/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
matrix_set_diag_op.cc | 45 TensorShape batch_shape = input_shape; variable 46 batch_shape.RemoveLastDims(2); 48 TensorShape expected_diag_shape = batch_shape; 71 indicator = builder->Broadcast(indicator, batch_shape.dim_sizes());
|
matrix_band_part_op.cc | 54 TensorShape batch_shape = input_shape; variable 55 batch_shape.RemoveLastDims(2); 82 indicator = builder->Broadcast(indicator, batch_shape.dim_sizes());
|
/external/tensorflow/tensorflow/core/ops/ |
linalg_ops.cc | 37 ShapeHandle batch_shape; local 38 TF_RETURN_IF_ERROR(c->Subshape(s, 0, -2, &batch_shape)); 39 TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(d, d), out)); 80 // Build final shape (batch_shape + n + k) in <out>. 95 ShapeHandle batch_shape; local 96 TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); 98 TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Vector(n), &e_shape)); 104 TF_RETURN_IF_ERROR(c->Concatenate(batch_shape, c->Matrix(n, n), &v_shape)); 124 ShapeHandle batch_shape; local 125 TF_RETURN_IF_ERROR(c->Subshape(input, 0, -2, &batch_shape)); 155 ShapeHandle batch_shape; local [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
linalg_ops_common.cc | 92 TensorShape batch_shape; local 93 AnalyzeInputs(context, &inputs, &input_matrix_shapes, &batch_shape); 97 PrepareOutputs(context, input_matrix_shapes, batch_shape, &outputs, 110 batch_shape.num_elements(), GetCostPerUnit(input_matrix_shapes), shard); 117 TensorShape* batch_shape) { 131 batch_shape->AddDim(in.dim_size(dim)); 140 context, in.dim_size(dim) == batch_shape->dim_size(dim), 161 const TensorShape& batch_shape, TensorOutputs* outputs, 193 output_tensor_shape = batch_shape;
|
/external/tensorflow/tensorflow/python/ops/linalg/ |
linear_operator.py | 313 def batch_shape(self): member in class:LinearOperator 343 if self.batch_shape.is_fully_defined(): 345 self.batch_shape.as_list(), name="batch_shape") 678 `Tensor` with shape `self.batch_shape` and same `dtype` as `self`. 707 `Tensor` with shape `self.batch_shape` and same `dtype` as `self`. 849 if self.batch_shape.is_fully_defined(): 850 batch_shape = self.batch_shape 852 batch_shape = self.batch_shape_tensor( [all...] |
/external/tensorflow/tensorflow/python/ops/distributions/ |
distribution.py | 48 "batch_shape", 294 `sample_n_shape = [n] + batch_shape + event_shape`, where `sample_n_shape` is 296 samples, `batch_shape` defines how many independent distributions there are, 298 distributions. Samples are independent along the `batch_shape` dimensions, but 320 # [5, 2, 2], which is [n] + batch_shape + event_shape, where n=5, 321 # batch_shape=[2, 2], and event_shape=[]. 572 batch_shape: `Tensor`. 575 if self.batch_shape.is_fully_defined(): 576 return ops.convert_to_tensor(self.batch_shape.as_list(), 578 name="batch_shape") 585 def batch_shape(self): member in class:Distribution [all...] |