODES_IN_CURVE   4097
     41 #define MINUS_INF            (-1E22F)
     42 #define PLUS_INF             (+1E22F)
     43 
     44 // The list of supported parametric curves
     45 typedef struct _cmsParametricCurvesCollection_st {
     46 
     47     int nFunctions;                                     // Number of supported functions in this chunk
     48     int FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];        // The identification types
     49     int ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];       // Number of parameters for each function
     50     cmsParametricCurveEvaluator    Evaluator;           // The evaluator
     51 
     52     struct _cmsParametricCurvesCollection_st* Next; // Next in list
     53 
     54 } _cmsParametricCurvesCollection;
     55 
     56 // This is the default (built-in) evaluator
     57 static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
     58 
     59 // The built-in list
     60 static _cmsParametricCurvesCollection DefaultCurves = {
     61     9,                                  // # of curve types
     62     { 1, 2, 3, 4, 5, 6, 7, 8, 108 },    // Parametric curve ID
     63     { 1, 3, 4, 5, 7, 4, 5, 5, 1 },      // Parameters by type
     64     DefaultEvalParametricFn,            // Evaluator
     65     NULL                                // Next in chain
     66 };
     67 
     68 // Duplicates the zone of memory used by the plug-in in the new context
     69 static
     70 void DupPluginCurvesList(struct _cmsContext_struct* ctx,
     71                                                const struct _cmsContext_struct* src)
     72 {
     73    _cmsCurvesPluginChunkType newHead = { NULL };
     74    _cmsParametricCurvesCollection*  entry;
     75    _cmsParametricCurvesCollection*  Anterior = NULL;
     76    _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
     77 
     78     _cmsAssert(head != NULL);
     79 
     80     // Walk the list copying all nodes
     81    for (entry = head->ParametricCurves;
     82         entry != NULL;
     83         entry = entry ->Next) {
     84 
     85             _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
     86 
     87             if (newEntry == NULL)
     88                 return;
     89 
     90             // We want to keep the linked list order, so this is a little bit tricky
     91             newEntry -> Next = NULL;
     92             if (Anterior)
     93                 Anterior -> Next = newEntry;
     94 
     95             Anterior = newEntry;
     96 
     97             if (newHead.ParametricCurves == NULL)
     98                 newHead.ParametricCurves = newEntry;
     99     }
    100 
    101   ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
    102 }
    103 
    104 // The allocator have to follow the chain
    105 void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
    106                                 const struct _cmsContext_struct* src)
    107 {
    108     _cmsAssert(ctx != NULL);
    109 
    110     if (src != NULL) {
    111 
    112         // Copy all linked list
    113        DupPluginCurvesList(ctx, src);
    114     }
    115     else {
    116         static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
    117         ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
    118     }
    119 }
    120 
    121 
    122 // The linked list head
    123 _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
    124 
    125 // As a way to install new parametric curves
    126 cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
    127 {
    128     _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
    129     cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
    130     _cmsParametricCurvesCollection* fl;
    131 
    132     if (Data == NULL) {
    133 
    134           ctx -> ParametricCurves =  NULL;
    135           return TRUE;
    136     }
    137 
    138     fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
    139     if (fl == NULL) return FALSE;
    140 
    141     // Copy the parameters
    142     fl ->Evaluator  = Plugin ->Evaluator;
    143     fl ->nFunctions = Plugin ->nFunctions;
    144 
    145     // Make sure no mem overwrites
    146     if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
    147         fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
    148 
    149     // Copy the data
    150     memmove(fl->FunctionTypes,  Plugin ->FunctionTypes,   fl->nFunctions * sizeof(cmsUInt32Number));
    151     memmove(fl->ParameterCount, Plugin ->ParameterCount,  fl->nFunctions * sizeof(cmsUInt32Number));
    152 
    153     // Keep linked list
    154     fl ->Next = ctx->ParametricCurves;
    155     ctx->ParametricCurves = fl;
    156 
    157     // All is ok
    158     return TRUE;
    159 }
    160 
    161 
    162 // Search in type list, return position or -1 if not found
    163 static
    164 int IsInSet(int Type, _cmsParametricCurvesCollection* c)
    165 {
    166     int i;
    167 
    168     for (i=0; i < c ->nFunctions; i++)
    169         if (abs(Type) == c ->FunctionTypes[i]) return i;
    170 
    171     return -1;
    172 }
    173 
    174 
    175 // Search for the collection which contains a specific type
    176 static
    177 _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
    178 {
    179     _cmsParametricCurvesCollection* c;
    180     int Position;
    181     _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
    182 
    183     for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
    184 
    185         Position = IsInSet(Type, c);
    186 
    187         if (Position != -1) {
    188             if (index != NULL)
    189                 *index = Position;
    190             return c;
    191         }
    192     }
    193     // If none found, revert for defaults
    194     for (c = &DefaultCurves; c != NULL; c = c ->Next) {
    195 
    196         Position = IsInSet(Type, c);
    197 
    198         if (Position != -1) {
    199             if (index != NULL)
    200                 *index = Position;
    201             return c;
    202         }
    203     }
    204 
    205     return NULL;
    206 }
    207 
    208 // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
    209 // no optimation curve is computed. nSegments may also be zero in the inverse case, where only the
    210 // optimization curve is given. Both features simultaneously is an error
    211 static
    212 cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsInt32Number nEntries,
    213                                       cmsInt32Number nSegments, const cmsCurveSegment* Segments,
    214                                       const cmsUInt16Number* Values)
    215 {
    216     cmsToneCurve* p;
    217     int i;
    218 
    219     // We allow huge tables, which are then restricted for smoothing operations
    220     if (nEntries > 65530 || nEntries < 0) {
    221         cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
    222         return NULL;
    223     }
    224 
    225     if (nEntries <= 0 && nSegments <= 0) {
    226         cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
    227         return NULL;
    228     }
    229 
    230     // Allocate all required pointers, etc.
    231     p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
    232     if (!p) return NULL;
    233 
    234     // In this case, there are no segments
    235     if (nSegments <= 0) {
    236         p ->Segments = NULL;
    237         p ->Evals = NULL;
    238     }
    239     else {
    240         p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
    241         if (p ->Segments == NULL) goto Error;
    242 
    243         p ->Evals    = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
    244         if (p ->Evals == NULL) goto Error;
    245     }
    246 
    247     p -> nSegments = nSegments;
    248 
    249     // This 16-bit table contains a limited precision representation of the whole curve and is kept for
    250     // increasing xput on certain operations.
    251     if (nEntries <= 0) {
    252         p ->Table16 = NULL;
    253     }
    254     else {
    255        p ->Table16 = (cmsUInt16Number*)  _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
    256        if (p ->Table16 == NULL) goto Error;
    257     }
    258 
    259     p -> nEntries  = nEntries;
    260 
    261     // Initialize members if requested
    262     if (Values != NULL && (nEntries > 0)) {
    263 
    264         for (i=0; i < nEntries; i++)
    265             p ->Table16[i] = Values[i];
    266     }
    267 
    268     // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
    269     // is placed in advance to maximize performance.
    270     if (Segments != NULL && (nSegments > 0)) {
    271 
    272         _cmsParametricCurvesCollection *c;
    273 
    274         p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
    275         if (p ->SegInterp == NULL) goto Error;
    276 
    277         for (i=0; i< nSegments; i++) {
    278 
    279             // Type 0 is a special marker for table-based curves
    280             if (Segments[i].Type == 0)
    281                 p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
    282 
    283             memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
    284 
    285             if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
    286                 p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
    287             else
    288                 p ->Segments[i].SampledPoints = NULL;
    289 
    290 
    291             c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
    292             if (c != NULL)
    293                     p ->Evals[i] = c ->Evaluator;
    294         }
    295     }
    296 
    297     p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
    298     if (p->InterpParams != NULL)
    299         return p;
    300 
    301 Error:
    302     if (p -> Segments) _cmsFree(ContextID, p ->Segments);
    303     if (p -> Evals) _cmsFree(ContextID, p -> Evals);
    304     if (p ->Table16) _cmsFree(ContextID, p ->Table16);
    305     _cmsFree(ContextID, p);
    306     return NULL;
    307 }
    308 
    309 
    310 // Parametric Fn using floating point
    311 static
    312 cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
    313 {
    314     cmsFloat64Number e, Val, disc;
    315 
    316     switch (Type) {
    317 
    318    // X = Y ^ Gamma
    319     case 1:
    320         if (R < 0) {
    321 
    322             if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
    323                 Val = R;
    324             else
    325                 Val = 0;
    326         }
    327         else
    328             Val = pow(R, Params[0]);
    329         break;
    330 
    331     // Type 1 Reversed: X = Y ^1/gamma
    332     case -1:
    333          if (R < 0) {
    334 
    335             if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
    336                 Val = R;
    337             else
    338                 Val = 0;
    339         }
    340         else
    341             Val = pow(R, 1/Params[0]);
    342         break;
    343 
    344     // CIE 122-1966
    345     // Y = (aX + b)^Gamma  | X >= -b/a
    346     // Y = 0               | else
    347     case 2:
    348         disc = -Params[2] / Params[1];
    349 
    350         if (R >= disc ) {
    351 
    352             e = Params[1]*R + Params[2];
    353 
    354             if (e > 0)
    355                 Val = pow(e, Params[0]);
    356             else
    357                 Val = 0;
    358         }
    359         else
    360             Val = 0;
    361         break;
    362 
    363      // Type 2 Reversed
    364      // X = (Y ^1/g  - b) / a
    365      case -2:
    366          if (R < 0)
    367              Val = 0;
    368          else
    369              Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
    370 
    371          if (Val < 0)
    372               Val = 0;
    373          break;
    374 
    375 
    376     // IEC 61966-3
    377     // Y = (aX + b)^Gamma | X <= -b/a
    378     // Y = c              | else
    379     case 3:
    380         disc = -Params[2] / Params[1];
    381         if (disc < 0)
    382             disc = 0;
    383 
    384         if (R >= disc) {
    385 
    386             e = Params[1]*R + Params[2];
    387 
    388             if (e > 0)
    389                 Val = pow(e, Params[0]) + Params[3];
    390             else
    391                 Val = 0;
    392         }
    393         else
    394             Val = Params[3];
    395         break;
    396 
    397 
    398     // Type 3 reversed
    399     // X=((Y-c)^1/g - b)/a      | (Y>=c)
    400     // X=-b/a                   | (Y<c)
    401     case -3:
    402         if (R >= Params[3])  {
    403 
    404             e = R - Params[3];
    405 
    406             if (e > 0)
    407                 Val = (pow(e, 1/Params[0]) - Params[2]) / Params[1];
    408             else
    409                 Val = 0;
    410         }
    411         else {
    412             Val = -Params[2] / Params[1];
    413         }
    414         break;
    415 
    416 
    417     // IEC 61966-2.1 (sRGB)
    418     // Y = (aX + b)^Gamma | X >= d
    419     // Y = cX             | X < d
    420     case 4:
    421         if (R >= Params[4]) {
    422 
    423             e = Params[1]*R + Params[2];
    424 
    425             if (e > 0)
    426                 Val = pow(e, Params[0]);
    427             else
    428                 Val = 0;
    429         }
    430         else
    431             Val = R * Params[3];
    432         break;
    433 
    434     // Type 4 reversed
    435     // X=((Y^1/g-b)/a)    | Y >= (ad+b)^g
    436     // X=Y/c              | Y< (ad+b)^g
    437     case -4:
    438         e = Params[1] * Params[4] + Params[2];
    439         if (e < 0)
    440             disc = 0;
    441         else
    442             disc = pow(e, Params[0]);
    443 
    444         if (R >= disc) {
    445 
    446             Val = (pow(R, 1.0/Params[0]) - Params[2]) / Params[1];
    447         }
    448         else {
    449             Val = R / Params[3];
    450         }
    451         break;
    452 
    453 
    454     // Y = (aX + b)^Gamma + e | X >= d
    455     // Y = cX + f             | X < d
    456     case 5:
    457         if (R >= Params[4]) {
    458 
    459             e = Params[1]*R + Params[2];
    460 
    461             if (e > 0)
    462                 Val = pow(e, Params[0]) + Params[5];
    463             else
    464                 Val = Params[5];
    465         }
    466         else
    467             Val = R*Params[3] + Params[6];
    468         break;
    469 
    470 
    471     // Reversed type 5
    472     // X=((Y-e)1/g-b)/a   | Y >=(ad+b)^g+e), cd+f
    473     // X=(Y-f)/c          | else
    474     case -5:
    475 
    476         disc = Params[3] * Params[4] + Params[6];
    477         if (R >= disc) {
    478 
    479             e = R - Params[5];
    480             if (e < 0)
    481                 Val = 0;
    482             else
    483                 Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
    484         }
    485         else {
    486             Val = (R - Params[6]) / Params[3];
    487         }
    488         break;
    489 
    490 
    491     // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
    492     // Type 6 is basically identical to type 5 without d
    493 
    494     // Y = (a * X + b) ^ Gamma + c
    495     case 6:
    496         e = Params[1]*R + Params[2];
    497 
    498         if (e < 0)
    499             Val = Params[3];
    500         else
    501             Val = pow(e, Params[0]) + Params[3];
    502         break;
    503 
    504     // ((Y - c) ^1/Gamma - b) / a
    505     case -6:
    506         e = R - Params[3];
    507         if (e < 0)
    508             Val = 0;
    509         else
    510         Val = (pow(e, 1.0/Params[0]) - Params[2]) / Params[1];
    511         break;
    512 
    513 
    514     // Y = a * log (b * X^Gamma + c) + d
    515     case 7:
    516 
    517        e = Params[2] * pow(R, Params[0]) + Params[3];
    518        if (e <= 0)
    519            Val = Params[4];
    520        else
    521            Val = Params[1]*log10(e) + Params[4];
    522        break;
    523 
    524     // (Y - d) / a = log(b * X ^Gamma + c)
    525     // pow(10, (Y-d) / a) = b * X ^Gamma + c
    526     // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
    527     case -7:
    528        Val = pow((pow(10.0, (R-Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
    529        break;
    530 
    531 
    532    //Y = a * b^(c*X+d) + e
    533    case 8:
    534        Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
    535        break;
    536 
    537 
    538    // Y = (log((y-e) / a) / log(b) - d ) / c
    539    // a=0, b=1, c=2, d=3, e=4,
    540    case -8:
    541 
    542        disc = R - Params[4];
    543        if (disc < 0) Val = 0;
    544        else
    545            Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
    546        break;
    547 
    548    // S-Shaped: (1 - (1-x)^1/g)^1/g
    549    case 108:
    550       Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
    551       break;
    552 
    553     // y = (1 - (1-x)^1/g)^1/g
    554     // y^g = (1 - (1-x)^1/g)
    555     // 1 - y^g = (1-x)^1/g
    556     // (1 - y^g)^g = 1 - x
    557     // 1 - (1 - y^g)^g
    558     case -108:
    559         Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
    560         break;
    561 
    562     default:
    563         // Unsupported parametric curve. Should never reach here
    564         return 0;
    565     }
    566 
    567     return Val;
    568 }
    569 
    570 // Evaluate a segmented function for a single value. Return -1 if no valid segment found .
    571 // If fn type is 0, perform an interpolation on the table
    572 static
    573 cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
    574 {
    575     int i;
    576 
    577     for (i = g ->nSegments-1; i >= 0 ; --i) {
    578 
    579         // Check for domain
    580         if ((R > g ->Segments[i].x0) && (R <= g ->Segments[i].x1)) {
    581 
    582             // Type == 0 means segment is sampled
    583             if (g ->Segments[i].Type == 0) {
    584 
    585                 cmsFloat32Number R1 = (cmsFloat32Number) (R - g ->Segments[i].x0) / (g ->Segments[i].x1 - g ->Segments[i].x0);
    586                 cmsFloat32Number Out;
    587 
    588                 // Setup the table (TODO: clean that)
    589                 g ->SegInterp[i]-> Table = g ->Segments[i].SampledPoints;
    590 
    591                 g ->SegInterp[i] -> Interpolation.LerpFloat(&R1, &Out, g ->SegInterp[i]);
    592 
    593                 return Out;
    594             }
    595             else
    596                 return g ->Evals[i](g->Segments[i].Type, g ->Segments[i].Params, R);
    597         }
    598     }
    599 
    600     return MINUS_INF;
    601 }
    602 
    603 // Access to estimated low-res table
    604 cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
    605 {
    606     _cmsAssert(t != NULL);
    607     return t ->nEntries;
    608 }
    609 
    610 const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
    611 {
    612     _cmsAssert(t != NULL);
    613     return t ->Table16;
    614 }
    615 
    616 
    617 // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
    618 // floating point description empty.
    619 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsInt32Number nEntries, const cmsUInt16Number Values[])
    620 {
    621     return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
    622 }
    623 
    624 static
    625 int EntriesByGamma(cmsFloat64Number Gamma)
    626 {
    627     if (fabs(Gamma - 1.0) < 0.001) return 2;
    628     return 4096;
    629 }
    630 
    631 
    632 // Create a segmented gamma, fill the table
    633 cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
    634                                                    cmsInt32Number nSegments, const cmsCurveSegment Segments[])
    635 {
    636     int i;
    637     cmsFloat64Number R, Val;
    638     cmsToneCurve* g;
    639     int nGridPoints = 4096;
    640 
    641     _cmsAssert(Segments != NULL);
    642 
    643     // Optimizatin for identity curves.
    644     if (nSegments == 1 && Segments[0].Type == 1) {
    645 
    646         nGridPoints = EntriesByGamma(Segments[0].Params[0]);
    647     }
    648 
    649     g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
    650     if (g == NULL) return NULL;
    651 
    652     // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
    653     // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
    654     for (i=0; i < nGridPoints; i++) {
    655 
    656         R   = (cmsFloat64Number) i / (nGridPoints-1);
    657 
    658         Val = EvalSegmentedFn(g, R);
    659 
    660         // Round and saturate
    661         g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
    662     }
    663 
    664     return g;
    665 }
    666 
    667 // Use a segmented curve to store the floating point table
    668 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
    669 {
    670     cmsCurveSegment Seg[3];
    671 
    672     // A segmented tone curve should have function segments in the first and last positions
    673     // Initialize segmented curve part up to 0 to constant value = samples[0]
    674     Seg[0].x0 = MINUS_INF;
    675     Seg[0].x1 = 0;
    676     Seg[0].Type = 6;
    677 
    678     Seg[0].Params[0] = 1;
    679     Seg[0].Params[1] = 0;
    680     Seg[0].Params[2] = 0;
    681     Seg[0].Params[3] = values[0];
    682     Seg[0].Params[4] = 0;
    683 
    684     // From zero to 1
    685     Seg[1].x0 = 0;
    686     Seg[1].x1 = 1.0;
    687     Seg[1].Type = 0;
    688 
    689     Seg[1].nGridPoints = nEntries;
    690     Seg[1].SampledPoints = (cmsFloat32Number*) values;
    691 
    692     // Final segment is constant = lastsample
    693     Seg[2].x0 = 1.0;
    694     Seg[2].x1 = PLUS_INF;
    695     Seg[2].Type = 6;
    696 
    697     Seg[2].Params[0] = 1;
    698     Seg[2].Params[1] = 0;
    699     Seg[2].Params[2] = 0;
    700     Seg[2].Params[3] = values[nEntries-1];
    701     Seg[2].Params[4] = 0;
    702 
    703 
    704     return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
    705 }
    706 
    707 // Parametric curves
    708 //
    709 // Parameters goes as: Curve, a, b, c, d, e, f
    710 // Type is the ICC type +1
    711 // if type is negative, then the curve is analyticaly inverted
    712 cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
    713 {
    714     cmsCurveSegment Seg0;
    715     int Pos = 0;
    716     cmsUInt32Number size;
    717     _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
    718 
    719     _cmsAssert(Params != NULL);
    720 
    721     if (c == NULL) {
    722         cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
    723         return NULL;
    724     }
    725 
    726     memset(&Seg0, 0, sizeof(Seg0));
    727 
    728     Seg0.x0   = MINUS_INF;
    729     Seg0.x1   = PLUS_INF;
    730     Seg0.Type = Type;
    731 
    732     size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
    733     memmove(Seg0.Params, Params, size);
    734 
    735     return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
    736 }
    737 
    738 
    739 
    740 // Build a gamma table based on gamma constant
    741 cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
    742 {
    743     return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
    744 }
    745 
    746 
    747 // Free all memory taken by the gamma curve
    748 void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
    749 {
    750     cmsContext ContextID;
    751 
    752     // added by Xiaochuan Liu
    753     // Curve->InterpParams may be null
    754     if (Curve == NULL || Curve->InterpParams == NULL) return;
    755 
    756     ContextID = Curve ->InterpParams->ContextID;
    757 
    758     _cmsFreeInterpParams(Curve ->InterpParams);
    759     Curve ->InterpParams = NULL;
    760 
    761     if (Curve -> Table16) {
    762         _cmsFree(ContextID, Curve ->Table16);
    763         Curve ->Table16 = NULL;
    764     }
    765 
    766     if (Curve ->Segments) {
    767 
    768         cmsUInt32Number i;
    769 
    770         for (i=0; i < Curve ->nSegments; i++) {
    771 
    772             if (Curve ->Segments[i].SampledPoints) {
    773                 _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
    774                 Curve ->Segments[i].SampledPoints = NULL;
    775             }
    776 
    777             if (Curve ->SegInterp[i] != 0) {
    778                 _cmsFreeInterpParams(Curve->SegInterp[i]);
    779                 Curve->SegInterp[i] = NULL;
    780             }
    781         }
    782 
    783         _cmsFree(ContextID, Curve ->Segments);
    784         Curve ->Segments = NULL;
    785         _cmsFree(ContextID, Curve ->SegInterp);
    786         Curve ->SegInterp = NULL;
    787     }
    788 
    789     if (Curve -> Evals) {
    790         _cmsFree(ContextID, Curve -> Evals);
    791         Curve -> Evals = NULL;
    792     }
    793 
    794     if (Curve) {
    795         _cmsFree(ContextID, Curve);
    796         Curve = NULL;
    797     }
    798 }
    799 
    800 // Utility function, free 3 gamma tables
    801 void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
    802 {
    803 
    804     _cmsAssert(Curve != NULL);
    805 
    806     if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
    807     if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
    808     if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
    809 
    810     Curve[0] = Curve[1] = Curve[2] = NULL;
    811 }
    812 
    813 
    814 // Duplicate a gamma table
    815 cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
    816 {
    817     // Xiaochuan Liu
    818     // fix openpdf bug(mantis id:0055683, google id:360198)
    819     // the function CurveSetElemTypeFree in cmslut.c also needs to check pointer
    820     if (In == NULL || In ->InterpParams == NULL || In ->Segments == NULL || In ->Table16 == NULL) return NULL;
    821 
    822     return  AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
    823 }
    824 
    825 // Joins two curves for X and Y. Curves should be monotonic.
    826 // We want to get
    827 //
    828 //      y = Y^-1(X(t))
    829 //
    830 cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
    831                                       const cmsToneCurve* X,
    832                                       const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
    833 {
    834     cmsToneCurve* out = NULL;
    835     cmsToneCurve* Yreversed = NULL;
    836     cmsFloat32Number t, x;
    837     cmsFloat32Number* Res = NULL;
    838     cmsUInt32Number i;
    839 
    840 
    841     _cmsAssert(X != NULL);
    842     _cmsAssert(Y != NULL);
    843 
    844     Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
    845     if (Yreversed == NULL) goto Error;
    846 
    847     Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
    848     if (Res == NULL) goto Error;
    849 
    850     //Iterate
    851     for (i=0; i <  nResultingPoints; i++) {
    852 
    853         t = (cmsFloat32Number) i / (nResultingPoints-1);
    854         x = cmsEvalToneCurveFloat(X,  t);
    855         Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
    856     }
    857 
    858     // Allocate space for output
    859     out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
    860 
    861 Error:
    862 
    863     if (Res != NULL) _cmsFree(ContextID, Res);
    864     if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
    865 
    866     return out;
    867 }
    868 
    869 
    870 
    871 // Get the surrounding nodes. This is tricky on non-monotonic tables
    872 static
    873 int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
    874 {
    875     int i;
    876     int y0, y1;
    877 
    878     // A 1 point table is not allowed
    879     if (p -> Domain[0] < 1) return -1;
    880 
    881     // Let's see if ascending or descending.
    882     if (LutTable[0] < LutTable[p ->Domain[0]]) {
    883 
    884         // Table is overall ascending
    885         for (i=p->Domain[0]-1; i >=0; --i) {
    886 
    887             y0 = LutTable[i];
    888             y1 = LutTable[i+1];
    889 
    890             if (y0 <= y1) { // Increasing
    891                 if (In >= y0 && In <= y1) return i;
    892             }
    893             else
    894                 if (y1 < y0) { // Decreasing
    895                     if (In >= y1 && In <= y0) return i;
    896                 }
    897         }
    898     }
    899     else {
    900         // Table is overall descending
    901         for (i=0; i < (int) p -> Domain[0]; i++) {
    902 
    903             y0 = LutTable[i];
    904             y1 = LutTable[i+1];
    905 
    906             if (y0 <= y1) { // Increasing
    907                 if (In >= y0 && In <= y1) return i;
    908             }
    909             else
    910                 if (y1 < y0) { // Decreasing
    911                     if (In >= y1 && In <= y0) return i;
    912                 }
    913         }
    914     }
    915 
    916     return -1;
    917 }
    918 
    919 // Reverse a gamma table
    920 cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsInt32Number nResultSamples, const cmsToneCurve* InCurve)
    921 {
    922     cmsToneCurve *out;
    923     cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
    924     int i, j;
    925     int Ascending;
    926 
    927     _cmsAssert(InCurve != NULL);
    928 
    929     // Try to reverse it analytically whatever possible
    930 
    931     if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
    932         /* InCurve -> Segments[0].Type <= 5 */
    933         GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
    934 
    935         return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
    936                                        -(InCurve -> Segments[0].Type),
    937                                        InCurve -> Segments[0].Params);
    938     }
    939 
    940     // Nope, reverse the table.
    941     out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
    942     if (out == NULL)
    943         return NULL;
    944 
    945     // We want to know if this is an ascending or descending table
    946     Ascending = !cmsIsToneCurveDescending(InCurve);
    947 
    948     // Iterate across Y axis
    949     for (i=0; i <  nResultSamples; i++) {
    950 
    951         y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
    952 
    953         // Find interval in which y is within.
    954         j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
    955         if (j >= 0) {
    956 
    957 
    958             // Get limits of interval
    959             x1 = InCurve ->Table16[j];
    960             x2 = InCurve ->Table16[j+1];
    961 
    962             y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
    963             y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
    964 
    965             // If collapsed, then use any
    966             if (x1 == x2) {
    967 
    968                 out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
    969                 continue;
    970 
    971             } else {
    972 
    973                 // Interpolate
    974                 a = (y2 - y1) / (x2 - x1);
    975                 b = y2 - a * x2;
    976             }
    977         }
    978 
    979         out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
    980     }
    981 
    982 
    983     return out;
    984 }
    985 
    986 // Reverse a gamma table
    987 cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
    988 {
    989     _cmsAssert(InGamma != NULL);
    990 
    991     return cmsReverseToneCurveEx(4096, InGamma);
    992 }
    993 
    994 // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
    995 // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
    996 //
    997 // Smoothing and interpolation with second differences.
    998 //
    999 //   Input:  weights (w), data (y): vector from 1 to m.
   1000 //   Input:  smoothing parameter (lambda), length (m).
   1001 //   Output: smoothed vector (z): vector from 1 to m.
   1002 
   1003 static
   1004 cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], cmsFloat32Number z[], cmsFloat32Number lambda, int m)
   1005 {
   1006     int i, i1, i2;
   1007     cmsFloat32Number *c, *d, *e;
   1008     cmsBool st;
   1009 
   1010 
   1011     c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
   1012     d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
   1013     e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
   1014 
   1015     if (c != NULL && d != NULL && e != NULL) {
   1016 
   1017 
   1018     d[1] = w[1] + lambda;
   1019     c[1] = -2 * lambda / d[1];
   1020     e[1] = lambda /d[1];
   1021     z[1] = w[1] * y[1];
   1022     d[2] = w[2] + 5 * lambda - d[1] * c[1] *  c[1];
   1023     c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
   1024     e[2] = lambda / d[2];
   1025     z[2] = w[2] * y[2] - c[1] * z[1];
   1026 
   1027     for (i = 3; i < m - 1; i++) {
   1028         i1 = i - 1; i2 = i - 2;
   1029         d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
   1030         c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
   1031         e[i] = lambda / d[i];
   1032         z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
   1033     }
   1034 
   1035     i1 = m - 2; i2 = m - 3;
   1036 
   1037     d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
   1038     c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
   1039     z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
   1040     i1 = m - 1; i2 = m - 2;
   1041 
   1042     d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
   1043     z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
   1044     z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
   1045 
   1046     for (i = m - 2; 1<= i; i--)
   1047         z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
   1048 
   1049       st = TRUE;
   1050     }
   1051     else st = FALSE;
   1052 
   1053     if (c != NULL) _cmsFree(ContextID, c);
   1054     if (d != NULL) _cmsFree(ContextID, d);
   1055     if (e != NULL) _cmsFree(ContextID, e);
   1056 
   1057     return st;
   1058 }
   1059 
   1060 // Smooths a curve sampled at regular intervals.
   1061 cmsBool  CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
   1062 {
   1063     cmsFloat32Number w[MAX_NODES_IN_CURVE], y[MAX_NODES_IN_CURVE], z[MAX_NODES_IN_CURVE];
   1064     int i, nItems, Zeros, Poles;
   1065 
   1066     if (Tab == NULL) return FALSE;
   1067 
   1068     if (cmsIsToneCurveLinear(Tab)) return TRUE; // Nothing to do
   1069 
   1070     nItems = Tab -> nEntries;
   1071 
   1072     if (nItems >= MAX_NODES_IN_CURVE) {
   1073         cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: too many points.");
   1074         return FALSE;
   1075     }
   1076 
   1077     memset(w, 0, nItems * sizeof(cmsFloat32Number));
   1078     memset(y, 0, nItems * sizeof(cmsFloat32Number));
   1079     memset(z, 0, nItems * sizeof(cmsFloat32Number));
   1080 
   1081     for (i=0; i < nItems; i++)
   1082     {
   1083         y[i+1] = (cmsFloat32Number) Tab -> Table16[i];
   1084         w[i+1] = 1.0;
   1085     }
   1086 
   1087     if (!smooth2(Tab ->InterpParams->ContextID, w, y, z, (cmsFloat32Number) lambda, nItems)) return FALSE;
   1088 
   1089     // Do some reality - checking...
   1090     Zeros = Poles = 0;
   1091     for (i=nItems; i > 1; --i) {
   1092 
   1093         if (z[i] == 0.) Zeros++;
   1094         if (z[i] >= 65535.) Poles++;
   1095         if (z[i] < z[i-1]) {
   1096             cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
   1097             return FALSE;
   1098         }
   1099     }
   1100 
   1101     if (Zeros > (nItems / 3)) {
   1102         cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
   1103         return FALSE;
   1104     }
   1105     if (Poles > (nItems / 3)) {
   1106         cmsSignalError(Tab ->InterpParams->ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
   1107         return FALSE;
   1108     }
   1109 
   1110     // Seems ok
   1111     for (i=0; i < nItems; i++) {
   1112 
   1113         // Clamp to cmsUInt16Number
   1114         Tab -> Table16[i] = _cmsQuickSaturateWord(z[i+1]);
   1115     }
   1116 
   1117     return TRUE;
   1118 }
   1119 
   1120 // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
   1121 // in a linear table. This way assures it is linear in 12 bits, which should be enought in most cases.
   1122 cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
   1123 {
   1124     cmsUInt32Number i;
   1125     int diff;
   1126 
   1127     _cmsAssert(Curve != NULL);
   1128 
   1129     for (i=0; i < Curve ->nEntries; i++) {
   1130 
   1131         diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
   1132         if (diff > 0x0f)
   1133             return FALSE;
   1134     }
   1135 
   1136     return TRUE;
   1137 }
   1138 
   1139 // Same, but for monotonicity
   1140 cmsBool  CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
   1141 {
   1142     int n;
   1143     int i, last;
   1144     cmsBool lDescending;
   1145 
   1146     _cmsAssert(t != NULL);
   1147 
   1148     // Degenerated curves are monotonic? Ok, let's pass them
   1149     n = t ->nEntries;
   1150     if (n < 2) return TRUE;
   1151 
   1152     // Curve direction
   1153     lDescending = cmsIsToneCurveDescending(t);
   1154 
   1155     if (lDescending) {
   1156 
   1157         last = t ->Table16[0];
   1158 
   1159         for (i = 1; i < n; i++) {
   1160 
   1161             if (t ->Table16[i] - last > 2) // We allow some ripple
   1162                 return FALSE;
   1163             else
   1164                 last = t ->Table16[i];
   1165 
   1166         }
   1167     }
   1168     else {
   1169 
   1170         last = t ->Table16[n-1];
   1171 
   1172         for (i = n-2; i >= 0; --i) {
   1173 
   1174             if (t ->Table16[i] - last > 2)
   1175                 return FALSE;
   1176             else
   1177                 last = t ->Table16[i];
   1178 
   1179         }
   1180     }
   1181 
   1182     return TRUE;
   1183 }
   1184 
   1185 // Same, but for descending tables
   1186 cmsBool  CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
   1187 {
   1188     _cmsAssert(t != NULL);
   1189 
   1190     return t ->Table16[0] > t ->Table16[t ->nEntries-1];
   1191 }
   1192 
   1193 
   1194 // Another info fn: is out gamma table multisegment?
   1195 cmsBool  CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
   1196 {
   1197     _cmsAssert(t != NULL);
   1198 
   1199     return t -> nSegments > 1;
   1200 }
   1201 
   1202 cmsInt32Number  CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
   1203 {
   1204     _cmsAssert(t != NULL);
   1205 
   1206     if (t -> nSegments != 1) return 0;
   1207     return t ->Segments[0].Type;
   1208 }
   1209 
   1210 // We need accuracy this time
   1211 cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
   1212 {
   1213     _cmsAssert(Curve != NULL);
   1214 
   1215     // Check for 16 bits table. If so, this is a limited-precision tone curve
   1216     if (Curve ->nSegments == 0) {
   1217 
   1218         cmsUInt16Number In, Out;
   1219 
   1220         In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
   1221         Out = cmsEvalToneCurve16(Curve, In);
   1222 
   1223         return (cmsFloat32Number) (Out / 65535.0);
   1224     }
   1225 
   1226     return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
   1227 }
   1228 
   1229 // We need xput over here
   1230 cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
   1231 {
   1232     cmsUInt16Number out;
   1233 
   1234     _cmsAssert(Curve != NULL);
   1235 
   1236     Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
   1237     return out;
   1238 }
   1239 
   1240 
   1241 // Least squares fitting.
   1242 // A mathematical procedure for finding the best-fitting curve to a given set of points by
   1243 // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
   1244 // The sum of the squares of the offsets is used instead of the offset absolute values because
   1245 // this allows the residuals to be treated as a continuous differentiable quantity.
   1246 //
   1247 // y = f(x) = x ^ g
   1248 //
   1249 // R  = (yi - (xi^g))
   1250 // R2 = (yi - (xi^g))2
   1251 // SUM R2 = SUM (yi - (xi^g))2
   1252 //
   1253 // dR2/dg = -2 SUM x^g log(x)(y - x^g)
   1254 // solving for dR2/dg = 0
   1255 //
   1256 // g = 1/n * SUM(log(y) / log(x))
   1257 
   1258 cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
   1259 {
   1260     cmsFloat64Number gamma, sum, sum2;
   1261     cmsFloat64Number n, x, y, Std;
   1262     cmsUInt32Number i;
   1263 
   1264     _cmsAssert(t != NULL);
   1265 
   1266     sum = sum2 = n = 0;
   1267 
   1268     // Excluding endpoints
   1269     for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
   1270 
   1271         x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
   1272         y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
   1273 
   1274         // Avoid 7% on lower part to prevent
   1275         // artifacts due to linear ramps
   1276 
   1277         if (y > 0. && y < 1. && x > 0.07) {
   1278 
   1279             gamma = log(y) / log(x);
   1280             sum  += gamma;
   1281             sum2 += gamma * gamma;
   1282             n++;
   1283         }
   1284     }
   1285 
   1286     // Take a look on SD to see if gamma isn't exponential at all
   1287     Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
   1288 
   1289     if (Std > Precision)
   1290         return -1.0;
   1291 
   1292     return (sum / n);   // The mean
   1293 }
   1294