Home | History | Annotate | Download | only in Analysis
      1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// Implements a lazy call graph analysis and related passes for the new pass
     12 /// manager.
     13 ///
     14 /// NB: This is *not* a traditional call graph! It is a graph which models both
     15 /// the current calls and potential calls. As a consequence there are many
     16 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
     17 /// instruction.
     18 ///
     19 /// The primary use cases of this graph analysis is to facilitate iterating
     20 /// across the functions of a module in ways that ensure all callees are
     21 /// visited prior to a caller (given any SCC constraints), or vice versa. As
     22 /// such is it particularly well suited to organizing CGSCC optimizations such
     23 /// as inlining, outlining, argument promotion, etc. That is its primary use
     24 /// case and motivates the design. It may not be appropriate for other
     25 /// purposes. The use graph of functions or some other conservative analysis of
     26 /// call instructions may be interesting for optimizations and subsequent
     27 /// analyses which don't work in the context of an overly specified
     28 /// potential-call-edge graph.
     29 ///
     30 /// To understand the specific rules and nature of this call graph analysis,
     31 /// see the documentation of the \c LazyCallGraph below.
     32 ///
     33 //===----------------------------------------------------------------------===//
     34 
     35 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
     36 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
     37 
     38 #include "llvm/ADT/DenseMap.h"
     39 #include "llvm/ADT/PointerUnion.h"
     40 #include "llvm/ADT/STLExtras.h"
     41 #include "llvm/ADT/SetVector.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/SmallVector.h"
     44 #include "llvm/ADT/iterator.h"
     45 #include "llvm/ADT/iterator_range.h"
     46 #include "llvm/IR/BasicBlock.h"
     47 #include "llvm/IR/Function.h"
     48 #include "llvm/IR/Module.h"
     49 #include "llvm/IR/PassManager.h"
     50 #include "llvm/Support/Allocator.h"
     51 #include "llvm/Support/raw_ostream.h"
     52 #include <iterator>
     53 #include <utility>
     54 
     55 namespace llvm {
     56 class PreservedAnalyses;
     57 class raw_ostream;
     58 
     59 /// A lazily constructed view of the call graph of a module.
     60 ///
     61 /// With the edges of this graph, the motivating constraint that we are
     62 /// attempting to maintain is that function-local optimization, CGSCC-local
     63 /// optimizations, and optimizations transforming a pair of functions connected
     64 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
     65 /// DAG. That is, no optimizations will delete, remove, or add an edge such
     66 /// that functions already visited in a bottom-up order of the SCC DAG are no
     67 /// longer valid to have visited, or such that functions not yet visited in
     68 /// a bottom-up order of the SCC DAG are not required to have already been
     69 /// visited.
     70 ///
     71 /// Within this constraint, the desire is to minimize the merge points of the
     72 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
     73 /// in the SCC DAG, the more independence there is in optimizing within it.
     74 /// There is a strong desire to enable parallelization of optimizations over
     75 /// the call graph, and both limited fanout and merge points will (artificially
     76 /// in some cases) limit the scaling of such an effort.
     77 ///
     78 /// To this end, graph represents both direct and any potential resolution to
     79 /// an indirect call edge. Another way to think about it is that it represents
     80 /// both the direct call edges and any direct call edges that might be formed
     81 /// through static optimizations. Specifically, it considers taking the address
     82 /// of a function to be an edge in the call graph because this might be
     83 /// forwarded to become a direct call by some subsequent function-local
     84 /// optimization. The result is that the graph closely follows the use-def
     85 /// edges for functions. Walking "up" the graph can be done by looking at all
     86 /// of the uses of a function.
     87 ///
     88 /// The roots of the call graph are the external functions and functions
     89 /// escaped into global variables. Those functions can be called from outside
     90 /// of the module or via unknowable means in the IR -- we may not be able to
     91 /// form even a potential call edge from a function body which may dynamically
     92 /// load the function and call it.
     93 ///
     94 /// This analysis still requires updates to remain valid after optimizations
     95 /// which could potentially change the set of potential callees. The
     96 /// constraints it operates under only make the traversal order remain valid.
     97 ///
     98 /// The entire analysis must be re-computed if full interprocedural
     99 /// optimizations run at any point. For example, globalopt completely
    100 /// invalidates the information in this analysis.
    101 ///
    102 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
    103 /// it from the existing CallGraph. At some point, it is expected that this
    104 /// will be the only call graph and it will be renamed accordingly.
    105 class LazyCallGraph {
    106 public:
    107   class Node;
    108   class SCC;
    109   class RefSCC;
    110   class edge_iterator;
    111   class call_edge_iterator;
    112 
    113   /// A class used to represent edges in the call graph.
    114   ///
    115   /// The lazy call graph models both *call* edges and *reference* edges. Call
    116   /// edges are much what you would expect, and exist when there is a 'call' or
    117   /// 'invoke' instruction of some function. Reference edges are also tracked
    118   /// along side these, and exist whenever any instruction (transitively
    119   /// through its operands) references a function. All call edges are
    120   /// inherently reference edges, and so the reference graph forms a superset
    121   /// of the formal call graph.
    122   ///
    123   /// Furthermore, edges also may point to raw \c Function objects when those
    124   /// functions have not been scanned and incorporated into the graph (yet).
    125   /// This is one of the primary ways in which the graph can be lazy. When
    126   /// functions are scanned and fully incorporated into the graph, all of the
    127   /// edges referencing them are updated to point to the graph \c Node objects
    128   /// instead of to the raw \c Function objects. This class even provides
    129   /// methods to trigger this scan on-demand by attempting to get the target
    130   /// node of the graph and providing a reference back to the graph in order to
    131   /// lazily build it if necessary.
    132   ///
    133   /// All of these forms of edges are fundamentally represented as outgoing
    134   /// edges. The edges are stored in the source node and point at the target
    135   /// node. This allows the edge structure itself to be a very compact data
    136   /// structure: essentially a tagged pointer.
    137   class Edge {
    138   public:
    139     /// The kind of edge in the graph.
    140     enum Kind : bool { Ref = false, Call = true };
    141 
    142     Edge();
    143     explicit Edge(Function &F, Kind K);
    144     explicit Edge(Node &N, Kind K);
    145 
    146     /// Test whether the edge is null.
    147     ///
    148     /// This happens when an edge has been deleted. We leave the edge objects
    149     /// around but clear them.
    150     operator bool() const;
    151 
    152     /// Test whether the edge represents a direct call to a function.
    153     ///
    154     /// This requires that the edge is not null.
    155     bool isCall() const;
    156 
    157     /// Get the function referenced by this edge.
    158     ///
    159     /// This requires that the edge is not null, but will succeed whether we
    160     /// have built a graph node for the function yet or not.
    161     Function &getFunction() const;
    162 
    163     /// Get the call graph node referenced by this edge if one exists.
    164     ///
    165     /// This requires that the edge is not null. If we have built a graph node
    166     /// for the function this edge points to, this will return that node,
    167     /// otherwise it will return null.
    168     Node *getNode() const;
    169 
    170     /// Get the call graph node for this edge, building it if necessary.
    171     ///
    172     /// This requires that the edge is not null. If we have not yet built
    173     /// a graph node for the function this edge points to, this will first ask
    174     /// the graph to build that node, inserting it into all the relevant
    175     /// structures.
    176     Node &getNode(LazyCallGraph &G);
    177 
    178   private:
    179     friend class LazyCallGraph::Node;
    180 
    181     PointerIntPair<PointerUnion<Function *, Node *>, 1, Kind> Value;
    182 
    183     void setKind(Kind K) { Value.setInt(K); }
    184   };
    185 
    186   typedef SmallVector<Edge, 4> EdgeVectorT;
    187   typedef SmallVectorImpl<Edge> EdgeVectorImplT;
    188 
    189   /// A node in the call graph.
    190   ///
    191   /// This represents a single node. It's primary roles are to cache the list of
    192   /// callees, de-duplicate and provide fast testing of whether a function is
    193   /// a callee, and facilitate iteration of child nodes in the graph.
    194   class Node {
    195     friend class LazyCallGraph;
    196     friend class LazyCallGraph::SCC;
    197 
    198     LazyCallGraph *G;
    199     Function &F;
    200 
    201     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
    202     // stored directly within the node. These are both '-1' when nodes are part
    203     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
    204     int DFSNumber;
    205     int LowLink;
    206 
    207     mutable EdgeVectorT Edges;
    208     DenseMap<Function *, int> EdgeIndexMap;
    209 
    210     /// Basic constructor implements the scanning of F into Edges and
    211     /// EdgeIndexMap.
    212     Node(LazyCallGraph &G, Function &F);
    213 
    214     /// Internal helper to insert an edge to a function.
    215     void insertEdgeInternal(Function &ChildF, Edge::Kind EK);
    216 
    217     /// Internal helper to insert an edge to a node.
    218     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
    219 
    220     /// Internal helper to change an edge kind.
    221     void setEdgeKind(Function &ChildF, Edge::Kind EK);
    222 
    223     /// Internal helper to remove the edge to the given function.
    224     void removeEdgeInternal(Function &ChildF);
    225 
    226     /// Print the name of this node's function.
    227     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
    228       return OS << N.F.getName();
    229     }
    230 
    231     /// Dump the name of this node's function to stderr.
    232     void dump() const;
    233 
    234   public:
    235     LazyCallGraph &getGraph() const { return *G; }
    236 
    237     Function &getFunction() const { return F; }
    238 
    239     edge_iterator begin() const {
    240       return edge_iterator(Edges.begin(), Edges.end());
    241     }
    242     edge_iterator end() const { return edge_iterator(Edges.end(), Edges.end()); }
    243 
    244     const Edge &operator[](int i) const { return Edges[i]; }
    245     const Edge &operator[](Function &F) const {
    246       assert(EdgeIndexMap.find(&F) != EdgeIndexMap.end() && "No such edge!");
    247       return Edges[EdgeIndexMap.find(&F)->second];
    248     }
    249     const Edge &operator[](Node &N) const { return (*this)[N.getFunction()]; }
    250 
    251     call_edge_iterator call_begin() const {
    252       return call_edge_iterator(Edges.begin(), Edges.end());
    253     }
    254     call_edge_iterator call_end() const {
    255       return call_edge_iterator(Edges.end(), Edges.end());
    256     }
    257 
    258     iterator_range<call_edge_iterator> calls() const {
    259       return make_range(call_begin(), call_end());
    260     }
    261 
    262     /// Equality is defined as address equality.
    263     bool operator==(const Node &N) const { return this == &N; }
    264     bool operator!=(const Node &N) const { return !operator==(N); }
    265   };
    266 
    267   /// A lazy iterator used for both the entry nodes and child nodes.
    268   ///
    269   /// When this iterator is dereferenced, if not yet available, a function will
    270   /// be scanned for "calls" or uses of functions and its child information
    271   /// will be constructed. All of these results are accumulated and cached in
    272   /// the graph.
    273   class edge_iterator
    274       : public iterator_adaptor_base<edge_iterator, EdgeVectorImplT::iterator,
    275                                      std::forward_iterator_tag> {
    276     friend class LazyCallGraph;
    277     friend class LazyCallGraph::Node;
    278 
    279     EdgeVectorImplT::iterator E;
    280 
    281     // Build the iterator for a specific position in the edge list.
    282     edge_iterator(EdgeVectorImplT::iterator BaseI,
    283                   EdgeVectorImplT::iterator E)
    284         : iterator_adaptor_base(BaseI), E(E) {
    285       while (I != E && !*I)
    286         ++I;
    287     }
    288 
    289   public:
    290     edge_iterator() {}
    291 
    292     using iterator_adaptor_base::operator++;
    293     edge_iterator &operator++() {
    294       do {
    295         ++I;
    296       } while (I != E && !*I);
    297       return *this;
    298     }
    299   };
    300 
    301   /// A lazy iterator over specifically call edges.
    302   ///
    303   /// This has the same iteration properties as the \c edge_iterator, but
    304   /// restricts itself to edges which represent actual calls.
    305   class call_edge_iterator
    306       : public iterator_adaptor_base<call_edge_iterator,
    307                                      EdgeVectorImplT::iterator,
    308                                      std::forward_iterator_tag> {
    309     friend class LazyCallGraph;
    310     friend class LazyCallGraph::Node;
    311 
    312     EdgeVectorImplT::iterator E;
    313 
    314     /// Advance the iterator to the next valid, call edge.
    315     void advanceToNextEdge() {
    316       while (I != E && (!*I || !I->isCall()))
    317         ++I;
    318     }
    319 
    320     // Build the iterator for a specific position in the edge list.
    321     call_edge_iterator(EdgeVectorImplT::iterator BaseI,
    322                        EdgeVectorImplT::iterator E)
    323         : iterator_adaptor_base(BaseI), E(E) {
    324       advanceToNextEdge();
    325     }
    326 
    327   public:
    328     call_edge_iterator() {}
    329 
    330     using iterator_adaptor_base::operator++;
    331     call_edge_iterator &operator++() {
    332       ++I;
    333       advanceToNextEdge();
    334       return *this;
    335     }
    336   };
    337 
    338   /// An SCC of the call graph.
    339   ///
    340   /// This represents a Strongly Connected Component of the direct call graph
    341   /// -- ignoring indirect calls and function references. It stores this as
    342   /// a collection of call graph nodes. While the order of nodes in the SCC is
    343   /// stable, it is not any particular order.
    344   ///
    345   /// The SCCs are nested within a \c RefSCC, see below for details about that
    346   /// outer structure. SCCs do not support mutation of the call graph, that
    347   /// must be done through the containing \c RefSCC in order to fully reason
    348   /// about the ordering and connections of the graph.
    349   class SCC {
    350     friend class LazyCallGraph;
    351     friend class LazyCallGraph::Node;
    352 
    353     RefSCC *OuterRefSCC;
    354     SmallVector<Node *, 1> Nodes;
    355 
    356     template <typename NodeRangeT>
    357     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
    358         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
    359 
    360     void clear() {
    361       OuterRefSCC = nullptr;
    362       Nodes.clear();
    363     }
    364 
    365     /// Print a short descrtiption useful for debugging or logging.
    366     ///
    367     /// We print the function names in the SCC wrapped in '()'s and skipping
    368     /// the middle functions if there are a large number.
    369     //
    370     // Note: this is defined inline to dodge issues with GCC's interpretation
    371     // of enclosing namespaces for friend function declarations.
    372     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
    373       OS << '(';
    374       int i = 0;
    375       for (LazyCallGraph::Node &N : C) {
    376         if (i > 0)
    377           OS << ", ";
    378         // Elide the inner elements if there are too many.
    379         if (i > 8) {
    380           OS << "..., " << *C.Nodes.back();
    381           break;
    382         }
    383         OS << N;
    384         ++i;
    385       }
    386       OS << ')';
    387       return OS;
    388     }
    389 
    390     /// Dump a short description of this SCC to stderr.
    391     void dump() const;
    392 
    393 #ifndef NDEBUG
    394     /// Verify invariants about the SCC.
    395     ///
    396     /// This will attempt to validate all of the basic invariants within an
    397     /// SCC, but not that it is a strongly connected componet per-se. Primarily
    398     /// useful while building and updating the graph to check that basic
    399     /// properties are in place rather than having inexplicable crashes later.
    400     void verify();
    401 #endif
    402 
    403   public:
    404     typedef pointee_iterator<SmallVectorImpl<Node *>::const_iterator> iterator;
    405 
    406     iterator begin() const { return Nodes.begin(); }
    407     iterator end() const { return Nodes.end(); }
    408 
    409     int size() const { return Nodes.size(); }
    410 
    411     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
    412 
    413     /// Provide a short name by printing this SCC to a std::string.
    414     ///
    415     /// This copes with the fact that we don't have a name per-se for an SCC
    416     /// while still making the use of this in debugging and logging useful.
    417     std::string getName() const {
    418       std::string Name;
    419       raw_string_ostream OS(Name);
    420       OS << *this;
    421       OS.flush();
    422       return Name;
    423     }
    424   };
    425 
    426   /// A RefSCC of the call graph.
    427   ///
    428   /// This models a Strongly Connected Component of function reference edges in
    429   /// the call graph. As opposed to actual SCCs, these can be used to scope
    430   /// subgraphs of the module which are independent from other subgraphs of the
    431   /// module because they do not reference it in any way. This is also the unit
    432   /// where we do mutation of the graph in order to restrict mutations to those
    433   /// which don't violate this independence.
    434   ///
    435   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
    436   /// are necessarily within some actual SCC that nests within it. Since
    437   /// a direct call *is* a reference, there will always be at least one RefSCC
    438   /// around any SCC.
    439   class RefSCC {
    440     friend class LazyCallGraph;
    441     friend class LazyCallGraph::Node;
    442 
    443     LazyCallGraph *G;
    444     SmallPtrSet<RefSCC *, 1> Parents;
    445 
    446     /// A postorder list of the inner SCCs.
    447     SmallVector<SCC *, 4> SCCs;
    448 
    449     /// A map from SCC to index in the postorder list.
    450     SmallDenseMap<SCC *, int, 4> SCCIndices;
    451 
    452     /// Fast-path constructor. RefSCCs should instead be constructed by calling
    453     /// formRefSCCFast on the graph itself.
    454     RefSCC(LazyCallGraph &G);
    455 
    456     /// Print a short description useful for debugging or logging.
    457     ///
    458     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
    459     /// there are a large number.
    460     //
    461     // Note: this is defined inline to dodge issues with GCC's interpretation
    462     // of enclosing namespaces for friend function declarations.
    463     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
    464       OS << '[';
    465       int i = 0;
    466       for (LazyCallGraph::SCC &C : RC) {
    467         if (i > 0)
    468           OS << ", ";
    469         // Elide the inner elements if there are too many.
    470         if (i > 4) {
    471           OS << "..., " << *RC.SCCs.back();
    472           break;
    473         }
    474         OS << C;
    475         ++i;
    476       }
    477       OS << ']';
    478       return OS;
    479     }
    480 
    481     /// Dump a short description of this RefSCC to stderr.
    482     void dump() const;
    483 
    484 #ifndef NDEBUG
    485     /// Verify invariants about the RefSCC and all its SCCs.
    486     ///
    487     /// This will attempt to validate all of the invariants *within* the
    488     /// RefSCC, but not that it is a strongly connected component of the larger
    489     /// graph. This makes it useful even when partially through an update.
    490     ///
    491     /// Invariants checked:
    492     /// - SCCs and their indices match.
    493     /// - The SCCs list is in fact in post-order.
    494     void verify();
    495 #endif
    496 
    497   public:
    498     typedef pointee_iterator<SmallVectorImpl<SCC *>::const_iterator> iterator;
    499     typedef iterator_range<iterator> range;
    500     typedef pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>
    501         parent_iterator;
    502 
    503     iterator begin() const { return SCCs.begin(); }
    504     iterator end() const { return SCCs.end(); }
    505 
    506     ssize_t size() const { return SCCs.size(); }
    507 
    508     SCC &operator[](int Idx) { return *SCCs[Idx]; }
    509 
    510     iterator find(SCC &C) const {
    511       return SCCs.begin() + SCCIndices.find(&C)->second;
    512     }
    513 
    514     parent_iterator parent_begin() const { return Parents.begin(); }
    515     parent_iterator parent_end() const { return Parents.end(); }
    516 
    517     iterator_range<parent_iterator> parents() const {
    518       return make_range(parent_begin(), parent_end());
    519     }
    520 
    521     /// Test if this SCC is a parent of \a C.
    522     bool isParentOf(const RefSCC &C) const { return C.isChildOf(*this); }
    523 
    524     /// Test if this RefSCC is an ancestor of \a C.
    525     bool isAncestorOf(const RefSCC &C) const { return C.isDescendantOf(*this); }
    526 
    527     /// Test if this RefSCC is a child of \a C.
    528     bool isChildOf(const RefSCC &C) const {
    529       return Parents.count(const_cast<RefSCC *>(&C));
    530     }
    531 
    532     /// Test if this RefSCC is a descendant of \a C.
    533     bool isDescendantOf(const RefSCC &C) const;
    534 
    535     /// Provide a short name by printing this SCC to a std::string.
    536     ///
    537     /// This copes with the fact that we don't have a name per-se for an SCC
    538     /// while still making the use of this in debugging and logging useful.
    539     std::string getName() const {
    540       std::string Name;
    541       raw_string_ostream OS(Name);
    542       OS << *this;
    543       OS.flush();
    544       return Name;
    545     }
    546 
    547     ///@{
    548     /// \name Mutation API
    549     ///
    550     /// These methods provide the core API for updating the call graph in the
    551     /// presence of a (potentially still in-flight) DFS-found SCCs.
    552     ///
    553     /// Note that these methods sometimes have complex runtimes, so be careful
    554     /// how you call them.
    555 
    556     /// Make an existing internal ref edge into a call edge.
    557     ///
    558     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
    559     /// If that happens, the deleted SCC pointers are returned. These SCCs are
    560     /// not in a valid state any longer but the pointers will remain valid
    561     /// until destruction of the parent graph instance for the purpose of
    562     /// clearing cached information.
    563     ///
    564     /// After this operation, both SourceN's SCC and TargetN's SCC may move
    565     /// position within this RefSCC's postorder list. Any SCCs merged are
    566     /// merged into the TargetN's SCC in order to preserve reachability analyses
    567     /// which took place on that SCC.
    568     SmallVector<SCC *, 1> switchInternalEdgeToCall(Node &SourceN,
    569                                                    Node &TargetN);
    570 
    571     /// Make an existing internal call edge into a ref edge.
    572     ///
    573     /// If SourceN and TargetN are part of a single SCC, it may be split up due
    574     /// to breaking a cycle in the call edges that formed it. If that happens,
    575     /// then this routine will insert new SCCs into the postorder list *before*
    576     /// the SCC of TargetN (previously the SCC of both). This preserves
    577     /// postorder as the TargetN can reach all of the other nodes by definition
    578     /// of previously being in a single SCC formed by the cycle from SourceN to
    579     /// TargetN. The newly added nodes are added *immediately* and contiguously
    580     /// prior to the TargetN SCC and so they may be iterated starting from
    581     /// there.
    582     void switchInternalEdgeToRef(Node &SourceN, Node &TargetN);
    583 
    584     /// Make an existing outgoing ref edge into a call edge.
    585     ///
    586     /// Note that this is trivial as there are no cyclic impacts and there
    587     /// remains a reference edge.
    588     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
    589 
    590     /// Make an existing outgoing call edge into a ref edge.
    591     ///
    592     /// This is trivial as there are no cyclic impacts and there remains
    593     /// a reference edge.
    594     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
    595 
    596     /// Insert a ref edge from one node in this RefSCC to another in this
    597     /// RefSCC.
    598     ///
    599     /// This is always a trivial operation as it doesn't change any part of the
    600     /// graph structure besides connecting the two nodes.
    601     ///
    602     /// Note that we don't support directly inserting internal *call* edges
    603     /// because that could change the graph structure and requires returning
    604     /// information about what became invalid. As a consequence, the pattern
    605     /// should be to first insert the necessary ref edge, and then to switch it
    606     /// to a call edge if needed and handle any invalidation that results. See
    607     /// the \c switchInternalEdgeToCall routine for details.
    608     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
    609 
    610     /// Insert an edge whose parent is in this RefSCC and child is in some
    611     /// child RefSCC.
    612     ///
    613     /// There must be an existing path from the \p SourceN to the \p TargetN.
    614     /// This operation is inexpensive and does not change the set of SCCs and
    615     /// RefSCCs in the graph.
    616     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
    617 
    618     /// Insert an edge whose source is in a descendant RefSCC and target is in
    619     /// this RefSCC.
    620     ///
    621     /// There must be an existing path from the target to the source in this
    622     /// case.
    623     ///
    624     /// NB! This is has the potential to be a very expensive function. It
    625     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
    626     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
    627     /// participate in the cycle can in the worst case require traversing every
    628     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
    629     /// must still exercise caution calling this routine repeatedly.
    630     ///
    631     /// Also note that this can only insert ref edges. In order to insert
    632     /// a call edge, first insert a ref edge and then switch it to a call edge.
    633     /// These are intentionally kept as separate interfaces because each step
    634     /// of the operation invalidates a different set of data structures.
    635     ///
    636     /// This returns all the RefSCCs which were merged into the this RefSCC
    637     /// (the target's). This allows callers to invalidate any cached
    638     /// information.
    639     ///
    640     /// FIXME: We could possibly optimize this quite a bit for cases where the
    641     /// caller and callee are very nearby in the graph. See comments in the
    642     /// implementation for details, but that use case might impact users.
    643     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
    644                                                    Node &TargetN);
    645 
    646     /// Remove an edge whose source is in this RefSCC and target is *not*.
    647     ///
    648     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
    649     /// from this SCC have been fully explored by any in-flight DFS graph
    650     /// formation, so this is always safe to call once you have the source
    651     /// RefSCC.
    652     ///
    653     /// This operation does not change the cyclic structure of the graph and so
    654     /// is very inexpensive. It may change the connectivity graph of the SCCs
    655     /// though, so be careful calling this while iterating over them.
    656     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
    657 
    658     /// Remove a ref edge which is entirely within this RefSCC.
    659     ///
    660     /// Both the \a SourceN and the \a TargetN must be within this RefSCC.
    661     /// Removing such an edge may break cycles that form this RefSCC and thus
    662     /// this operation may change the RefSCC graph significantly. In
    663     /// particular, this operation will re-form new RefSCCs based on the
    664     /// remaining connectivity of the graph. The following invariants are
    665     /// guaranteed to hold after calling this method:
    666     ///
    667     /// 1) This RefSCC is still a RefSCC in the graph.
    668     /// 2) This RefSCC will be the parent of any new RefSCCs. Thus, this RefSCC
    669     ///    is preserved as the root of any new RefSCC DAG formed.
    670     /// 3) No RefSCC other than this RefSCC has its member set changed (this is
    671     ///    inherent in the definition of removing such an edge).
    672     /// 4) All of the parent links of the RefSCC graph will be updated to
    673     ///    reflect the new RefSCC structure.
    674     /// 5) All RefSCCs formed out of this RefSCC, excluding this RefSCC, will
    675     ///    be returned in post-order.
    676     /// 6) The order of the RefSCCs in the vector will be a valid postorder
    677     ///    traversal of the new RefSCCs.
    678     ///
    679     /// These invariants are very important to ensure that we can build
    680     /// optimization pipelines on top of the CGSCC pass manager which
    681     /// intelligently update the RefSCC graph without invalidating other parts
    682     /// of the RefSCC graph.
    683     ///
    684     /// Note that we provide no routine to remove a *call* edge. Instead, you
    685     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
    686     /// This split API is intentional as each of these two steps can invalidate
    687     /// a different aspect of the graph structure and needs to have the
    688     /// invalidation handled independently.
    689     ///
    690     /// The runtime complexity of this method is, in the worst case, O(V+E)
    691     /// where V is the number of nodes in this RefSCC and E is the number of
    692     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
    693     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
    694     /// effort has been made to minimize the overhead of common cases such as
    695     /// self-edges and edge removals which result in a spanning tree with no
    696     /// more cycles. There are also detailed comments within the implementation
    697     /// on techniques which could substantially improve this routine's
    698     /// efficiency.
    699     SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
    700                                                    Node &TargetN);
    701 
    702     ///@}
    703   };
    704 
    705   /// A post-order depth-first SCC iterator over the call graph.
    706   ///
    707   /// This iterator triggers the Tarjan DFS-based formation of the SCC DAG for
    708   /// the call graph, walking it lazily in depth-first post-order. That is, it
    709   /// always visits SCCs for a callee prior to visiting the SCC for a caller
    710   /// (when they are in different SCCs).
    711   class postorder_ref_scc_iterator
    712       : public iterator_facade_base<postorder_ref_scc_iterator,
    713                                     std::forward_iterator_tag, RefSCC> {
    714     friend class LazyCallGraph;
    715     friend class LazyCallGraph::Node;
    716 
    717     /// Nonce type to select the constructor for the end iterator.
    718     struct IsAtEndT {};
    719 
    720     LazyCallGraph *G;
    721     RefSCC *C;
    722 
    723     // Build the begin iterator for a node.
    724     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G) {
    725       C = G.getNextRefSCCInPostOrder();
    726     }
    727 
    728     // Build the end iterator for a node. This is selected purely by overload.
    729     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/)
    730         : G(&G), C(nullptr) {}
    731 
    732   public:
    733     bool operator==(const postorder_ref_scc_iterator &Arg) const {
    734       return G == Arg.G && C == Arg.C;
    735     }
    736 
    737     reference operator*() const { return *C; }
    738 
    739     using iterator_facade_base::operator++;
    740     postorder_ref_scc_iterator &operator++() {
    741       C = G->getNextRefSCCInPostOrder();
    742       return *this;
    743     }
    744   };
    745 
    746   /// Construct a graph for the given module.
    747   ///
    748   /// This sets up the graph and computes all of the entry points of the graph.
    749   /// No function definitions are scanned until their nodes in the graph are
    750   /// requested during traversal.
    751   LazyCallGraph(Module &M);
    752 
    753   LazyCallGraph(LazyCallGraph &&G);
    754   LazyCallGraph &operator=(LazyCallGraph &&RHS);
    755 
    756   edge_iterator begin() {
    757     return edge_iterator(EntryEdges.begin(), EntryEdges.end());
    758   }
    759   edge_iterator end() {
    760     return edge_iterator(EntryEdges.end(), EntryEdges.end());
    761   }
    762 
    763   postorder_ref_scc_iterator postorder_ref_scc_begin() {
    764     return postorder_ref_scc_iterator(*this);
    765   }
    766   postorder_ref_scc_iterator postorder_ref_scc_end() {
    767     return postorder_ref_scc_iterator(*this,
    768                                       postorder_ref_scc_iterator::IsAtEndT());
    769   }
    770 
    771   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
    772     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
    773   }
    774 
    775   /// Lookup a function in the graph which has already been scanned and added.
    776   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
    777 
    778   /// Lookup a function's SCC in the graph.
    779   ///
    780   /// \returns null if the function hasn't been assigned an SCC via the SCC
    781   /// iterator walk.
    782   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
    783 
    784   /// Lookup a function's RefSCC in the graph.
    785   ///
    786   /// \returns null if the function hasn't been assigned a RefSCC via the
    787   /// RefSCC iterator walk.
    788   RefSCC *lookupRefSCC(Node &N) const {
    789     if (SCC *C = lookupSCC(N))
    790       return &C->getOuterRefSCC();
    791 
    792     return nullptr;
    793   }
    794 
    795   /// Get a graph node for a given function, scanning it to populate the graph
    796   /// data as necessary.
    797   Node &get(Function &F) {
    798     Node *&N = NodeMap[&F];
    799     if (N)
    800       return *N;
    801 
    802     return insertInto(F, N);
    803   }
    804 
    805   ///@{
    806   /// \name Pre-SCC Mutation API
    807   ///
    808   /// These methods are only valid to call prior to forming any SCCs for this
    809   /// call graph. They can be used to update the core node-graph during
    810   /// a node-based inorder traversal that precedes any SCC-based traversal.
    811   ///
    812   /// Once you begin manipulating a call graph's SCCs, you must perform all
    813   /// mutation of the graph via the SCC methods.
    814 
    815   /// Update the call graph after inserting a new edge.
    816   void insertEdge(Node &Caller, Function &Callee, Edge::Kind EK);
    817 
    818   /// Update the call graph after inserting a new edge.
    819   void insertEdge(Function &Caller, Function &Callee, Edge::Kind EK) {
    820     return insertEdge(get(Caller), Callee, EK);
    821   }
    822 
    823   /// Update the call graph after deleting an edge.
    824   void removeEdge(Node &Caller, Function &Callee);
    825 
    826   /// Update the call graph after deleting an edge.
    827   void removeEdge(Function &Caller, Function &Callee) {
    828     return removeEdge(get(Caller), Callee);
    829   }
    830 
    831   ///@}
    832 
    833 private:
    834   typedef SmallVectorImpl<Node *>::reverse_iterator node_stack_iterator;
    835   typedef iterator_range<node_stack_iterator> node_stack_range;
    836 
    837   /// Allocator that holds all the call graph nodes.
    838   SpecificBumpPtrAllocator<Node> BPA;
    839 
    840   /// Maps function->node for fast lookup.
    841   DenseMap<const Function *, Node *> NodeMap;
    842 
    843   /// The entry nodes to the graph.
    844   ///
    845   /// These nodes are reachable through "external" means. Put another way, they
    846   /// escape at the module scope.
    847   EdgeVectorT EntryEdges;
    848 
    849   /// Map of the entry nodes in the graph to their indices in \c EntryEdges.
    850   DenseMap<Function *, int> EntryIndexMap;
    851 
    852   /// Allocator that holds all the call graph SCCs.
    853   SpecificBumpPtrAllocator<SCC> SCCBPA;
    854 
    855   /// Maps Function -> SCC for fast lookup.
    856   DenseMap<Node *, SCC *> SCCMap;
    857 
    858   /// Allocator that holds all the call graph RefSCCs.
    859   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
    860 
    861   /// The leaf RefSCCs of the graph.
    862   ///
    863   /// These are all of the RefSCCs which have no children.
    864   SmallVector<RefSCC *, 4> LeafRefSCCs;
    865 
    866   /// Stack of nodes in the DFS walk.
    867   SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
    868 
    869   /// Set of entry nodes not-yet-processed into RefSCCs.
    870   SmallVector<Function *, 4> RefSCCEntryNodes;
    871 
    872   /// Stack of nodes the DFS has walked but not yet put into a SCC.
    873   SmallVector<Node *, 4> PendingRefSCCStack;
    874 
    875   /// Counter for the next DFS number to assign.
    876   int NextDFSNumber;
    877 
    878   /// Helper to insert a new function, with an already looked-up entry in
    879   /// the NodeMap.
    880   Node &insertInto(Function &F, Node *&MappedN);
    881 
    882   /// Helper to update pointers back to the graph object during moves.
    883   void updateGraphPtrs();
    884 
    885   /// Allocates an SCC and constructs it using the graph allocator.
    886   ///
    887   /// The arguments are forwarded to the constructor.
    888   template <typename... Ts> SCC *createSCC(Ts &&... Args) {
    889     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
    890   }
    891 
    892   /// Allocates a RefSCC and constructs it using the graph allocator.
    893   ///
    894   /// The arguments are forwarded to the constructor.
    895   template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
    896     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
    897   }
    898 
    899   /// Build the SCCs for a RefSCC out of a list of nodes.
    900   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
    901 
    902   /// Connect a RefSCC into the larger graph.
    903   ///
    904   /// This walks the edges to connect the RefSCC to its children's parent set,
    905   /// and updates the root leaf list.
    906   void connectRefSCC(RefSCC &RC);
    907 
    908   /// Retrieve the next node in the post-order RefSCC walk of the call graph.
    909   RefSCC *getNextRefSCCInPostOrder();
    910 };
    911 
    912 inline LazyCallGraph::Edge::Edge() : Value() {}
    913 inline LazyCallGraph::Edge::Edge(Function &F, Kind K) : Value(&F, K) {}
    914 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
    915 
    916 inline LazyCallGraph::Edge::operator bool() const {
    917   return !Value.getPointer().isNull();
    918 }
    919 
    920 inline bool LazyCallGraph::Edge::isCall() const {
    921   assert(*this && "Queried a null edge!");
    922   return Value.getInt() == Call;
    923 }
    924 
    925 inline Function &LazyCallGraph::Edge::getFunction() const {
    926   assert(*this && "Queried a null edge!");
    927   auto P = Value.getPointer();
    928   if (auto *F = P.dyn_cast<Function *>())
    929     return *F;
    930 
    931   return P.get<Node *>()->getFunction();
    932 }
    933 
    934 inline LazyCallGraph::Node *LazyCallGraph::Edge::getNode() const {
    935   assert(*this && "Queried a null edge!");
    936   auto P = Value.getPointer();
    937   if (auto *N = P.dyn_cast<Node *>())
    938     return N;
    939 
    940   return nullptr;
    941 }
    942 
    943 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode(LazyCallGraph &G) {
    944   assert(*this && "Queried a null edge!");
    945   auto P = Value.getPointer();
    946   if (auto *N = P.dyn_cast<Node *>())
    947     return *N;
    948 
    949   Node &N = G.get(*P.get<Function *>());
    950   Value.setPointer(&N);
    951   return N;
    952 }
    953 
    954 // Provide GraphTraits specializations for call graphs.
    955 template <> struct GraphTraits<LazyCallGraph::Node *> {
    956   typedef LazyCallGraph::Node NodeType;
    957   typedef LazyCallGraph::edge_iterator ChildIteratorType;
    958 
    959   static NodeType *getEntryNode(NodeType *N) { return N; }
    960   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
    961   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
    962 };
    963 template <> struct GraphTraits<LazyCallGraph *> {
    964   typedef LazyCallGraph::Node NodeType;
    965   typedef LazyCallGraph::edge_iterator ChildIteratorType;
    966 
    967   static NodeType *getEntryNode(NodeType *N) { return N; }
    968   static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
    969   static ChildIteratorType child_end(NodeType *N) { return N->end(); }
    970 };
    971 
    972 /// An analysis pass which computes the call graph for a module.
    973 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
    974   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
    975   static char PassID;
    976 
    977 public:
    978   /// Inform generic clients of the result type.
    979   typedef LazyCallGraph Result;
    980 
    981   /// Compute the \c LazyCallGraph for the module \c M.
    982   ///
    983   /// This just builds the set of entry points to the call graph. The rest is
    984   /// built lazily as it is walked.
    985   LazyCallGraph run(Module &M, ModuleAnalysisManager &) {
    986     return LazyCallGraph(M);
    987   }
    988 };
    989 
    990 /// A pass which prints the call graph to a \c raw_ostream.
    991 ///
    992 /// This is primarily useful for testing the analysis.
    993 class LazyCallGraphPrinterPass
    994     : public PassInfoMixin<LazyCallGraphPrinterPass> {
    995   raw_ostream &OS;
    996 
    997 public:
    998   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
    999 
   1000   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
   1001 };
   1002 
   1003 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
   1004 ///
   1005 /// This is primarily useful for visualization purposes.
   1006 class LazyCallGraphDOTPrinterPass
   1007     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
   1008   raw_ostream &OS;
   1009 
   1010 public:
   1011   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
   1012 
   1013   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
   1014 };
   1015 }
   1016 
   1017 #endif
   1018