Home | History | Annotate | Download | only in cpufeatures
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* ChangeLog for this library:
     30  *
     31  * NDK r10e?: Add MIPS MSA feature.
     32  *
     33  * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
     34  *
     35  * NDK r8d: Add android_setCpu().
     36  *
     37  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
     38  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
     39  *
     40  *          Rewrite the code to parse /proc/self/auxv instead of
     41  *          the "Features" field in /proc/cpuinfo.
     42  *
     43  *          Dynamically allocate the buffer that hold the content
     44  *          of /proc/cpuinfo to deal with newer hardware.
     45  *
     46  * NDK r7c: Fix CPU count computation. The old method only reported the
     47  *           number of _active_ CPUs when the library was initialized,
     48  *           which could be less than the real total.
     49  *
     50  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
     51  *         for an ARMv6 CPU (see below).
     52  *
     53  *         Handle kernels that only report 'neon', and not 'vfpv3'
     54  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
     55  *
     56  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
     57  *
     58  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
     59  *         android_getCpuFamily().
     60  *
     61  * NDK r4: Initial release
     62  */
     63 
     64 #include "cpu-features.h"
     65 
     66 #include <dlfcn.h>
     67 #include <errno.h>
     68 #include <fcntl.h>
     69 #include <pthread.h>
     70 #include <stdio.h>
     71 #include <stdlib.h>
     72 #include <string.h>
     73 #include <sys/system_properties.h>
     74 #include <unistd.h>
     75 
     76 static  pthread_once_t     g_once;
     77 static  int                g_inited;
     78 static  AndroidCpuFamily   g_cpuFamily;
     79 static  uint64_t           g_cpuFeatures;
     80 static  int                g_cpuCount;
     81 
     82 #ifdef __arm__
     83 static  uint32_t           g_cpuIdArm;
     84 #endif
     85 
     86 static const int android_cpufeatures_debug = 0;
     87 
     88 #define  D(...) \
     89     do { \
     90         if (android_cpufeatures_debug) { \
     91             printf(__VA_ARGS__); fflush(stdout); \
     92         } \
     93     } while (0)
     94 
     95 #ifdef __i386__
     96 static __inline__ void x86_cpuid(int func, int values[4])
     97 {
     98     int a, b, c, d;
     99     /* We need to preserve ebx since we're compiling PIC code */
    100     /* this means we can't use "=b" for the second output register */
    101     __asm__ __volatile__ ( \
    102       "push %%ebx\n"
    103       "cpuid\n" \
    104       "mov %%ebx, %1\n"
    105       "pop %%ebx\n"
    106       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
    107       : "a" (func) \
    108     );
    109     values[0] = a;
    110     values[1] = b;
    111     values[2] = c;
    112     values[3] = d;
    113 }
    114 #elif defined(__x86_64__)
    115 static __inline__ void x86_cpuid(int func, int values[4])
    116 {
    117     int64_t a, b, c, d;
    118     /* We need to preserve ebx since we're compiling PIC code */
    119     /* this means we can't use "=b" for the second output register */
    120     __asm__ __volatile__ ( \
    121       "push %%rbx\n"
    122       "cpuid\n" \
    123       "mov %%rbx, %1\n"
    124       "pop %%rbx\n"
    125       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
    126       : "a" (func) \
    127     );
    128     values[0] = a;
    129     values[1] = b;
    130     values[2] = c;
    131     values[3] = d;
    132 }
    133 #endif
    134 
    135 /* Get the size of a file by reading it until the end. This is needed
    136  * because files under /proc do not always return a valid size when
    137  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
    138  */
    139 static int
    140 get_file_size(const char* pathname)
    141 {
    142 
    143    int fd, result = 0;
    144     char buffer[256];
    145 
    146     fd = open(pathname, O_RDONLY);
    147     if (fd < 0) {
    148         D("Can't open %s: %s\n", pathname, strerror(errno));
    149         return -1;
    150     }
    151 
    152     for (;;) {
    153         int ret = read(fd, buffer, sizeof buffer);
    154         if (ret < 0) {
    155             if (errno == EINTR)
    156                 continue;
    157             D("Error while reading %s: %s\n", pathname, strerror(errno));
    158             break;
    159         }
    160         if (ret == 0)
    161             break;
    162 
    163         result += ret;
    164     }
    165     close(fd);
    166     return result;
    167 }
    168 
    169 /* Read the content of /proc/cpuinfo into a user-provided buffer.
    170  * Return the length of the data, or -1 on error. Does *not*
    171  * zero-terminate the content. Will not read more
    172  * than 'buffsize' bytes.
    173  */
    174 static int
    175 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
    176 {
    177     int  fd, count;
    178 
    179     fd = open(pathname, O_RDONLY);
    180     if (fd < 0) {
    181         D("Could not open %s: %s\n", pathname, strerror(errno));
    182         return -1;
    183     }
    184     count = 0;
    185     while (count < (int)buffsize) {
    186         int ret = read(fd, buffer + count, buffsize - count);
    187         if (ret < 0) {
    188             if (errno == EINTR)
    189                 continue;
    190             D("Error while reading from %s: %s\n", pathname, strerror(errno));
    191             if (count == 0)
    192                 count = -1;
    193             break;
    194         }
    195         if (ret == 0)
    196             break;
    197         count += ret;
    198     }
    199     close(fd);
    200     return count;
    201 }
    202 
    203 #ifdef __arm__
    204 /* Extract the content of a the first occurence of a given field in
    205  * the content of /proc/cpuinfo and return it as a heap-allocated
    206  * string that must be freed by the caller.
    207  *
    208  * Return NULL if not found
    209  */
    210 static char*
    211 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
    212 {
    213     int  fieldlen = strlen(field);
    214     const char* bufend = buffer + buflen;
    215     char* result = NULL;
    216     int len;
    217     const char *p, *q;
    218 
    219     /* Look for first field occurence, and ensures it starts the line. */
    220     p = buffer;
    221     for (;;) {
    222         p = memmem(p, bufend-p, field, fieldlen);
    223         if (p == NULL)
    224             goto EXIT;
    225 
    226         if (p == buffer || p[-1] == '\n')
    227             break;
    228 
    229         p += fieldlen;
    230     }
    231 
    232     /* Skip to the first column followed by a space */
    233     p += fieldlen;
    234     p  = memchr(p, ':', bufend-p);
    235     if (p == NULL || p[1] != ' ')
    236         goto EXIT;
    237 
    238     /* Find the end of the line */
    239     p += 2;
    240     q = memchr(p, '\n', bufend-p);
    241     if (q == NULL)
    242         q = bufend;
    243 
    244     /* Copy the line into a heap-allocated buffer */
    245     len = q-p;
    246     result = malloc(len+1);
    247     if (result == NULL)
    248         goto EXIT;
    249 
    250     memcpy(result, p, len);
    251     result[len] = '\0';
    252 
    253 EXIT:
    254     return result;
    255 }
    256 
    257 /* Checks that a space-separated list of items contains one given 'item'.
    258  * Returns 1 if found, 0 otherwise.
    259  */
    260 static int
    261 has_list_item(const char* list, const char* item)
    262 {
    263     const char*  p = list;
    264     int itemlen = strlen(item);
    265 
    266     if (list == NULL)
    267         return 0;
    268 
    269     while (*p) {
    270         const char*  q;
    271 
    272         /* skip spaces */
    273         while (*p == ' ' || *p == '\t')
    274             p++;
    275 
    276         /* find end of current list item */
    277         q = p;
    278         while (*q && *q != ' ' && *q != '\t')
    279             q++;
    280 
    281         if (itemlen == q-p && !memcmp(p, item, itemlen))
    282             return 1;
    283 
    284         /* skip to next item */
    285         p = q;
    286     }
    287     return 0;
    288 }
    289 #endif /* __arm__ */
    290 
    291 /* Parse a number starting from 'input', but not going further
    292  * than 'limit'. Return the value into '*result'.
    293  *
    294  * NOTE: Does not skip over leading spaces, or deal with sign characters.
    295  * NOTE: Ignores overflows.
    296  *
    297  * The function returns NULL in case of error (bad format), or the new
    298  * position after the decimal number in case of success (which will always
    299  * be <= 'limit').
    300  */
    301 static const char*
    302 parse_number(const char* input, const char* limit, int base, int* result)
    303 {
    304     const char* p = input;
    305     int val = 0;
    306     while (p < limit) {
    307         int d = (*p - '0');
    308         if ((unsigned)d >= 10U) {
    309             d = (*p - 'a');
    310             if ((unsigned)d >= 6U)
    311               d = (*p - 'A');
    312             if ((unsigned)d >= 6U)
    313               break;
    314             d += 10;
    315         }
    316         if (d >= base)
    317           break;
    318         val = val*base + d;
    319         p++;
    320     }
    321     if (p == input)
    322         return NULL;
    323 
    324     *result = val;
    325     return p;
    326 }
    327 
    328 static const char*
    329 parse_decimal(const char* input, const char* limit, int* result)
    330 {
    331     return parse_number(input, limit, 10, result);
    332 }
    333 
    334 #ifdef __arm__
    335 static const char*
    336 parse_hexadecimal(const char* input, const char* limit, int* result)
    337 {
    338     return parse_number(input, limit, 16, result);
    339 }
    340 #endif /* __arm__ */
    341 
    342 /* This small data type is used to represent a CPU list / mask, as read
    343  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
    344  *
    345  * For now, we don't expect more than 32 cores on mobile devices, so keep
    346  * everything simple.
    347  */
    348 typedef struct {
    349     uint32_t mask;
    350 } CpuList;
    351 
    352 static __inline__ void
    353 cpulist_init(CpuList* list) {
    354     list->mask = 0;
    355 }
    356 
    357 static __inline__ void
    358 cpulist_and(CpuList* list1, CpuList* list2) {
    359     list1->mask &= list2->mask;
    360 }
    361 
    362 static __inline__ void
    363 cpulist_set(CpuList* list, int index) {
    364     if ((unsigned)index < 32) {
    365         list->mask |= (uint32_t)(1U << index);
    366     }
    367 }
    368 
    369 static __inline__ int
    370 cpulist_count(CpuList* list) {
    371     return __builtin_popcount(list->mask);
    372 }
    373 
    374 /* Parse a textual list of cpus and store the result inside a CpuList object.
    375  * Input format is the following:
    376  * - comma-separated list of items (no spaces)
    377  * - each item is either a single decimal number (cpu index), or a range made
    378  *   of two numbers separated by a single dash (-). Ranges are inclusive.
    379  *
    380  * Examples:   0
    381  *             2,4-127,128-143
    382  *             0-1
    383  */
    384 static void
    385 cpulist_parse(CpuList* list, const char* line, int line_len)
    386 {
    387     const char* p = line;
    388     const char* end = p + line_len;
    389     const char* q;
    390 
    391     /* NOTE: the input line coming from sysfs typically contains a
    392      * trailing newline, so take care of it in the code below
    393      */
    394     while (p < end && *p != '\n')
    395     {
    396         int val, start_value, end_value;
    397 
    398         /* Find the end of current item, and put it into 'q' */
    399         q = memchr(p, ',', end-p);
    400         if (q == NULL) {
    401             q = end;
    402         }
    403 
    404         /* Get first value */
    405         p = parse_decimal(p, q, &start_value);
    406         if (p == NULL)
    407             goto BAD_FORMAT;
    408 
    409         end_value = start_value;
    410 
    411         /* If we're not at the end of the item, expect a dash and
    412          * and integer; extract end value.
    413          */
    414         if (p < q && *p == '-') {
    415             p = parse_decimal(p+1, q, &end_value);
    416             if (p == NULL)
    417                 goto BAD_FORMAT;
    418         }
    419 
    420         /* Set bits CPU list bits */
    421         for (val = start_value; val <= end_value; val++) {
    422             cpulist_set(list, val);
    423         }
    424 
    425         /* Jump to next item */
    426         p = q;
    427         if (p < end)
    428             p++;
    429     }
    430 
    431 BAD_FORMAT:
    432     ;
    433 }
    434 
    435 /* Read a CPU list from one sysfs file */
    436 static void
    437 cpulist_read_from(CpuList* list, const char* filename)
    438 {
    439     char   file[64];
    440     int    filelen;
    441 
    442     cpulist_init(list);
    443 
    444     filelen = read_file(filename, file, sizeof file);
    445     if (filelen < 0) {
    446         D("Could not read %s: %s\n", filename, strerror(errno));
    447         return;
    448     }
    449 
    450     cpulist_parse(list, file, filelen);
    451 }
    452 #if defined(__aarch64__)
    453 // see <uapi/asm/hwcap.h> kernel header
    454 #define HWCAP_FP                (1 << 0)
    455 #define HWCAP_ASIMD             (1 << 1)
    456 #define HWCAP_AES               (1 << 3)
    457 #define HWCAP_PMULL             (1 << 4)
    458 #define HWCAP_SHA1              (1 << 5)
    459 #define HWCAP_SHA2              (1 << 6)
    460 #define HWCAP_CRC32             (1 << 7)
    461 #endif
    462 
    463 #if defined(__arm__)
    464 
    465 // See <asm/hwcap.h> kernel header.
    466 #define HWCAP_VFP       (1 << 6)
    467 #define HWCAP_IWMMXT    (1 << 9)
    468 #define HWCAP_NEON      (1 << 12)
    469 #define HWCAP_VFPv3     (1 << 13)
    470 #define HWCAP_VFPv3D16  (1 << 14)
    471 #define HWCAP_VFPv4     (1 << 16)
    472 #define HWCAP_IDIVA     (1 << 17)
    473 #define HWCAP_IDIVT     (1 << 18)
    474 
    475 // see <uapi/asm/hwcap.h> kernel header
    476 #define HWCAP2_AES     (1 << 0)
    477 #define HWCAP2_PMULL   (1 << 1)
    478 #define HWCAP2_SHA1    (1 << 2)
    479 #define HWCAP2_SHA2    (1 << 3)
    480 #define HWCAP2_CRC32   (1 << 4)
    481 
    482 // This is the list of 32-bit ARMv7 optional features that are _always_
    483 // supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
    484 // Manual.
    485 #define HWCAP_SET_FOR_ARMV8  \
    486   ( HWCAP_VFP | \
    487     HWCAP_NEON | \
    488     HWCAP_VFPv3 | \
    489     HWCAP_VFPv4 | \
    490     HWCAP_IDIVA | \
    491     HWCAP_IDIVT )
    492 #endif
    493 
    494 #if defined(__mips__)
    495 // see <uapi/asm/hwcap.h> kernel header
    496 #define HWCAP_MIPS_R6           (1 << 0)
    497 #define HWCAP_MIPS_MSA          (1 << 1)
    498 #endif
    499 
    500 #if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
    501 
    502 #define AT_HWCAP 16
    503 #define AT_HWCAP2 26
    504 
    505 // Probe the system's C library for a 'getauxval' function and call it if
    506 // it exits, or return 0 for failure. This function is available since API
    507 // level 20.
    508 //
    509 // This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
    510 // edge case where some NDK developers use headers for a platform that is
    511 // newer than the one really targetted by their application.
    512 // This is typically done to use newer native APIs only when running on more
    513 // recent Android versions, and requires careful symbol management.
    514 //
    515 // Note that getauxval() can't really be re-implemented here, because
    516 // its implementation does not parse /proc/self/auxv. Instead it depends
    517 // on values  that are passed by the kernel at process-init time to the
    518 // C runtime initialization layer.
    519 static uint32_t
    520 get_elf_hwcap_from_getauxval(int hwcap_type) {
    521     typedef unsigned long getauxval_func_t(unsigned long);
    522 
    523     dlerror();
    524     void* libc_handle = dlopen("libc.so", RTLD_NOW);
    525     if (!libc_handle) {
    526         D("Could not dlopen() C library: %s\n", dlerror());
    527         return 0;
    528     }
    529 
    530     uint32_t ret = 0;
    531     getauxval_func_t* func = (getauxval_func_t*)
    532             dlsym(libc_handle, "getauxval");
    533     if (!func) {
    534         D("Could not find getauxval() in C library\n");
    535     } else {
    536         // Note: getauxval() returns 0 on failure. Doesn't touch errno.
    537         ret = (uint32_t)(*func)(hwcap_type);
    538     }
    539     dlclose(libc_handle);
    540     return ret;
    541 }
    542 #endif
    543 
    544 #if defined(__arm__)
    545 // Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
    546 // current CPU. Note that this file is not accessible from regular
    547 // application processes on some Android platform releases.
    548 // On success, return new ELF hwcaps, or 0 on failure.
    549 static uint32_t
    550 get_elf_hwcap_from_proc_self_auxv(void) {
    551     const char filepath[] = "/proc/self/auxv";
    552     int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
    553     if (fd < 0) {
    554         D("Could not open %s: %s\n", filepath, strerror(errno));
    555         return 0;
    556     }
    557 
    558     struct { uint32_t tag; uint32_t value; } entry;
    559 
    560     uint32_t result = 0;
    561     for (;;) {
    562         int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
    563         if (ret < 0) {
    564             D("Error while reading %s: %s\n", filepath, strerror(errno));
    565             break;
    566         }
    567         // Detect end of list.
    568         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
    569           break;
    570         if (entry.tag == AT_HWCAP) {
    571           result = entry.value;
    572           break;
    573         }
    574     }
    575     close(fd);
    576     return result;
    577 }
    578 
    579 /* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
    580  * This works by parsing the 'Features' line, which lists which optional
    581  * features the device's CPU supports, on top of its reference
    582  * architecture.
    583  */
    584 static uint32_t
    585 get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
    586     uint32_t hwcaps = 0;
    587     long architecture = 0;
    588     char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
    589     if (cpuArch) {
    590         architecture = strtol(cpuArch, NULL, 10);
    591         free(cpuArch);
    592 
    593         if (architecture >= 8L) {
    594             // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
    595             // The 'Features' line only lists the optional features that the
    596             // device's CPU supports, compared to its reference architecture
    597             // which are of no use for this process.
    598             D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
    599             return HWCAP_SET_FOR_ARMV8;
    600         }
    601     }
    602 
    603     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
    604     if (cpuFeatures != NULL) {
    605         D("Found cpuFeatures = '%s'\n", cpuFeatures);
    606 
    607         if (has_list_item(cpuFeatures, "vfp"))
    608             hwcaps |= HWCAP_VFP;
    609         if (has_list_item(cpuFeatures, "vfpv3"))
    610             hwcaps |= HWCAP_VFPv3;
    611         if (has_list_item(cpuFeatures, "vfpv3d16"))
    612             hwcaps |= HWCAP_VFPv3D16;
    613         if (has_list_item(cpuFeatures, "vfpv4"))
    614             hwcaps |= HWCAP_VFPv4;
    615         if (has_list_item(cpuFeatures, "neon"))
    616             hwcaps |= HWCAP_NEON;
    617         if (has_list_item(cpuFeatures, "idiva"))
    618             hwcaps |= HWCAP_IDIVA;
    619         if (has_list_item(cpuFeatures, "idivt"))
    620             hwcaps |= HWCAP_IDIVT;
    621         if (has_list_item(cpuFeatures, "idiv"))
    622             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
    623         if (has_list_item(cpuFeatures, "iwmmxt"))
    624             hwcaps |= HWCAP_IWMMXT;
    625 
    626         free(cpuFeatures);
    627     }
    628     return hwcaps;
    629 }
    630 #endif  /* __arm__ */
    631 
    632 /* Return the number of cpus present on a given device.
    633  *
    634  * To handle all weird kernel configurations, we need to compute the
    635  * intersection of the 'present' and 'possible' CPU lists and count
    636  * the result.
    637  */
    638 static int
    639 get_cpu_count(void)
    640 {
    641     CpuList cpus_present[1];
    642     CpuList cpus_possible[1];
    643 
    644     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
    645     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
    646 
    647     /* Compute the intersection of both sets to get the actual number of
    648      * CPU cores that can be used on this device by the kernel.
    649      */
    650     cpulist_and(cpus_present, cpus_possible);
    651 
    652     return cpulist_count(cpus_present);
    653 }
    654 
    655 static void
    656 android_cpuInitFamily(void)
    657 {
    658 #if defined(__arm__)
    659     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
    660 #elif defined(__i386__)
    661     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
    662 #elif defined(__mips64)
    663 /* Needs to be before __mips__ since the compiler defines both */
    664     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
    665 #elif defined(__mips__)
    666     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
    667 #elif defined(__aarch64__)
    668     g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
    669 #elif defined(__x86_64__)
    670     g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
    671 #else
    672     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
    673 #endif
    674 }
    675 
    676 static void
    677 android_cpuInit(void)
    678 {
    679     char* cpuinfo = NULL;
    680     int   cpuinfo_len;
    681 
    682     android_cpuInitFamily();
    683 
    684     g_cpuFeatures = 0;
    685     g_cpuCount    = 1;
    686     g_inited      = 1;
    687 
    688     cpuinfo_len = get_file_size("/proc/cpuinfo");
    689     if (cpuinfo_len < 0) {
    690       D("cpuinfo_len cannot be computed!");
    691       return;
    692     }
    693     cpuinfo = malloc(cpuinfo_len);
    694     if (cpuinfo == NULL) {
    695       D("cpuinfo buffer could not be allocated");
    696       return;
    697     }
    698     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
    699     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
    700       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
    701 
    702     if (cpuinfo_len < 0)  /* should not happen */ {
    703         free(cpuinfo);
    704         return;
    705     }
    706 
    707     /* Count the CPU cores, the value may be 0 for single-core CPUs */
    708     g_cpuCount = get_cpu_count();
    709     if (g_cpuCount == 0) {
    710         g_cpuCount = 1;
    711     }
    712 
    713     D("found cpuCount = %d\n", g_cpuCount);
    714 
    715 #ifdef __arm__
    716     {
    717         /* Extract architecture from the "CPU Architecture" field.
    718          * The list is well-known, unlike the the output of
    719          * the 'Processor' field which can vary greatly.
    720          *
    721          * See the definition of the 'proc_arch' array in
    722          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
    723          * same file.
    724          */
    725         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
    726 
    727         if (cpuArch != NULL) {
    728             char*  end;
    729             long   archNumber;
    730             int    hasARMv7 = 0;
    731 
    732             D("found cpuArch = '%s'\n", cpuArch);
    733 
    734             /* read the initial decimal number, ignore the rest */
    735             archNumber = strtol(cpuArch, &end, 10);
    736 
    737             /* Note that ARMv8 is upwards compatible with ARMv7. */
    738             if (end > cpuArch && archNumber >= 7) {
    739                 hasARMv7 = 1;
    740             }
    741 
    742             /* Unfortunately, it seems that certain ARMv6-based CPUs
    743              * report an incorrect architecture number of 7!
    744              *
    745              * See http://code.google.com/p/android/issues/detail?id=10812
    746              *
    747              * We try to correct this by looking at the 'elf_format'
    748              * field reported by the 'Processor' field, which is of the
    749              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    750              * an ARMv6-one.
    751              */
    752             if (hasARMv7) {
    753                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
    754                                                       "Processor");
    755                 if (cpuProc != NULL) {
    756                     D("found cpuProc = '%s'\n", cpuProc);
    757                     if (has_list_item(cpuProc, "(v6l)")) {
    758                         D("CPU processor and architecture mismatch!!\n");
    759                         hasARMv7 = 0;
    760                     }
    761                     free(cpuProc);
    762                 }
    763             }
    764 
    765             if (hasARMv7) {
    766                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
    767             }
    768 
    769             /* The LDREX / STREX instructions are available from ARMv6 */
    770             if (archNumber >= 6) {
    771                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
    772             }
    773 
    774             free(cpuArch);
    775         }
    776 
    777         /* Extract the list of CPU features from ELF hwcaps */
    778         uint32_t hwcaps = 0;
    779         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
    780         if (!hwcaps) {
    781             D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
    782             hwcaps = get_elf_hwcap_from_proc_self_auxv();
    783         }
    784         if (!hwcaps) {
    785             // Parsing /proc/self/auxv will fail from regular application
    786             // processes on some Android platform versions, when this happens
    787             // parse proc/cpuinfo instead.
    788             D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
    789             hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
    790         }
    791 
    792         if (hwcaps != 0) {
    793             int has_vfp = (hwcaps & HWCAP_VFP);
    794             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
    795             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
    796             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
    797             int has_neon = (hwcaps & HWCAP_NEON);
    798             int has_idiva = (hwcaps & HWCAP_IDIVA);
    799             int has_idivt = (hwcaps & HWCAP_IDIVT);
    800             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
    801 
    802             // The kernel does a poor job at ensuring consistency when
    803             // describing CPU features. So lots of guessing is needed.
    804 
    805             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
    806             if (has_vfpv4)
    807                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
    808                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
    809                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
    810 
    811             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
    812             // a value of 'vfpv3' doesn't necessarily mean that the D32
    813             // feature is present, so be conservative. All CPUs in the
    814             // field that support D32 also support NEON, so this should
    815             // not be a problem in practice.
    816             if (has_vfpv3 || has_vfpv3d16)
    817                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
    818 
    819             // 'vfp' is super ambiguous. Depending on the kernel, it can
    820             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
    821             if (has_vfp) {
    822               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
    823                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
    824               else
    825                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
    826             }
    827 
    828             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
    829             if (has_neon) {
    830                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
    831                                  ANDROID_CPU_ARM_FEATURE_NEON |
    832                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
    833               if (has_vfpv4)
    834                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
    835             }
    836 
    837             // VFPv3 implies VFPv2 and ARMv7
    838             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
    839                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
    840                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
    841 
    842             if (has_idiva)
    843                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
    844             if (has_idivt)
    845                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
    846 
    847             if (has_iwmmxt)
    848                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
    849         }
    850 
    851         /* Extract the list of CPU features from ELF hwcaps2 */
    852         uint32_t hwcaps2 = 0;
    853         hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
    854         if (hwcaps2 != 0) {
    855             int has_aes     = (hwcaps2 & HWCAP2_AES);
    856             int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
    857             int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
    858             int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
    859             int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
    860 
    861             if (has_aes)
    862                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
    863             if (has_pmull)
    864                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
    865             if (has_sha1)
    866                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
    867             if (has_sha2)
    868                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
    869             if (has_crc32)
    870                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
    871         }
    872         /* Extract the cpuid value from various fields */
    873         // The CPUID value is broken up in several entries in /proc/cpuinfo.
    874         // This table is used to rebuild it from the entries.
    875         static const struct CpuIdEntry {
    876             const char* field;
    877             char        format;
    878             char        bit_lshift;
    879             char        bit_length;
    880         } cpu_id_entries[] = {
    881             { "CPU implementer", 'x', 24, 8 },
    882             { "CPU variant", 'x', 20, 4 },
    883             { "CPU part", 'x', 4, 12 },
    884             { "CPU revision", 'd', 0, 4 },
    885         };
    886         size_t i;
    887         D("Parsing /proc/cpuinfo to recover CPUID\n");
    888         for (i = 0;
    889              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
    890              ++i) {
    891             const struct CpuIdEntry* entry = &cpu_id_entries[i];
    892             char* value = extract_cpuinfo_field(cpuinfo,
    893                                                 cpuinfo_len,
    894                                                 entry->field);
    895             if (value == NULL)
    896                 continue;
    897 
    898             D("field=%s value='%s'\n", entry->field, value);
    899             char* value_end = value + strlen(value);
    900             int val = 0;
    901             const char* start = value;
    902             const char* p;
    903             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
    904               start += 2;
    905               p = parse_hexadecimal(start, value_end, &val);
    906             } else if (entry->format == 'x')
    907               p = parse_hexadecimal(value, value_end, &val);
    908             else
    909               p = parse_decimal(value, value_end, &val);
    910 
    911             if (p > (const char*)start) {
    912               val &= ((1 << entry->bit_length)-1);
    913               val <<= entry->bit_lshift;
    914               g_cpuIdArm |= (uint32_t) val;
    915             }
    916 
    917             free(value);
    918         }
    919 
    920         // Handle kernel configuration bugs that prevent the correct
    921         // reporting of CPU features.
    922         static const struct CpuFix {
    923             uint32_t  cpuid;
    924             uint64_t  or_flags;
    925         } cpu_fixes[] = {
    926             /* The Nexus 4 (Qualcomm Krait) kernel configuration
    927              * forgets to report IDIV support. */
    928             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
    929                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
    930             { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
    931                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
    932         };
    933         size_t n;
    934         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
    935             const struct CpuFix* entry = &cpu_fixes[n];
    936 
    937             if (g_cpuIdArm == entry->cpuid)
    938                 g_cpuFeatures |= entry->or_flags;
    939         }
    940 
    941         // Special case: The emulator-specific Android 4.2 kernel fails
    942         // to report support for the 32-bit ARM IDIV instruction.
    943         // Technically, this is a feature of the virtual CPU implemented
    944         // by the emulator. Note that it could also support Thumb IDIV
    945         // in the future, and this will have to be slightly updated.
    946         char* hardware = extract_cpuinfo_field(cpuinfo,
    947                                                cpuinfo_len,
    948                                                "Hardware");
    949         if (hardware) {
    950             if (!strcmp(hardware, "Goldfish") &&
    951                 g_cpuIdArm == 0x4100c080 &&
    952                 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
    953                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
    954             }
    955             free(hardware);
    956         }
    957     }
    958 #endif /* __arm__ */
    959 #ifdef __aarch64__
    960     {
    961         /* Extract the list of CPU features from ELF hwcaps */
    962         uint32_t hwcaps = 0;
    963         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
    964         if (hwcaps != 0) {
    965             int has_fp      = (hwcaps & HWCAP_FP);
    966             int has_asimd   = (hwcaps & HWCAP_ASIMD);
    967             int has_aes     = (hwcaps & HWCAP_AES);
    968             int has_pmull   = (hwcaps & HWCAP_PMULL);
    969             int has_sha1    = (hwcaps & HWCAP_SHA1);
    970             int has_sha2    = (hwcaps & HWCAP_SHA2);
    971             int has_crc32   = (hwcaps & HWCAP_CRC32);
    972 
    973             if(has_fp == 0) {
    974                 D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
    975             }
    976             if(has_asimd == 0) {
    977                 D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
    978             }
    979 
    980             if (has_fp)
    981                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
    982             if (has_asimd)
    983                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
    984             if (has_aes)
    985                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
    986             if (has_pmull)
    987                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
    988             if (has_sha1)
    989                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
    990             if (has_sha2)
    991                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
    992             if (has_crc32)
    993                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
    994         }
    995     }
    996 #endif /* __aarch64__ */
    997 
    998 #if defined(__i386__) || defined(__x86_64__)
    999     int regs[4];
   1000 
   1001 /* According to http://en.wikipedia.org/wiki/CPUID */
   1002 #define VENDOR_INTEL_b  0x756e6547
   1003 #define VENDOR_INTEL_c  0x6c65746e
   1004 #define VENDOR_INTEL_d  0x49656e69
   1005 
   1006     x86_cpuid(0, regs);
   1007     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
   1008                          regs[2] == VENDOR_INTEL_c &&
   1009                          regs[3] == VENDOR_INTEL_d);
   1010 
   1011     x86_cpuid(1, regs);
   1012     if ((regs[2] & (1 << 9)) != 0) {
   1013         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
   1014     }
   1015     if ((regs[2] & (1 << 23)) != 0) {
   1016         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
   1017     }
   1018     if ((regs[2] & (1 << 19)) != 0) {
   1019         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_1;
   1020     }
   1021     if ((regs[2] & (1 << 20)) != 0) {
   1022         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSE4_2;
   1023     }
   1024     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
   1025         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
   1026     }
   1027     if ((regs[2] & (1 << 25)) != 0) {
   1028         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AES_NI;
   1029     }
   1030     if ((regs[2] & (1 << 28)) != 0) {
   1031         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX;
   1032     }
   1033     if ((regs[2] & (1 << 30)) != 0) {
   1034         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_RDRAND;
   1035     }
   1036 
   1037     x86_cpuid(7, regs);
   1038     if ((regs[1] & (1 << 5)) != 0) {
   1039         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_AVX2;
   1040     }
   1041     if ((regs[1] & (1 << 29)) != 0) {
   1042         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SHA_NI;
   1043     }
   1044 
   1045 
   1046 #endif
   1047 #if defined( __mips__)
   1048     {   /* MIPS and MIPS64 */
   1049         /* Extract the list of CPU features from ELF hwcaps */
   1050         uint32_t hwcaps = 0;
   1051         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
   1052         if (hwcaps != 0) {
   1053             int has_r6      = (hwcaps & HWCAP_MIPS_R6);
   1054             int has_msa     = (hwcaps & HWCAP_MIPS_MSA);
   1055             if (has_r6)
   1056                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
   1057             if (has_msa)
   1058                 g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
   1059         }
   1060     }
   1061 #endif /* __mips__ */
   1062 
   1063     free(cpuinfo);
   1064 }
   1065 
   1066 
   1067 AndroidCpuFamily
   1068 android_getCpuFamily(void)
   1069 {
   1070     pthread_once(&g_once, android_cpuInit);
   1071     return g_cpuFamily;
   1072 }
   1073 
   1074 
   1075 uint64_t
   1076 android_getCpuFeatures(void)
   1077 {
   1078     pthread_once(&g_once, android_cpuInit);
   1079     return g_cpuFeatures;
   1080 }
   1081 
   1082 
   1083 int
   1084 android_getCpuCount(void)
   1085 {
   1086     pthread_once(&g_once, android_cpuInit);
   1087     return g_cpuCount;
   1088 }
   1089 
   1090 static void
   1091 android_cpuInitDummy(void)
   1092 {
   1093     g_inited = 1;
   1094 }
   1095 
   1096 int
   1097 android_setCpu(int cpu_count, uint64_t cpu_features)
   1098 {
   1099     /* Fail if the library was already initialized. */
   1100     if (g_inited)
   1101         return 0;
   1102 
   1103     android_cpuInitFamily();
   1104     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
   1105     g_cpuFeatures = cpu_features;
   1106     pthread_once(&g_once, android_cpuInitDummy);
   1107 
   1108     return 1;
   1109 }
   1110 
   1111 #ifdef __arm__
   1112 uint32_t
   1113 android_getCpuIdArm(void)
   1114 {
   1115     pthread_once(&g_once, android_cpuInit);
   1116     return g_cpuIdArm;
   1117 }
   1118 
   1119 int
   1120 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
   1121 {
   1122     if (!android_setCpu(cpu_count, cpu_features))
   1123         return 0;
   1124 
   1125     g_cpuIdArm = cpu_id;
   1126     return 1;
   1127 }
   1128 #endif  /* __arm__ */
   1129 
   1130 /*
   1131  * Technical note: Making sense of ARM's FPU architecture versions.
   1132  *
   1133  * FPA was ARM's first attempt at an FPU architecture. There is no Android
   1134  * device that actually uses it since this technology was already obsolete
   1135  * when the project started. If you see references to FPA instructions
   1136  * somewhere, you can be sure that this doesn't apply to Android at all.
   1137  *
   1138  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
   1139  * new versions / additions to it. ARM considers this obsolete right now,
   1140  * and no known Android device implements it either.
   1141  *
   1142  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
   1143  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
   1144  * supporting the 'armeabi' ABI doesn't necessarily support these.
   1145  *
   1146  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
   1147  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
   1148  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
   1149  * that it provides 16 double-precision FPU registers (d0-d15) and 32
   1150  * single-precision ones (s0-s31) which happen to be mapped to the same
   1151  * register banks.
   1152  *
   1153  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
   1154  * additional double precision registers (d16-d31). Note that there are
   1155  * still only 32 single precision registers.
   1156  *
   1157  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
   1158  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
   1159  * are not supported by Android. Note that it is not compatible with VFPv2.
   1160  *
   1161  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
   1162  *       depending on context. For example GCC uses it for VFPv3-D32, but
   1163  *       the Linux kernel code uses it for VFPv3-D16 (especially in
   1164  *       /proc/cpuinfo). Always try to use the full designation when
   1165  *       possible.
   1166  *
   1167  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
   1168  * instructions to perform parallel computations on vectors of 8, 16,
   1169  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
   1170  * NEON registers are also mapped to the same register banks.
   1171  *
   1172  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
   1173  * perform fused multiply-accumulate on VFP registers, as well as
   1174  * half-precision (16-bit) conversion operations.
   1175  *
   1176  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
   1177  * registers.
   1178  *
   1179  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
   1180  * multiply-accumulate instructions that work on the NEON registers.
   1181  *
   1182  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
   1183  *       depending on context.
   1184  *
   1185  * The following information was determined by scanning the binutils-2.22
   1186  * sources:
   1187  *
   1188  * Basic VFP instruction subsets:
   1189  *
   1190  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
   1191  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
   1192  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
   1193  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
   1194  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
   1195  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
   1196  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
   1197  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
   1198  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
   1199  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
   1200  *
   1201  * FPU types (excluding NEON)
   1202  *
   1203  * FPU_VFP_V1xD (EXT_V1xD)
   1204  *    |
   1205  *    +--------------------------+
   1206  *    |                          |
   1207  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
   1208  *    |                          |
   1209  *    |                          |
   1210  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
   1211  *    |
   1212  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
   1213  *    |
   1214  *    +--------------------------+
   1215  *    |                          |
   1216  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
   1217  *    |                          |
   1218  *    |                      FPU_VFP_V4 (+EXT_D32)
   1219  *    |
   1220  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
   1221  *
   1222  * VFP architectures:
   1223  *
   1224  * ARCH_VFP_V1xD  (EXT_V1xD)
   1225  *   |
   1226  *   +------------------+
   1227  *   |                  |
   1228  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
   1229  *   |                  |
   1230  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
   1231  *   |                  |
   1232  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
   1233  *   |
   1234  * ARCH_VFP_V1 (+EXT_V1)
   1235  *   |
   1236  * ARCH_VFP_V2 (+EXT_V2)
   1237  *   |
   1238  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
   1239  *   |
   1240  *   +-------------------+
   1241  *   |                   |
   1242  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
   1243  *   |
   1244  *   +-------------------+
   1245  *   |                   |
   1246  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
   1247  *   |                   |
   1248  *   |         ARCH_VFP_V4 (+EXT_D32)
   1249  *   |                   |
   1250  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
   1251  *   |
   1252  * ARCH_VFP_V3 (+EXT_D32)
   1253  *   |
   1254  *   +-------------------+
   1255  *   |                   |
   1256  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
   1257  *   |
   1258  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
   1259  *   |
   1260  * ARCH_NEON_FP16 (+EXT_FP16)
   1261  *
   1262  * -fpu=<name> values and their correspondance with FPU architectures above:
   1263  *
   1264  *   {"vfp",               FPU_ARCH_VFP_V2},
   1265  *   {"vfp9",              FPU_ARCH_VFP_V2},
   1266  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
   1267  *   {"vfp10",             FPU_ARCH_VFP_V2},
   1268  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
   1269  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
   1270  *   {"vfpv2",             FPU_ARCH_VFP_V2},
   1271  *   {"vfpv3",             FPU_ARCH_VFP_V3},
   1272  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
   1273  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
   1274  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
   1275  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
   1276  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
   1277  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
   1278  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
   1279  *   {"vfpv4",             FPU_ARCH_VFP_V4},
   1280  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
   1281  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
   1282  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
   1283  *
   1284  *
   1285  * Simplified diagram that only includes FPUs supported by Android:
   1286  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
   1287  * all others are optional and must be probed at runtime.
   1288  *
   1289  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
   1290  *   |
   1291  *   +-------------------+
   1292  *   |                   |
   1293  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
   1294  *   |
   1295  *   +-------------------+
   1296  *   |                   |
   1297  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
   1298  *   |                   |
   1299  *   |         ARCH_VFP_V4 (+EXT_D32)
   1300  *   |                   |
   1301  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
   1302  *   |
   1303  * ARCH_VFP_V3 (+EXT_D32)
   1304  *   |
   1305  *   +-------------------+
   1306  *   |                   |
   1307  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
   1308  *   |
   1309  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
   1310  *   |
   1311  * ARCH_NEON_FP16 (+EXT_FP16)
   1312  *
   1313  */
   1314