Home | History | Annotate | Download | only in random
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 package org.apache.commons.math.random;
     18 
     19 import org.apache.commons.math.exception.NotStrictlyPositiveException;
     20 import org.apache.commons.math.util.FastMath;
     21 
     22 /**
     23  * Abstract class implementing the {@link  RandomGenerator} interface.
     24  * Default implementations for all methods other than {@link #nextDouble()} and
     25  * {@link #setSeed(long)} are provided.
     26  * <p>
     27  * All data generation methods are based on {@code code nextDouble()}.
     28  * Concrete implementations <strong>must</strong> override
     29  * this method and <strong>should</strong> provide better / more
     30  * performant implementations of the other methods if the underlying PRNG
     31  * supplies them.</p>
     32  *
     33  * @since 1.1
     34  * @version $Revision: 990655 $ $Date: 2010-08-29 23:49:40 +0200 (dim. 29 aot 2010) $
     35  */
     36 public abstract class AbstractRandomGenerator implements RandomGenerator {
     37 
     38     /**
     39      * Cached random normal value.  The default implementation for
     40      * {@link #nextGaussian} generates pairs of values and this field caches the
     41      * second value so that the full algorithm is not executed for every
     42      * activation.  The value {@code Double.NaN} signals that there is
     43      * no cached value.  Use {@link #clear} to clear the cached value.
     44      */
     45     private double cachedNormalDeviate = Double.NaN;
     46 
     47     /**
     48      * Construct a RandomGenerator.
     49      */
     50     public AbstractRandomGenerator() {
     51         super();
     52 
     53     }
     54 
     55     /**
     56      * Clears the cache used by the default implementation of
     57      * {@link #nextGaussian}. Implemementations that do not override the
     58      * default implementation of {@code nextGaussian} should call this
     59      * method in the implementation of {@link #setSeed(long)}
     60      */
     61     public void clear() {
     62         cachedNormalDeviate = Double.NaN;
     63     }
     64 
     65     /** {@inheritDoc} */
     66     public void setSeed(int seed) {
     67         setSeed((long) seed);
     68     }
     69 
     70     /** {@inheritDoc} */
     71     public void setSeed(int[] seed) {
     72         // the following number is the largest prime that fits in 32 bits (it is 2^32 - 5)
     73         final long prime = 4294967291l;
     74 
     75         long combined = 0l;
     76         for (int s : seed) {
     77             combined = combined * prime + s;
     78         }
     79         setSeed(combined);
     80     }
     81 
     82     /**
     83      * Sets the seed of the underyling random number generator using a
     84      * {@code long} seed.  Sequences of values generated starting with the
     85      * same seeds should be identical.
     86      * <p>
     87      * Implementations that do not override the default implementation of
     88      * {@code nextGaussian} should include a call to {@link #clear} in the
     89      * implementation of this method.</p>
     90      *
     91      * @param seed the seed value
     92      */
     93     public abstract void setSeed(long seed);
     94 
     95     /**
     96      * Generates random bytes and places them into a user-supplied
     97      * byte array.  The number of random bytes produced is equal to
     98      * the length of the byte array.
     99      * <p>
    100      * The default implementation fills the array with bytes extracted from
    101      * random integers generated using {@link #nextInt}.</p>
    102      *
    103      * @param bytes the non-null byte array in which to put the
    104      * random bytes
    105      */
    106     public void nextBytes(byte[] bytes) {
    107         int bytesOut = 0;
    108         while (bytesOut < bytes.length) {
    109           int randInt = nextInt();
    110           for (int i = 0; i < 3; i++) {
    111               if ( i > 0) {
    112                   randInt = randInt >> 8;
    113               }
    114               bytes[bytesOut++] = (byte) randInt;
    115               if (bytesOut == bytes.length) {
    116                   return;
    117               }
    118           }
    119         }
    120     }
    121 
    122      /**
    123      * Returns the next pseudorandom, uniformly distributed {@code int}
    124      * value from this random number generator's sequence.
    125      * All 2<font size="-1"><sup>32</sup></font> possible {@code int} values
    126      * should be produced with  (approximately) equal probability.
    127      * <p>
    128      * The default implementation provided here returns
    129      * <pre>
    130      * <code>(int) (nextDouble() * Integer.MAX_VALUE)</code>
    131      * </pre></p>
    132      *
    133      * @return the next pseudorandom, uniformly distributed {@code int}
    134      *  value from this random number generator's sequence
    135      */
    136     public int nextInt() {
    137         return (int) (nextDouble() * Integer.MAX_VALUE);
    138     }
    139 
    140     /**
    141      * Returns a pseudorandom, uniformly distributed {@code int} value
    142      * between 0 (inclusive) and the specified value (exclusive), drawn from
    143      * this random number generator's sequence.
    144      * <p>
    145      * The default implementation returns
    146      * <pre>
    147      * <code>(int) (nextDouble() * n</code>
    148      * </pre></p>
    149      *
    150      * @param n the bound on the random number to be returned.  Must be
    151      * positive.
    152      * @return  a pseudorandom, uniformly distributed {@code int}
    153      * value between 0 (inclusive) and n (exclusive).
    154      * @throws NotStrictlyPositiveException if {@code n <= 0}.
    155      */
    156     public int nextInt(int n) {
    157         if (n <= 0 ) {
    158             throw new NotStrictlyPositiveException(n);
    159         }
    160         int result = (int) (nextDouble() * n);
    161         return result < n ? result : n - 1;
    162     }
    163 
    164      /**
    165      * Returns the next pseudorandom, uniformly distributed {@code long}
    166      * value from this random number generator's sequence.  All
    167      * 2<font size="-1"><sup>64</sup></font> possible {@code long} values
    168      * should be produced with (approximately) equal probability.
    169      * <p>
    170      * The default implementation returns
    171      * <pre>
    172      * <code>(long) (nextDouble() * Long.MAX_VALUE)</code>
    173      * </pre></p>
    174      *
    175      * @return  the next pseudorandom, uniformly distributed {@code long}
    176      *value from this random number generator's sequence
    177      */
    178     public long nextLong() {
    179         return (long) (nextDouble() * Long.MAX_VALUE);
    180     }
    181 
    182     /**
    183      * Returns the next pseudorandom, uniformly distributed
    184      * {@code boolean} value from this random number generator's
    185      * sequence.
    186      * <p>
    187      * The default implementation returns
    188      * <pre>
    189      * <code>nextDouble() <= 0.5</code>
    190      * </pre></p>
    191      *
    192      * @return  the next pseudorandom, uniformly distributed
    193      * {@code boolean} value from this random number generator's
    194      * sequence
    195      */
    196     public boolean nextBoolean() {
    197         return nextDouble() <= 0.5;
    198     }
    199 
    200      /**
    201      * Returns the next pseudorandom, uniformly distributed {@code float}
    202      * value between {@code 0.0} and {@code 1.0} from this random
    203      * number generator's sequence.
    204      * <p>
    205      * The default implementation returns
    206      * <pre>
    207      * <code>(float) nextDouble() </code>
    208      * </pre></p>
    209      *
    210      * @return  the next pseudorandom, uniformly distributed {@code float}
    211      * value between {@code 0.0} and {@code 1.0} from this
    212      * random number generator's sequence
    213      */
    214     public float nextFloat() {
    215         return (float) nextDouble();
    216     }
    217 
    218     /**
    219      * Returns the next pseudorandom, uniformly distributed
    220      * {@code double} value between {@code 0.0} and
    221      * {@code 1.0} from this random number generator's sequence.
    222      * <p>
    223      * This method provides the underlying source of random data used by the
    224      * other methods.</p>
    225      *
    226      * @return  the next pseudorandom, uniformly distributed
    227      *  {@code double} value between {@code 0.0} and
    228      *  {@code 1.0} from this random number generator's sequence
    229      */
    230     public abstract double nextDouble();
    231 
    232     /**
    233      * Returns the next pseudorandom, Gaussian ("normally") distributed
    234      * {@code double} value with mean {@code 0.0} and standard
    235      * deviation {@code 1.0} from this random number generator's sequence.
    236      * <p>
    237      * The default implementation uses the <em>Polar Method</em>
    238      * due to G.E.P. Box, M.E. Muller and G. Marsaglia, as described in
    239      * D. Knuth, <u>The Art of Computer Programming</u>, 3.4.1C.</p>
    240      * <p>
    241      * The algorithm generates a pair of independent random values.  One of
    242      * these is cached for reuse, so the full algorithm is not executed on each
    243      * activation.  Implementations that do not override this method should
    244      * make sure to call {@link #clear} to clear the cached value in the
    245      * implementation of {@link #setSeed(long)}.</p>
    246      *
    247      * @return  the next pseudorandom, Gaussian ("normally") distributed
    248      * {@code double} value with mean {@code 0.0} and
    249      * standard deviation {@code 1.0} from this random number
    250      *  generator's sequence
    251      */
    252     public double nextGaussian() {
    253         if (!Double.isNaN(cachedNormalDeviate)) {
    254             double dev = cachedNormalDeviate;
    255             cachedNormalDeviate = Double.NaN;
    256             return dev;
    257         }
    258         double v1 = 0;
    259         double v2 = 0;
    260         double s = 1;
    261         while (s >=1 ) {
    262             v1 = 2 * nextDouble() - 1;
    263             v2 = 2 * nextDouble() - 1;
    264             s = v1 * v1 + v2 * v2;
    265         }
    266         if (s != 0) {
    267             s = FastMath.sqrt(-2 * FastMath.log(s) / s);
    268         }
    269         cachedNormalDeviate = v2 * s;
    270         return v1 * s;
    271     }
    272 }
    273