Home | History | Annotate | Download | only in ppp
      1 /*****************************************************************************
      2 * randm.c - Random number generator program file.
      3 *
      4 * Copyright (c) 2003 by Marc Boucher, Services Informatiques (MBSI) inc.
      5 * Copyright (c) 1998 by Global Election Systems Inc.
      6 *
      7 * The authors hereby grant permission to use, copy, modify, distribute,
      8 * and license this software and its documentation for any purpose, provided
      9 * that existing copyright notices are retained in all copies and that this
     10 * notice and the following disclaimer are included verbatim in any
     11 * distributions. No written agreement, license, or royalty fee is required
     12 * for any of the authorized uses.
     13 *
     14 * THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS *AS IS* AND ANY EXPRESS OR
     15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     17 * IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     24 *
     25 ******************************************************************************
     26 * REVISION HISTORY
     27 *
     28 * 03-01-01 Marc Boucher <marc (at) mbsi.ca>
     29 *   Ported to lwIP.
     30 * 98-06-03 Guy Lancaster <lancasterg (at) acm.org>, Global Election Systems Inc.
     31 *   Extracted from avos.
     32 *****************************************************************************/
     33 
     34 #include "lwip/opt.h"
     35 
     36 #if PPP_SUPPORT /* don't build if not configured for use in lwipopts.h */
     37 
     38 #include "md5.h"
     39 #include "randm.h"
     40 
     41 #include "ppp.h"
     42 #include "pppdebug.h"
     43 
     44 #include <string.h>
     45 
     46 #if MD5_SUPPORT /* this module depends on MD5 */
     47 #define RANDPOOLSZ 16   /* Bytes stored in the pool of randomness. */
     48 
     49 /*****************************/
     50 /*** LOCAL DATA STRUCTURES ***/
     51 /*****************************/
     52 static char randPool[RANDPOOLSZ];   /* Pool of randomness. */
     53 static long randCount = 0;      /* Pseudo-random incrementer */
     54 
     55 
     56 /***********************************/
     57 /*** PUBLIC FUNCTION DEFINITIONS ***/
     58 /***********************************/
     59 /*
     60  * Initialize the random number generator.
     61  *
     62  * Since this is to be called on power up, we don't have much
     63  *  system randomess to work with.  Here all we use is the
     64  *  real-time clock.  We'll accumulate more randomness as soon
     65  *  as things start happening.
     66  */
     67 void
     68 avRandomInit()
     69 {
     70   avChurnRand(NULL, 0);
     71 }
     72 
     73 /*
     74  * Churn the randomness pool on a random event.  Call this early and often
     75  *  on random and semi-random system events to build randomness in time for
     76  *  usage.  For randomly timed events, pass a null pointer and a zero length
     77  *  and this will use the system timer and other sources to add randomness.
     78  *  If new random data is available, pass a pointer to that and it will be
     79  *  included.
     80  *
     81  * Ref: Applied Cryptography 2nd Ed. by Bruce Schneier p. 427
     82  */
     83 void
     84 avChurnRand(char *randData, u32_t randLen)
     85 {
     86   MD5_CTX md5;
     87 
     88   /* LWIP_DEBUGF(LOG_INFO, ("churnRand: %u@%P\n", randLen, randData)); */
     89   MD5Init(&md5);
     90   MD5Update(&md5, (u_char *)randPool, sizeof(randPool));
     91   if (randData) {
     92     MD5Update(&md5, (u_char *)randData, randLen);
     93   } else {
     94     struct {
     95       /* INCLUDE fields for any system sources of randomness */
     96       char foobar;
     97     } sysData;
     98 
     99     /* Load sysData fields here. */
    100     MD5Update(&md5, (u_char *)&sysData, sizeof(sysData));
    101   }
    102   MD5Final((u_char *)randPool, &md5);
    103 /*  LWIP_DEBUGF(LOG_INFO, ("churnRand: -> 0\n")); */
    104 }
    105 
    106 /*
    107  * Use the random pool to generate random data.  This degrades to pseudo
    108  *  random when used faster than randomness is supplied using churnRand().
    109  * Note: It's important that there be sufficient randomness in randPool
    110  *  before this is called for otherwise the range of the result may be
    111  *  narrow enough to make a search feasible.
    112  *
    113  * Ref: Applied Cryptography 2nd Ed. by Bruce Schneier p. 427
    114  *
    115  * XXX Why does he not just call churnRand() for each block?  Probably
    116  *  so that you don't ever publish the seed which could possibly help
    117  *  predict future values.
    118  * XXX Why don't we preserve md5 between blocks and just update it with
    119  *  randCount each time?  Probably there is a weakness but I wish that
    120  *  it was documented.
    121  */
    122 void
    123 avGenRand(char *buf, u32_t bufLen)
    124 {
    125   MD5_CTX md5;
    126   u_char tmp[16];
    127   u32_t n;
    128 
    129   while (bufLen > 0) {
    130     n = LWIP_MIN(bufLen, RANDPOOLSZ);
    131     MD5Init(&md5);
    132     MD5Update(&md5, (u_char *)randPool, sizeof(randPool));
    133     MD5Update(&md5, (u_char *)&randCount, sizeof(randCount));
    134     MD5Final(tmp, &md5);
    135     randCount++;
    136     MEMCPY(buf, tmp, n);
    137     buf += n;
    138     bufLen -= n;
    139   }
    140 }
    141 
    142 /*
    143  * Return a new random number.
    144  */
    145 u32_t
    146 avRandom()
    147 {
    148   u32_t newRand;
    149 
    150   avGenRand((char *)&newRand, sizeof(newRand));
    151 
    152   return newRand;
    153 }
    154 
    155 #else /* MD5_SUPPORT */
    156 
    157 /*****************************/
    158 /*** LOCAL DATA STRUCTURES ***/
    159 /*****************************/
    160 static int  avRandomized = 0;       /* Set when truely randomized. */
    161 static u32_t avRandomSeed = 0;      /* Seed used for random number generation. */
    162 
    163 
    164 /***********************************/
    165 /*** PUBLIC FUNCTION DEFINITIONS ***/
    166 /***********************************/
    167 /*
    168  * Initialize the random number generator.
    169  *
    170  * Here we attempt to compute a random number seed but even if
    171  * it isn't random, we'll randomize it later.
    172  *
    173  * The current method uses the fields from the real time clock,
    174  * the idle process counter, the millisecond counter, and the
    175  * hardware timer tick counter.  When this is invoked
    176  * in startup(), then the idle counter and timer values may
    177  * repeat after each boot and the real time clock may not be
    178  * operational.  Thus we call it again on the first random
    179  * event.
    180  */
    181 void
    182 avRandomInit()
    183 {
    184 #if 0
    185   /* Get a pointer into the last 4 bytes of clockBuf. */
    186   u32_t *lptr1 = (u32_t *)((char *)&clockBuf[3]);
    187 
    188   /*
    189    * Initialize our seed using the real-time clock, the idle
    190    * counter, the millisecond timer, and the hardware timer
    191    * tick counter.  The real-time clock and the hardware
    192    * tick counter are the best sources of randomness but
    193    * since the tick counter is only 16 bit (and truncated
    194    * at that), the idle counter and millisecond timer
    195    * (which may be small values) are added to help
    196    * randomize the lower 16 bits of the seed.
    197    */
    198   readClk();
    199   avRandomSeed += *(u32_t *)clockBuf + *lptr1 + OSIdleCtr
    200            + ppp_mtime() + ((u32_t)TM1 << 16) + TM1;
    201 #else
    202   avRandomSeed += sys_jiffies(); /* XXX */
    203 #endif
    204 
    205   /* Initialize the Borland random number generator. */
    206   srand((unsigned)avRandomSeed);
    207 }
    208 
    209 /*
    210  * Randomize our random seed value.  Here we use the fact that
    211  * this function is called at *truely random* times by the polling
    212  * and network functions.  Here we only get 16 bits of new random
    213  * value but we use the previous value to randomize the other 16
    214  * bits.
    215  */
    216 void
    217 avRandomize(void)
    218 {
    219   static u32_t last_jiffies;
    220 
    221   if (!avRandomized) {
    222     avRandomized = !0;
    223     avRandomInit();
    224     /* The initialization function also updates the seed. */
    225   } else {
    226     /* avRandomSeed += (avRandomSeed << 16) + TM1; */
    227     avRandomSeed += (sys_jiffies() - last_jiffies); /* XXX */
    228   }
    229   last_jiffies = sys_jiffies();
    230 }
    231 
    232 /*
    233  * Return a new random number.
    234  * Here we use the Borland rand() function to supply a pseudo random
    235  * number which we make truely random by combining it with our own
    236  * seed which is randomized by truely random events.
    237  * Thus the numbers will be truely random unless there have been no
    238  * operator or network events in which case it will be pseudo random
    239  * seeded by the real time clock.
    240  */
    241 u32_t
    242 avRandom()
    243 {
    244   return ((((u32_t)rand() << 16) + rand()) + avRandomSeed);
    245 }
    246 
    247 #endif /* MD5_SUPPORT */
    248 
    249 #endif /* PPP_SUPPORT */
    250