Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright  2009,2012 Intel Corporation
      3  * Copyright  1988-2004 Keith Packard and Bart Massey.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining a
      6  * copy of this software and associated documentation files (the "Software"),
      7  * to deal in the Software without restriction, including without limitation
      8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      9  * and/or sell copies of the Software, and to permit persons to whom the
     10  * Software is furnished to do so, subject to the following conditions:
     11  *
     12  * The above copyright notice and this permission notice (including the next
     13  * paragraph) shall be included in all copies or substantial portions of the
     14  * Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     22  * IN THE SOFTWARE.
     23  *
     24  * Except as contained in this notice, the names of the authors
     25  * or their institutions shall not be used in advertising or
     26  * otherwise to promote the sale, use or other dealings in this
     27  * Software without prior written authorization from the
     28  * authors.
     29  *
     30  * Authors:
     31  *    Eric Anholt <eric (at) anholt.net>
     32  *    Keith Packard <keithp (at) keithp.com>
     33  */
     34 
     35 /**
     36  * Implements an open-addressing, linear-reprobing hash table.
     37  *
     38  * For more information, see:
     39  *
     40  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
     41  */
     42 
     43 #include <stdlib.h>
     44 #include <string.h>
     45 #include <assert.h>
     46 
     47 #include "hash_table.h"
     48 #include "ralloc.h"
     49 #include "macros.h"
     50 
     51 static const uint32_t deleted_key_value;
     52 
     53 /**
     54  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
     55  * p and p-2 are both prime.  These tables are sized to have an extra 10%
     56  * free to avoid exponential performance degradation as the hash table fills
     57  */
     58 static const struct {
     59    uint32_t max_entries, size, rehash;
     60 } hash_sizes[] = {
     61    { 2,			5,		3	  },
     62    { 4,			7,		5	  },
     63    { 8,			13,		11	  },
     64    { 16,		19,		17	  },
     65    { 32,		43,		41        },
     66    { 64,		73,		71        },
     67    { 128,		151,		149       },
     68    { 256,		283,		281       },
     69    { 512,		571,		569       },
     70    { 1024,		1153,		1151      },
     71    { 2048,		2269,		2267      },
     72    { 4096,		4519,		4517      },
     73    { 8192,		9013,		9011      },
     74    { 16384,		18043,		18041     },
     75    { 32768,		36109,		36107     },
     76    { 65536,		72091,		72089     },
     77    { 131072,		144409,		144407    },
     78    { 262144,		288361,		288359    },
     79    { 524288,		576883,		576881    },
     80    { 1048576,		1153459,	1153457   },
     81    { 2097152,		2307163,	2307161   },
     82    { 4194304,		4613893,	4613891   },
     83    { 8388608,		9227641,	9227639   },
     84    { 16777216,		18455029,	18455027  },
     85    { 33554432,		36911011,	36911009  },
     86    { 67108864,		73819861,	73819859  },
     87    { 134217728,		147639589,	147639587 },
     88    { 268435456,		295279081,	295279079 },
     89    { 536870912,		590559793,	590559791 },
     90    { 1073741824,	1181116273,	1181116271},
     91    { 2147483648ul,	2362232233ul,	2362232231ul}
     92 };
     93 
     94 static int
     95 entry_is_free(const struct hash_entry *entry)
     96 {
     97    return entry->key == NULL;
     98 }
     99 
    100 static int
    101 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
    102 {
    103    return entry->key == ht->deleted_key;
    104 }
    105 
    106 static int
    107 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
    108 {
    109    return entry->key != NULL && entry->key != ht->deleted_key;
    110 }
    111 
    112 struct hash_table *
    113 _mesa_hash_table_create(void *mem_ctx,
    114                         uint32_t (*key_hash_function)(const void *key),
    115                         bool (*key_equals_function)(const void *a,
    116                                                     const void *b))
    117 {
    118    struct hash_table *ht;
    119 
    120    ht = ralloc(mem_ctx, struct hash_table);
    121    if (ht == NULL)
    122       return NULL;
    123 
    124    ht->size_index = 0;
    125    ht->size = hash_sizes[ht->size_index].size;
    126    ht->rehash = hash_sizes[ht->size_index].rehash;
    127    ht->max_entries = hash_sizes[ht->size_index].max_entries;
    128    ht->key_hash_function = key_hash_function;
    129    ht->key_equals_function = key_equals_function;
    130    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
    131    ht->entries = 0;
    132    ht->deleted_entries = 0;
    133    ht->deleted_key = &deleted_key_value;
    134 
    135    if (ht->table == NULL) {
    136       ralloc_free(ht);
    137       return NULL;
    138    }
    139 
    140    return ht;
    141 }
    142 
    143 /**
    144  * Frees the given hash table.
    145  *
    146  * If delete_function is passed, it gets called on each entry present before
    147  * freeing.
    148  */
    149 void
    150 _mesa_hash_table_destroy(struct hash_table *ht,
    151                          void (*delete_function)(struct hash_entry *entry))
    152 {
    153    if (!ht)
    154       return;
    155 
    156    if (delete_function) {
    157       struct hash_entry *entry;
    158 
    159       hash_table_foreach(ht, entry) {
    160          delete_function(entry);
    161       }
    162    }
    163    ralloc_free(ht);
    164 }
    165 
    166 /**
    167  * Deletes all entries of the given hash table without deleting the table
    168  * itself or changing its structure.
    169  *
    170  * If delete_function is passed, it gets called on each entry present.
    171  */
    172 void
    173 _mesa_hash_table_clear(struct hash_table *ht,
    174                        void (*delete_function)(struct hash_entry *entry))
    175 {
    176    struct hash_entry *entry;
    177 
    178    for (entry = ht->table; entry != ht->table + ht->size; entry++) {
    179       if (entry->key == NULL)
    180          continue;
    181 
    182       if (delete_function != NULL && entry->key != ht->deleted_key)
    183          delete_function(entry);
    184 
    185       entry->key = NULL;
    186    }
    187 
    188    ht->entries = 0;
    189    ht->deleted_entries = 0;
    190 }
    191 
    192 /** Sets the value of the key pointer used for deleted entries in the table.
    193  *
    194  * The assumption is that usually keys are actual pointers, so we use a
    195  * default value of a pointer to an arbitrary piece of storage in the library.
    196  * But in some cases a consumer wants to store some other sort of value in the
    197  * table, like a uint32_t, in which case that pointer may conflict with one of
    198  * their valid keys.  This lets that user select a safe value.
    199  *
    200  * This must be called before any keys are actually deleted from the table.
    201  */
    202 void
    203 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
    204 {
    205    ht->deleted_key = deleted_key;
    206 }
    207 
    208 static struct hash_entry *
    209 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
    210 {
    211    uint32_t start_hash_address = hash % ht->size;
    212    uint32_t hash_address = start_hash_address;
    213 
    214    do {
    215       uint32_t double_hash;
    216 
    217       struct hash_entry *entry = ht->table + hash_address;
    218 
    219       if (entry_is_free(entry)) {
    220          return NULL;
    221       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
    222          if (ht->key_equals_function(key, entry->key)) {
    223             return entry;
    224          }
    225       }
    226 
    227       double_hash = 1 + hash % ht->rehash;
    228 
    229       hash_address = (hash_address + double_hash) % ht->size;
    230    } while (hash_address != start_hash_address);
    231 
    232    return NULL;
    233 }
    234 
    235 /**
    236  * Finds a hash table entry with the given key and hash of that key.
    237  *
    238  * Returns NULL if no entry is found.  Note that the data pointer may be
    239  * modified by the user.
    240  */
    241 struct hash_entry *
    242 _mesa_hash_table_search(struct hash_table *ht, const void *key)
    243 {
    244    assert(ht->key_hash_function);
    245    return hash_table_search(ht, ht->key_hash_function(key), key);
    246 }
    247 
    248 struct hash_entry *
    249 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
    250                                   const void *key)
    251 {
    252    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
    253    return hash_table_search(ht, hash, key);
    254 }
    255 
    256 static struct hash_entry *
    257 hash_table_insert(struct hash_table *ht, uint32_t hash,
    258                   const void *key, void *data);
    259 
    260 static void
    261 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
    262 {
    263    struct hash_table old_ht;
    264    struct hash_entry *table, *entry;
    265 
    266    if (new_size_index >= ARRAY_SIZE(hash_sizes))
    267       return;
    268 
    269    table = rzalloc_array(ht, struct hash_entry,
    270                          hash_sizes[new_size_index].size);
    271    if (table == NULL)
    272       return;
    273 
    274    old_ht = *ht;
    275 
    276    ht->table = table;
    277    ht->size_index = new_size_index;
    278    ht->size = hash_sizes[ht->size_index].size;
    279    ht->rehash = hash_sizes[ht->size_index].rehash;
    280    ht->max_entries = hash_sizes[ht->size_index].max_entries;
    281    ht->entries = 0;
    282    ht->deleted_entries = 0;
    283 
    284    hash_table_foreach(&old_ht, entry) {
    285       hash_table_insert(ht, entry->hash, entry->key, entry->data);
    286    }
    287 
    288    ralloc_free(old_ht.table);
    289 }
    290 
    291 static struct hash_entry *
    292 hash_table_insert(struct hash_table *ht, uint32_t hash,
    293                   const void *key, void *data)
    294 {
    295    uint32_t start_hash_address, hash_address;
    296    struct hash_entry *available_entry = NULL;
    297 
    298    assert(key != NULL);
    299 
    300    if (ht->entries >= ht->max_entries) {
    301       _mesa_hash_table_rehash(ht, ht->size_index + 1);
    302    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
    303       _mesa_hash_table_rehash(ht, ht->size_index);
    304    }
    305 
    306    start_hash_address = hash % ht->size;
    307    hash_address = start_hash_address;
    308    do {
    309       struct hash_entry *entry = ht->table + hash_address;
    310       uint32_t double_hash;
    311 
    312       if (!entry_is_present(ht, entry)) {
    313          /* Stash the first available entry we find */
    314          if (available_entry == NULL)
    315             available_entry = entry;
    316          if (entry_is_free(entry))
    317             break;
    318       }
    319 
    320       /* Implement replacement when another insert happens
    321        * with a matching key.  This is a relatively common
    322        * feature of hash tables, with the alternative
    323        * generally being "insert the new value as well, and
    324        * return it first when the key is searched for".
    325        *
    326        * Note that the hash table doesn't have a delete
    327        * callback.  If freeing of old data pointers is
    328        * required to avoid memory leaks, perform a search
    329        * before inserting.
    330        */
    331       if (!entry_is_deleted(ht, entry) &&
    332           entry->hash == hash &&
    333           ht->key_equals_function(key, entry->key)) {
    334          entry->key = key;
    335          entry->data = data;
    336          return entry;
    337       }
    338 
    339 
    340       double_hash = 1 + hash % ht->rehash;
    341 
    342       hash_address = (hash_address + double_hash) % ht->size;
    343    } while (hash_address != start_hash_address);
    344 
    345    if (available_entry) {
    346       if (entry_is_deleted(ht, available_entry))
    347          ht->deleted_entries--;
    348       available_entry->hash = hash;
    349       available_entry->key = key;
    350       available_entry->data = data;
    351       ht->entries++;
    352       return available_entry;
    353    }
    354 
    355    /* We could hit here if a required resize failed. An unchecked-malloc
    356     * application could ignore this result.
    357     */
    358    return NULL;
    359 }
    360 
    361 /**
    362  * Inserts the key with the given hash into the table.
    363  *
    364  * Note that insertion may rearrange the table on a resize or rehash,
    365  * so previously found hash_entries are no longer valid after this function.
    366  */
    367 struct hash_entry *
    368 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
    369 {
    370    assert(ht->key_hash_function);
    371    return hash_table_insert(ht, ht->key_hash_function(key), key, data);
    372 }
    373 
    374 struct hash_entry *
    375 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
    376                                    const void *key, void *data)
    377 {
    378    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
    379    return hash_table_insert(ht, hash, key, data);
    380 }
    381 
    382 /**
    383  * This function deletes the given hash table entry.
    384  *
    385  * Note that deletion doesn't otherwise modify the table, so an iteration over
    386  * the table deleting entries is safe.
    387  */
    388 void
    389 _mesa_hash_table_remove(struct hash_table *ht,
    390                         struct hash_entry *entry)
    391 {
    392    if (!entry)
    393       return;
    394 
    395    entry->key = ht->deleted_key;
    396    ht->entries--;
    397    ht->deleted_entries++;
    398 }
    399 
    400 /**
    401  * This function is an iterator over the hash table.
    402  *
    403  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
    404  * an iteration over the table is O(table_size) not O(entries).
    405  */
    406 struct hash_entry *
    407 _mesa_hash_table_next_entry(struct hash_table *ht,
    408                             struct hash_entry *entry)
    409 {
    410    if (entry == NULL)
    411       entry = ht->table;
    412    else
    413       entry = entry + 1;
    414 
    415    for (; entry != ht->table + ht->size; entry++) {
    416       if (entry_is_present(ht, entry)) {
    417          return entry;
    418       }
    419    }
    420 
    421    return NULL;
    422 }
    423 
    424 /**
    425  * Returns a random entry from the hash table.
    426  *
    427  * This may be useful in implementing random replacement (as opposed
    428  * to just removing everything) in caches based on this hash table
    429  * implementation.  @predicate may be used to filter entries, or may
    430  * be set to NULL for no filtering.
    431  */
    432 struct hash_entry *
    433 _mesa_hash_table_random_entry(struct hash_table *ht,
    434                               bool (*predicate)(struct hash_entry *entry))
    435 {
    436    struct hash_entry *entry;
    437    uint32_t i = rand() % ht->size;
    438 
    439    if (ht->entries == 0)
    440       return NULL;
    441 
    442    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
    443       if (entry_is_present(ht, entry) &&
    444           (!predicate || predicate(entry))) {
    445          return entry;
    446       }
    447    }
    448 
    449    for (entry = ht->table; entry != ht->table + i; entry++) {
    450       if (entry_is_present(ht, entry) &&
    451           (!predicate || predicate(entry))) {
    452          return entry;
    453       }
    454    }
    455 
    456    return NULL;
    457 }
    458 
    459 
    460 /**
    461  * Quick FNV-1a hash implementation based on:
    462  * http://www.isthe.com/chongo/tech/comp/fnv/
    463  *
    464  * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
    465  * to be quite good, and it probably beats FNV.  But FNV has the advantage
    466  * that it involves almost no code.  For an improvement on both, see Paul
    467  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
    468  */
    469 uint32_t
    470 _mesa_hash_data(const void *data, size_t size)
    471 {
    472    return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
    473                                           data, size);
    474 }
    475 
    476 /** FNV-1a string hash implementation */
    477 uint32_t
    478 _mesa_hash_string(const char *key)
    479 {
    480    uint32_t hash = _mesa_fnv32_1a_offset_bias;
    481 
    482    while (*key != 0) {
    483       hash = _mesa_fnv32_1a_accumulate(hash, *key);
    484       key++;
    485    }
    486 
    487    return hash;
    488 }
    489 
    490 /**
    491  * String compare function for use as the comparison callback in
    492  * _mesa_hash_table_create().
    493  */
    494 bool
    495 _mesa_key_string_equal(const void *a, const void *b)
    496 {
    497    return strcmp(a, b) == 0;
    498 }
    499 
    500 bool
    501 _mesa_key_pointer_equal(const void *a, const void *b)
    502 {
    503    return a == b;
    504 }
    505