Home | History | Annotate | Download | only in IR
      1 //===-- Function.cpp - Implement the Global object classes ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Function class for the IR library.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Function.h"
     15 #include "LLVMContextImpl.h"
     16 #include "SymbolTableListTraitsImpl.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/CodeGen/ValueTypes.h"
     20 #include "llvm/IR/CallSite.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/DerivedTypes.h"
     23 #include "llvm/IR/InstIterator.h"
     24 #include "llvm/IR/IntrinsicInst.h"
     25 #include "llvm/IR/LLVMContext.h"
     26 #include "llvm/IR/MDBuilder.h"
     27 #include "llvm/IR/Metadata.h"
     28 #include "llvm/IR/Module.h"
     29 #include "llvm/Support/ManagedStatic.h"
     30 #include "llvm/Support/RWMutex.h"
     31 #include "llvm/Support/StringPool.h"
     32 #include "llvm/Support/Threading.h"
     33 using namespace llvm;
     34 
     35 // Explicit instantiations of SymbolTableListTraits since some of the methods
     36 // are not in the public header file...
     37 template class llvm::SymbolTableListTraits<Argument>;
     38 template class llvm::SymbolTableListTraits<BasicBlock>;
     39 
     40 //===----------------------------------------------------------------------===//
     41 // Argument Implementation
     42 //===----------------------------------------------------------------------===//
     43 
     44 void Argument::anchor() { }
     45 
     46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
     47   : Value(Ty, Value::ArgumentVal) {
     48   Parent = nullptr;
     49 
     50   if (Par)
     51     Par->getArgumentList().push_back(this);
     52   setName(Name);
     53 }
     54 
     55 void Argument::setParent(Function *parent) {
     56   Parent = parent;
     57 }
     58 
     59 /// getArgNo - Return the index of this formal argument in its containing
     60 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
     61 unsigned Argument::getArgNo() const {
     62   const Function *F = getParent();
     63   assert(F && "Argument is not in a function");
     64 
     65   Function::const_arg_iterator AI = F->arg_begin();
     66   unsigned ArgIdx = 0;
     67   for (; &*AI != this; ++AI)
     68     ++ArgIdx;
     69 
     70   return ArgIdx;
     71 }
     72 
     73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
     74 /// it in its containing function. Also returns true if at least one byte is
     75 /// known to be dereferenceable and the pointer is in addrspace(0).
     76 bool Argument::hasNonNullAttr() const {
     77   if (!getType()->isPointerTy()) return false;
     78   if (getParent()->getAttributes().
     79         hasAttribute(getArgNo()+1, Attribute::NonNull))
     80     return true;
     81   else if (getDereferenceableBytes() > 0 &&
     82            getType()->getPointerAddressSpace() == 0)
     83     return true;
     84   return false;
     85 }
     86 
     87 /// hasByValAttr - Return true if this argument has the byval attribute on it
     88 /// in its containing function.
     89 bool Argument::hasByValAttr() const {
     90   if (!getType()->isPointerTy()) return false;
     91   return hasAttribute(Attribute::ByVal);
     92 }
     93 
     94 bool Argument::hasSwiftSelfAttr() const {
     95   return getParent()->getAttributes().
     96     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
     97 }
     98 
     99 bool Argument::hasSwiftErrorAttr() const {
    100   return getParent()->getAttributes().
    101     hasAttribute(getArgNo()+1, Attribute::SwiftError);
    102 }
    103 
    104 /// \brief Return true if this argument has the inalloca attribute on it in
    105 /// its containing function.
    106 bool Argument::hasInAllocaAttr() const {
    107   if (!getType()->isPointerTy()) return false;
    108   return hasAttribute(Attribute::InAlloca);
    109 }
    110 
    111 bool Argument::hasByValOrInAllocaAttr() const {
    112   if (!getType()->isPointerTy()) return false;
    113   AttributeSet Attrs = getParent()->getAttributes();
    114   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
    115          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
    116 }
    117 
    118 unsigned Argument::getParamAlignment() const {
    119   assert(getType()->isPointerTy() && "Only pointers have alignments");
    120   return getParent()->getParamAlignment(getArgNo()+1);
    121 
    122 }
    123 
    124 uint64_t Argument::getDereferenceableBytes() const {
    125   assert(getType()->isPointerTy() &&
    126          "Only pointers have dereferenceable bytes");
    127   return getParent()->getDereferenceableBytes(getArgNo()+1);
    128 }
    129 
    130 uint64_t Argument::getDereferenceableOrNullBytes() const {
    131   assert(getType()->isPointerTy() &&
    132          "Only pointers have dereferenceable bytes");
    133   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
    134 }
    135 
    136 /// hasNestAttr - Return true if this argument has the nest attribute on
    137 /// it in its containing function.
    138 bool Argument::hasNestAttr() const {
    139   if (!getType()->isPointerTy()) return false;
    140   return hasAttribute(Attribute::Nest);
    141 }
    142 
    143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
    144 /// it in its containing function.
    145 bool Argument::hasNoAliasAttr() const {
    146   if (!getType()->isPointerTy()) return false;
    147   return hasAttribute(Attribute::NoAlias);
    148 }
    149 
    150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
    151 /// on it in its containing function.
    152 bool Argument::hasNoCaptureAttr() const {
    153   if (!getType()->isPointerTy()) return false;
    154   return hasAttribute(Attribute::NoCapture);
    155 }
    156 
    157 /// hasSRetAttr - Return true if this argument has the sret attribute on
    158 /// it in its containing function.
    159 bool Argument::hasStructRetAttr() const {
    160   if (!getType()->isPointerTy()) return false;
    161   return hasAttribute(Attribute::StructRet);
    162 }
    163 
    164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
    165 /// it in its containing function.
    166 bool Argument::hasReturnedAttr() const {
    167   return hasAttribute(Attribute::Returned);
    168 }
    169 
    170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
    171 /// its containing function.
    172 bool Argument::hasZExtAttr() const {
    173   return hasAttribute(Attribute::ZExt);
    174 }
    175 
    176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
    177 /// containing function.
    178 bool Argument::hasSExtAttr() const {
    179   return hasAttribute(Attribute::SExt);
    180 }
    181 
    182 /// Return true if this argument has the readonly or readnone attribute on it
    183 /// in its containing function.
    184 bool Argument::onlyReadsMemory() const {
    185   return getParent()->getAttributes().
    186       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
    187       getParent()->getAttributes().
    188       hasAttribute(getArgNo()+1, Attribute::ReadNone);
    189 }
    190 
    191 /// addAttr - Add attributes to an argument.
    192 void Argument::addAttr(AttributeSet AS) {
    193   assert(AS.getNumSlots() <= 1 &&
    194          "Trying to add more than one attribute set to an argument!");
    195   AttrBuilder B(AS, AS.getSlotIndex(0));
    196   getParent()->addAttributes(getArgNo() + 1,
    197                              AttributeSet::get(Parent->getContext(),
    198                                                getArgNo() + 1, B));
    199 }
    200 
    201 /// removeAttr - Remove attributes from an argument.
    202 void Argument::removeAttr(AttributeSet AS) {
    203   assert(AS.getNumSlots() <= 1 &&
    204          "Trying to remove more than one attribute set from an argument!");
    205   AttrBuilder B(AS, AS.getSlotIndex(0));
    206   getParent()->removeAttributes(getArgNo() + 1,
    207                                 AttributeSet::get(Parent->getContext(),
    208                                                   getArgNo() + 1, B));
    209 }
    210 
    211 /// hasAttribute - Checks if an argument has a given attribute.
    212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
    213   return getParent()->hasAttribute(getArgNo() + 1, Kind);
    214 }
    215 
    216 //===----------------------------------------------------------------------===//
    217 // Helper Methods in Function
    218 //===----------------------------------------------------------------------===//
    219 
    220 bool Function::isMaterializable() const {
    221   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
    222 }
    223 
    224 void Function::setIsMaterializable(bool V) {
    225   unsigned Mask = 1 << IsMaterializableBit;
    226   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
    227                               (V ? Mask : 0u));
    228 }
    229 
    230 LLVMContext &Function::getContext() const {
    231   return getType()->getContext();
    232 }
    233 
    234 FunctionType *Function::getFunctionType() const {
    235   return cast<FunctionType>(getValueType());
    236 }
    237 
    238 bool Function::isVarArg() const {
    239   return getFunctionType()->isVarArg();
    240 }
    241 
    242 Type *Function::getReturnType() const {
    243   return getFunctionType()->getReturnType();
    244 }
    245 
    246 void Function::removeFromParent() {
    247   getParent()->getFunctionList().remove(getIterator());
    248 }
    249 
    250 void Function::eraseFromParent() {
    251   getParent()->getFunctionList().erase(getIterator());
    252 }
    253 
    254 //===----------------------------------------------------------------------===//
    255 // Function Implementation
    256 //===----------------------------------------------------------------------===//
    257 
    258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
    259                    Module *ParentModule)
    260     : GlobalObject(Ty, Value::FunctionVal,
    261                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
    262   assert(FunctionType::isValidReturnType(getReturnType()) &&
    263          "invalid return type");
    264   setGlobalObjectSubClassData(0);
    265   SymTab = new ValueSymbolTable();
    266 
    267   // If the function has arguments, mark them as lazily built.
    268   if (Ty->getNumParams())
    269     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
    270 
    271   if (ParentModule)
    272     ParentModule->getFunctionList().push_back(this);
    273 
    274   // Ensure intrinsics have the right parameter attributes.
    275   // Note, the IntID field will have been set in Value::setName if this function
    276   // name is a valid intrinsic ID.
    277   if (IntID)
    278     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
    279 }
    280 
    281 Function::~Function() {
    282   dropAllReferences();    // After this it is safe to delete instructions.
    283 
    284   // Delete all of the method arguments and unlink from symbol table...
    285   ArgumentList.clear();
    286   delete SymTab;
    287 
    288   // Remove the function from the on-the-side GC table.
    289   clearGC();
    290 }
    291 
    292 void Function::BuildLazyArguments() const {
    293   // Create the arguments vector, all arguments start out unnamed.
    294   FunctionType *FT = getFunctionType();
    295   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    296     assert(!FT->getParamType(i)->isVoidTy() &&
    297            "Cannot have void typed arguments!");
    298     ArgumentList.push_back(new Argument(FT->getParamType(i)));
    299   }
    300 
    301   // Clear the lazy arguments bit.
    302   unsigned SDC = getSubclassDataFromValue();
    303   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
    304 }
    305 
    306 void Function::stealArgumentListFrom(Function &Src) {
    307   assert(isDeclaration() && "Expected no references to current arguments");
    308 
    309   // Drop the current arguments, if any, and set the lazy argument bit.
    310   if (!hasLazyArguments()) {
    311     assert(llvm::all_of(ArgumentList,
    312                         [](const Argument &A) { return A.use_empty(); }) &&
    313            "Expected arguments to be unused in declaration");
    314     ArgumentList.clear();
    315     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
    316   }
    317 
    318   // Nothing to steal if Src has lazy arguments.
    319   if (Src.hasLazyArguments())
    320     return;
    321 
    322   // Steal arguments from Src, and fix the lazy argument bits.
    323   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
    324   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
    325   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
    326 }
    327 
    328 size_t Function::arg_size() const {
    329   return getFunctionType()->getNumParams();
    330 }
    331 bool Function::arg_empty() const {
    332   return getFunctionType()->getNumParams() == 0;
    333 }
    334 
    335 void Function::setParent(Module *parent) {
    336   Parent = parent;
    337 }
    338 
    339 // dropAllReferences() - This function causes all the subinstructions to "let
    340 // go" of all references that they are maintaining.  This allows one to
    341 // 'delete' a whole class at a time, even though there may be circular
    342 // references... first all references are dropped, and all use counts go to
    343 // zero.  Then everything is deleted for real.  Note that no operations are
    344 // valid on an object that has "dropped all references", except operator
    345 // delete.
    346 //
    347 void Function::dropAllReferences() {
    348   setIsMaterializable(false);
    349 
    350   for (BasicBlock &BB : *this)
    351     BB.dropAllReferences();
    352 
    353   // Delete all basic blocks. They are now unused, except possibly by
    354   // blockaddresses, but BasicBlock's destructor takes care of those.
    355   while (!BasicBlocks.empty())
    356     BasicBlocks.begin()->eraseFromParent();
    357 
    358   // Drop uses of any optional data (real or placeholder).
    359   if (getNumOperands()) {
    360     User::dropAllReferences();
    361     setNumHungOffUseOperands(0);
    362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
    363   }
    364 
    365   // Metadata is stored in a side-table.
    366   clearMetadata();
    367 }
    368 
    369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
    370   AttributeSet PAL = getAttributes();
    371   PAL = PAL.addAttribute(getContext(), i, Kind);
    372   setAttributes(PAL);
    373 }
    374 
    375 void Function::addAttribute(unsigned i, Attribute Attr) {
    376   AttributeSet PAL = getAttributes();
    377   PAL = PAL.addAttribute(getContext(), i, Attr);
    378   setAttributes(PAL);
    379 }
    380 
    381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
    382   AttributeSet PAL = getAttributes();
    383   PAL = PAL.addAttributes(getContext(), i, Attrs);
    384   setAttributes(PAL);
    385 }
    386 
    387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
    388   AttributeSet PAL = getAttributes();
    389   PAL = PAL.removeAttribute(getContext(), i, Kind);
    390   setAttributes(PAL);
    391 }
    392 
    393 void Function::removeAttribute(unsigned i, StringRef Kind) {
    394   AttributeSet PAL = getAttributes();
    395   PAL = PAL.removeAttribute(getContext(), i, Kind);
    396   setAttributes(PAL);
    397 }
    398 
    399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
    400   AttributeSet PAL = getAttributes();
    401   PAL = PAL.removeAttributes(getContext(), i, Attrs);
    402   setAttributes(PAL);
    403 }
    404 
    405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
    406   AttributeSet PAL = getAttributes();
    407   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
    408   setAttributes(PAL);
    409 }
    410 
    411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
    412   AttributeSet PAL = getAttributes();
    413   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
    414   setAttributes(PAL);
    415 }
    416 
    417 const std::string &Function::getGC() const {
    418   assert(hasGC() && "Function has no collector");
    419   return getContext().getGC(*this);
    420 }
    421 
    422 void Function::setGC(std::string Str) {
    423   setValueSubclassDataBit(14, !Str.empty());
    424   getContext().setGC(*this, std::move(Str));
    425 }
    426 
    427 void Function::clearGC() {
    428   if (!hasGC())
    429     return;
    430   getContext().deleteGC(*this);
    431   setValueSubclassDataBit(14, false);
    432 }
    433 
    434 /// Copy all additional attributes (those not needed to create a Function) from
    435 /// the Function Src to this one.
    436 void Function::copyAttributesFrom(const GlobalValue *Src) {
    437   GlobalObject::copyAttributesFrom(Src);
    438   const Function *SrcF = dyn_cast<Function>(Src);
    439   if (!SrcF)
    440     return;
    441 
    442   setCallingConv(SrcF->getCallingConv());
    443   setAttributes(SrcF->getAttributes());
    444   if (SrcF->hasGC())
    445     setGC(SrcF->getGC());
    446   else
    447     clearGC();
    448   if (SrcF->hasPersonalityFn())
    449     setPersonalityFn(SrcF->getPersonalityFn());
    450   if (SrcF->hasPrefixData())
    451     setPrefixData(SrcF->getPrefixData());
    452   if (SrcF->hasPrologueData())
    453     setPrologueData(SrcF->getPrologueData());
    454 }
    455 
    456 /// Table of string intrinsic names indexed by enum value.
    457 static const char * const IntrinsicNameTable[] = {
    458   "not_intrinsic",
    459 #define GET_INTRINSIC_NAME_TABLE
    460 #include "llvm/IR/Intrinsics.gen"
    461 #undef GET_INTRINSIC_NAME_TABLE
    462 };
    463 
    464 /// \brief This does the actual lookup of an intrinsic ID which
    465 /// matches the given function name.
    466 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
    467   StringRef Name = ValName->getKey();
    468 
    469   ArrayRef<const char *> NameTable(&IntrinsicNameTable[1],
    470                                    std::end(IntrinsicNameTable));
    471   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
    472   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1);
    473   if (ID == Intrinsic::not_intrinsic)
    474     return ID;
    475 
    476   // If the intrinsic is not overloaded, require an exact match. If it is
    477   // overloaded, require a prefix match.
    478   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
    479   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
    480 }
    481 
    482 void Function::recalculateIntrinsicID() {
    483   const ValueName *ValName = this->getValueName();
    484   if (!ValName || !isIntrinsic()) {
    485     IntID = Intrinsic::not_intrinsic;
    486     return;
    487   }
    488   IntID = lookupIntrinsicID(ValName);
    489 }
    490 
    491 /// Returns a stable mangling for the type specified for use in the name
    492 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
    493 /// of named types is simply their name.  Manglings for unnamed types consist
    494 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
    495 /// combined with the mangling of their component types.  A vararg function
    496 /// type will have a suffix of 'vararg'.  Since function types can contain
    497 /// other function types, we close a function type mangling with suffix 'f'
    498 /// which can't be confused with it's prefix.  This ensures we don't have
    499 /// collisions between two unrelated function types. Otherwise, you might
    500 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
    501 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
    502 /// cases) fall back to the MVT codepath, where they could be mangled to
    503 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
    504 /// everything.
    505 static std::string getMangledTypeStr(Type* Ty) {
    506   std::string Result;
    507   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
    508     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
    509       getMangledTypeStr(PTyp->getElementType());
    510   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
    511     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
    512       getMangledTypeStr(ATyp->getElementType());
    513   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
    514     assert(!STyp->isLiteral() && "TODO: implement literal types");
    515     Result += STyp->getName();
    516   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
    517     Result += "f_" + getMangledTypeStr(FT->getReturnType());
    518     for (size_t i = 0; i < FT->getNumParams(); i++)
    519       Result += getMangledTypeStr(FT->getParamType(i));
    520     if (FT->isVarArg())
    521       Result += "vararg";
    522     // Ensure nested function types are distinguishable.
    523     Result += "f";
    524   } else if (isa<VectorType>(Ty))
    525     Result += "v" + utostr(Ty->getVectorNumElements()) +
    526       getMangledTypeStr(Ty->getVectorElementType());
    527   else if (Ty)
    528     Result += EVT::getEVT(Ty).getEVTString();
    529   return Result;
    530 }
    531 
    532 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
    533   assert(id < num_intrinsics && "Invalid intrinsic ID!");
    534   std::string Result(IntrinsicNameTable[id]);
    535   for (Type *Ty : Tys) {
    536     Result += "." + getMangledTypeStr(Ty);
    537   }
    538   return Result;
    539 }
    540 
    541 
    542 /// IIT_Info - These are enumerators that describe the entries returned by the
    543 /// getIntrinsicInfoTableEntries function.
    544 ///
    545 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
    546 enum IIT_Info {
    547   // Common values should be encoded with 0-15.
    548   IIT_Done = 0,
    549   IIT_I1   = 1,
    550   IIT_I8   = 2,
    551   IIT_I16  = 3,
    552   IIT_I32  = 4,
    553   IIT_I64  = 5,
    554   IIT_F16  = 6,
    555   IIT_F32  = 7,
    556   IIT_F64  = 8,
    557   IIT_V2   = 9,
    558   IIT_V4   = 10,
    559   IIT_V8   = 11,
    560   IIT_V16  = 12,
    561   IIT_V32  = 13,
    562   IIT_PTR  = 14,
    563   IIT_ARG  = 15,
    564 
    565   // Values from 16+ are only encodable with the inefficient encoding.
    566   IIT_V64  = 16,
    567   IIT_MMX  = 17,
    568   IIT_TOKEN = 18,
    569   IIT_METADATA = 19,
    570   IIT_EMPTYSTRUCT = 20,
    571   IIT_STRUCT2 = 21,
    572   IIT_STRUCT3 = 22,
    573   IIT_STRUCT4 = 23,
    574   IIT_STRUCT5 = 24,
    575   IIT_EXTEND_ARG = 25,
    576   IIT_TRUNC_ARG = 26,
    577   IIT_ANYPTR = 27,
    578   IIT_V1   = 28,
    579   IIT_VARARG = 29,
    580   IIT_HALF_VEC_ARG = 30,
    581   IIT_SAME_VEC_WIDTH_ARG = 31,
    582   IIT_PTR_TO_ARG = 32,
    583   IIT_VEC_OF_PTRS_TO_ELT = 33,
    584   IIT_I128 = 34,
    585   IIT_V512 = 35,
    586   IIT_V1024 = 36
    587 };
    588 
    589 
    590 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
    591                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
    592   IIT_Info Info = IIT_Info(Infos[NextElt++]);
    593   unsigned StructElts = 2;
    594   using namespace Intrinsic;
    595 
    596   switch (Info) {
    597   case IIT_Done:
    598     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
    599     return;
    600   case IIT_VARARG:
    601     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
    602     return;
    603   case IIT_MMX:
    604     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
    605     return;
    606   case IIT_TOKEN:
    607     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
    608     return;
    609   case IIT_METADATA:
    610     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
    611     return;
    612   case IIT_F16:
    613     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
    614     return;
    615   case IIT_F32:
    616     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
    617     return;
    618   case IIT_F64:
    619     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
    620     return;
    621   case IIT_I1:
    622     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
    623     return;
    624   case IIT_I8:
    625     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
    626     return;
    627   case IIT_I16:
    628     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
    629     return;
    630   case IIT_I32:
    631     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
    632     return;
    633   case IIT_I64:
    634     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
    635     return;
    636   case IIT_I128:
    637     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
    638     return;
    639   case IIT_V1:
    640     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
    641     DecodeIITType(NextElt, Infos, OutputTable);
    642     return;
    643   case IIT_V2:
    644     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
    645     DecodeIITType(NextElt, Infos, OutputTable);
    646     return;
    647   case IIT_V4:
    648     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
    649     DecodeIITType(NextElt, Infos, OutputTable);
    650     return;
    651   case IIT_V8:
    652     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
    653     DecodeIITType(NextElt, Infos, OutputTable);
    654     return;
    655   case IIT_V16:
    656     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
    657     DecodeIITType(NextElt, Infos, OutputTable);
    658     return;
    659   case IIT_V32:
    660     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
    661     DecodeIITType(NextElt, Infos, OutputTable);
    662     return;
    663   case IIT_V64:
    664     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
    665     DecodeIITType(NextElt, Infos, OutputTable);
    666     return;
    667   case IIT_V512:
    668     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
    669     DecodeIITType(NextElt, Infos, OutputTable);
    670     return;
    671   case IIT_V1024:
    672     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
    673     DecodeIITType(NextElt, Infos, OutputTable);
    674     return;
    675   case IIT_PTR:
    676     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
    677     DecodeIITType(NextElt, Infos, OutputTable);
    678     return;
    679   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
    680     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
    681                                              Infos[NextElt++]));
    682     DecodeIITType(NextElt, Infos, OutputTable);
    683     return;
    684   }
    685   case IIT_ARG: {
    686     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
    688     return;
    689   }
    690   case IIT_EXTEND_ARG: {
    691     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    692     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
    693                                              ArgInfo));
    694     return;
    695   }
    696   case IIT_TRUNC_ARG: {
    697     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
    699                                              ArgInfo));
    700     return;
    701   }
    702   case IIT_HALF_VEC_ARG: {
    703     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    704     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
    705                                              ArgInfo));
    706     return;
    707   }
    708   case IIT_SAME_VEC_WIDTH_ARG: {
    709     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    710     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
    711                                              ArgInfo));
    712     return;
    713   }
    714   case IIT_PTR_TO_ARG: {
    715     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    716     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
    717                                              ArgInfo));
    718     return;
    719   }
    720   case IIT_VEC_OF_PTRS_TO_ELT: {
    721     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    722     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
    723                                              ArgInfo));
    724     return;
    725   }
    726   case IIT_EMPTYSTRUCT:
    727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
    728     return;
    729   case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
    730   case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
    731   case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
    732   case IIT_STRUCT2: {
    733     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
    734 
    735     for (unsigned i = 0; i != StructElts; ++i)
    736       DecodeIITType(NextElt, Infos, OutputTable);
    737     return;
    738   }
    739   }
    740   llvm_unreachable("unhandled");
    741 }
    742 
    743 
    744 #define GET_INTRINSIC_GENERATOR_GLOBAL
    745 #include "llvm/IR/Intrinsics.gen"
    746 #undef GET_INTRINSIC_GENERATOR_GLOBAL
    747 
    748 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
    749                                              SmallVectorImpl<IITDescriptor> &T){
    750   // Check to see if the intrinsic's type was expressible by the table.
    751   unsigned TableVal = IIT_Table[id-1];
    752 
    753   // Decode the TableVal into an array of IITValues.
    754   SmallVector<unsigned char, 8> IITValues;
    755   ArrayRef<unsigned char> IITEntries;
    756   unsigned NextElt = 0;
    757   if ((TableVal >> 31) != 0) {
    758     // This is an offset into the IIT_LongEncodingTable.
    759     IITEntries = IIT_LongEncodingTable;
    760 
    761     // Strip sentinel bit.
    762     NextElt = (TableVal << 1) >> 1;
    763   } else {
    764     // Decode the TableVal into an array of IITValues.  If the entry was encoded
    765     // into a single word in the table itself, decode it now.
    766     do {
    767       IITValues.push_back(TableVal & 0xF);
    768       TableVal >>= 4;
    769     } while (TableVal);
    770 
    771     IITEntries = IITValues;
    772     NextElt = 0;
    773   }
    774 
    775   // Okay, decode the table into the output vector of IITDescriptors.
    776   DecodeIITType(NextElt, IITEntries, T);
    777   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
    778     DecodeIITType(NextElt, IITEntries, T);
    779 }
    780 
    781 
    782 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
    783                              ArrayRef<Type*> Tys, LLVMContext &Context) {
    784   using namespace Intrinsic;
    785   IITDescriptor D = Infos.front();
    786   Infos = Infos.slice(1);
    787 
    788   switch (D.Kind) {
    789   case IITDescriptor::Void: return Type::getVoidTy(Context);
    790   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
    791   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
    792   case IITDescriptor::Token: return Type::getTokenTy(Context);
    793   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
    794   case IITDescriptor::Half: return Type::getHalfTy(Context);
    795   case IITDescriptor::Float: return Type::getFloatTy(Context);
    796   case IITDescriptor::Double: return Type::getDoubleTy(Context);
    797 
    798   case IITDescriptor::Integer:
    799     return IntegerType::get(Context, D.Integer_Width);
    800   case IITDescriptor::Vector:
    801     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
    802   case IITDescriptor::Pointer:
    803     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
    804                             D.Pointer_AddressSpace);
    805   case IITDescriptor::Struct: {
    806     Type *Elts[5];
    807     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
    808     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
    809       Elts[i] = DecodeFixedType(Infos, Tys, Context);
    810     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
    811   }
    812 
    813   case IITDescriptor::Argument:
    814     return Tys[D.getArgumentNumber()];
    815   case IITDescriptor::ExtendArgument: {
    816     Type *Ty = Tys[D.getArgumentNumber()];
    817     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    818       return VectorType::getExtendedElementVectorType(VTy);
    819 
    820     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
    821   }
    822   case IITDescriptor::TruncArgument: {
    823     Type *Ty = Tys[D.getArgumentNumber()];
    824     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
    825       return VectorType::getTruncatedElementVectorType(VTy);
    826 
    827     IntegerType *ITy = cast<IntegerType>(Ty);
    828     assert(ITy->getBitWidth() % 2 == 0);
    829     return IntegerType::get(Context, ITy->getBitWidth() / 2);
    830   }
    831   case IITDescriptor::HalfVecArgument:
    832     return VectorType::getHalfElementsVectorType(cast<VectorType>(
    833                                                   Tys[D.getArgumentNumber()]));
    834   case IITDescriptor::SameVecWidthArgument: {
    835     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
    836     Type *Ty = Tys[D.getArgumentNumber()];
    837     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    838       return VectorType::get(EltTy, VTy->getNumElements());
    839     }
    840     llvm_unreachable("unhandled");
    841   }
    842   case IITDescriptor::PtrToArgument: {
    843     Type *Ty = Tys[D.getArgumentNumber()];
    844     return PointerType::getUnqual(Ty);
    845   }
    846   case IITDescriptor::VecOfPtrsToElt: {
    847     Type *Ty = Tys[D.getArgumentNumber()];
    848     VectorType *VTy = dyn_cast<VectorType>(Ty);
    849     if (!VTy)
    850       llvm_unreachable("Expected an argument of Vector Type");
    851     Type *EltTy = VTy->getVectorElementType();
    852     return VectorType::get(PointerType::getUnqual(EltTy),
    853                            VTy->getNumElements());
    854   }
    855  }
    856   llvm_unreachable("unhandled");
    857 }
    858 
    859 
    860 
    861 FunctionType *Intrinsic::getType(LLVMContext &Context,
    862                                  ID id, ArrayRef<Type*> Tys) {
    863   SmallVector<IITDescriptor, 8> Table;
    864   getIntrinsicInfoTableEntries(id, Table);
    865 
    866   ArrayRef<IITDescriptor> TableRef = Table;
    867   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
    868 
    869   SmallVector<Type*, 8> ArgTys;
    870   while (!TableRef.empty())
    871     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
    872 
    873   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
    874   // If we see void type as the type of the last argument, it is vararg intrinsic
    875   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
    876     ArgTys.pop_back();
    877     return FunctionType::get(ResultTy, ArgTys, true);
    878   }
    879   return FunctionType::get(ResultTy, ArgTys, false);
    880 }
    881 
    882 bool Intrinsic::isOverloaded(ID id) {
    883 #define GET_INTRINSIC_OVERLOAD_TABLE
    884 #include "llvm/IR/Intrinsics.gen"
    885 #undef GET_INTRINSIC_OVERLOAD_TABLE
    886 }
    887 
    888 bool Intrinsic::isLeaf(ID id) {
    889   switch (id) {
    890   default:
    891     return true;
    892 
    893   case Intrinsic::experimental_gc_statepoint:
    894   case Intrinsic::experimental_patchpoint_void:
    895   case Intrinsic::experimental_patchpoint_i64:
    896     return false;
    897   }
    898 }
    899 
    900 /// This defines the "Intrinsic::getAttributes(ID id)" method.
    901 #define GET_INTRINSIC_ATTRIBUTES
    902 #include "llvm/IR/Intrinsics.gen"
    903 #undef GET_INTRINSIC_ATTRIBUTES
    904 
    905 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
    906   // There can never be multiple globals with the same name of different types,
    907   // because intrinsics must be a specific type.
    908   return
    909     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
    910                                           getType(M->getContext(), id, Tys)));
    911 }
    912 
    913 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
    914 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
    915 #include "llvm/IR/Intrinsics.gen"
    916 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
    917 
    918 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
    919 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
    920 #include "llvm/IR/Intrinsics.gen"
    921 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
    922 
    923 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
    924                                    SmallVectorImpl<Type*> &ArgTys) {
    925   using namespace Intrinsic;
    926 
    927   // If we ran out of descriptors, there are too many arguments.
    928   if (Infos.empty()) return true;
    929   IITDescriptor D = Infos.front();
    930   Infos = Infos.slice(1);
    931 
    932   switch (D.Kind) {
    933     case IITDescriptor::Void: return !Ty->isVoidTy();
    934     case IITDescriptor::VarArg: return true;
    935     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
    936     case IITDescriptor::Token: return !Ty->isTokenTy();
    937     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
    938     case IITDescriptor::Half: return !Ty->isHalfTy();
    939     case IITDescriptor::Float: return !Ty->isFloatTy();
    940     case IITDescriptor::Double: return !Ty->isDoubleTy();
    941     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
    942     case IITDescriptor::Vector: {
    943       VectorType *VT = dyn_cast<VectorType>(Ty);
    944       return !VT || VT->getNumElements() != D.Vector_Width ||
    945              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
    946     }
    947     case IITDescriptor::Pointer: {
    948       PointerType *PT = dyn_cast<PointerType>(Ty);
    949       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
    950              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
    951     }
    952 
    953     case IITDescriptor::Struct: {
    954       StructType *ST = dyn_cast<StructType>(Ty);
    955       if (!ST || ST->getNumElements() != D.Struct_NumElements)
    956         return true;
    957 
    958       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
    959         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
    960           return true;
    961       return false;
    962     }
    963 
    964     case IITDescriptor::Argument:
    965       // Two cases here - If this is the second occurrence of an argument, verify
    966       // that the later instance matches the previous instance.
    967       if (D.getArgumentNumber() < ArgTys.size())
    968         return Ty != ArgTys[D.getArgumentNumber()];
    969 
    970           // Otherwise, if this is the first instance of an argument, record it and
    971           // verify the "Any" kind.
    972           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
    973           ArgTys.push_back(Ty);
    974 
    975           switch (D.getArgumentKind()) {
    976             case IITDescriptor::AK_Any:        return false; // Success
    977             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
    978             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
    979             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
    980             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
    981           }
    982           llvm_unreachable("all argument kinds not covered");
    983 
    984     case IITDescriptor::ExtendArgument: {
    985       // This may only be used when referring to a previous vector argument.
    986       if (D.getArgumentNumber() >= ArgTys.size())
    987         return true;
    988 
    989       Type *NewTy = ArgTys[D.getArgumentNumber()];
    990       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
    991         NewTy = VectorType::getExtendedElementVectorType(VTy);
    992       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
    993         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
    994       else
    995         return true;
    996 
    997       return Ty != NewTy;
    998     }
    999     case IITDescriptor::TruncArgument: {
   1000       // This may only be used when referring to a previous vector argument.
   1001       if (D.getArgumentNumber() >= ArgTys.size())
   1002         return true;
   1003 
   1004       Type *NewTy = ArgTys[D.getArgumentNumber()];
   1005       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
   1006         NewTy = VectorType::getTruncatedElementVectorType(VTy);
   1007       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
   1008         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
   1009       else
   1010         return true;
   1011 
   1012       return Ty != NewTy;
   1013     }
   1014     case IITDescriptor::HalfVecArgument:
   1015       // This may only be used when referring to a previous vector argument.
   1016       return D.getArgumentNumber() >= ArgTys.size() ||
   1017              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
   1018              VectorType::getHalfElementsVectorType(
   1019                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
   1020     case IITDescriptor::SameVecWidthArgument: {
   1021       if (D.getArgumentNumber() >= ArgTys.size())
   1022         return true;
   1023       VectorType * ReferenceType =
   1024               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
   1025       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
   1026       if (!ThisArgType || !ReferenceType ||
   1027           (ReferenceType->getVectorNumElements() !=
   1028            ThisArgType->getVectorNumElements()))
   1029         return true;
   1030       return matchIntrinsicType(ThisArgType->getVectorElementType(),
   1031                                 Infos, ArgTys);
   1032     }
   1033     case IITDescriptor::PtrToArgument: {
   1034       if (D.getArgumentNumber() >= ArgTys.size())
   1035         return true;
   1036       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
   1037       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
   1038       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
   1039     }
   1040     case IITDescriptor::VecOfPtrsToElt: {
   1041       if (D.getArgumentNumber() >= ArgTys.size())
   1042         return true;
   1043       VectorType * ReferenceType =
   1044               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
   1045       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
   1046       if (!ThisArgVecTy || !ReferenceType ||
   1047           (ReferenceType->getVectorNumElements() !=
   1048            ThisArgVecTy->getVectorNumElements()))
   1049         return true;
   1050       PointerType *ThisArgEltTy =
   1051               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
   1052       if (!ThisArgEltTy)
   1053         return true;
   1054       return ThisArgEltTy->getElementType() !=
   1055              ReferenceType->getVectorElementType();
   1056     }
   1057   }
   1058   llvm_unreachable("unhandled");
   1059 }
   1060 
   1061 bool
   1062 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
   1063                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
   1064   // If there are no descriptors left, then it can't be a vararg.
   1065   if (Infos.empty())
   1066     return isVarArg;
   1067 
   1068   // There should be only one descriptor remaining at this point.
   1069   if (Infos.size() != 1)
   1070     return true;
   1071 
   1072   // Check and verify the descriptor.
   1073   IITDescriptor D = Infos.front();
   1074   Infos = Infos.slice(1);
   1075   if (D.Kind == IITDescriptor::VarArg)
   1076     return !isVarArg;
   1077 
   1078   return true;
   1079 }
   1080 
   1081 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
   1082   Intrinsic::ID ID = F->getIntrinsicID();
   1083   if (!ID)
   1084     return None;
   1085 
   1086   FunctionType *FTy = F->getFunctionType();
   1087   // Accumulate an array of overloaded types for the given intrinsic
   1088   SmallVector<Type *, 4> ArgTys;
   1089   {
   1090     SmallVector<Intrinsic::IITDescriptor, 8> Table;
   1091     getIntrinsicInfoTableEntries(ID, Table);
   1092     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
   1093 
   1094     // If we encounter any problems matching the signature with the descriptor
   1095     // just give up remangling. It's up to verifier to report the discrepancy.
   1096     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
   1097       return None;
   1098     for (auto Ty : FTy->params())
   1099       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
   1100         return None;
   1101     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
   1102       return None;
   1103   }
   1104 
   1105   StringRef Name = F->getName();
   1106   if (Name == Intrinsic::getName(ID, ArgTys))
   1107     return None;
   1108 
   1109   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
   1110   NewDecl->setCallingConv(F->getCallingConv());
   1111   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
   1112   return NewDecl;
   1113 }
   1114 
   1115 /// hasAddressTaken - returns true if there are any uses of this function
   1116 /// other than direct calls or invokes to it.
   1117 bool Function::hasAddressTaken(const User* *PutOffender) const {
   1118   for (const Use &U : uses()) {
   1119     const User *FU = U.getUser();
   1120     if (isa<BlockAddress>(FU))
   1121       continue;
   1122     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
   1123       if (PutOffender)
   1124         *PutOffender = FU;
   1125       return true;
   1126     }
   1127     ImmutableCallSite CS(cast<Instruction>(FU));
   1128     if (!CS.isCallee(&U)) {
   1129       if (PutOffender)
   1130         *PutOffender = FU;
   1131       return true;
   1132     }
   1133   }
   1134   return false;
   1135 }
   1136 
   1137 bool Function::isDefTriviallyDead() const {
   1138   // Check the linkage
   1139   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
   1140       !hasAvailableExternallyLinkage())
   1141     return false;
   1142 
   1143   // Check if the function is used by anything other than a blockaddress.
   1144   for (const User *U : users())
   1145     if (!isa<BlockAddress>(U))
   1146       return false;
   1147 
   1148   return true;
   1149 }
   1150 
   1151 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
   1152 /// setjmp or other function that gcc recognizes as "returning twice".
   1153 bool Function::callsFunctionThatReturnsTwice() const {
   1154   for (const_inst_iterator
   1155          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
   1156     ImmutableCallSite CS(&*I);
   1157     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
   1158       return true;
   1159   }
   1160 
   1161   return false;
   1162 }
   1163 
   1164 Constant *Function::getPersonalityFn() const {
   1165   assert(hasPersonalityFn() && getNumOperands());
   1166   return cast<Constant>(Op<0>());
   1167 }
   1168 
   1169 void Function::setPersonalityFn(Constant *Fn) {
   1170   setHungoffOperand<0>(Fn);
   1171   setValueSubclassDataBit(3, Fn != nullptr);
   1172 }
   1173 
   1174 Constant *Function::getPrefixData() const {
   1175   assert(hasPrefixData() && getNumOperands());
   1176   return cast<Constant>(Op<1>());
   1177 }
   1178 
   1179 void Function::setPrefixData(Constant *PrefixData) {
   1180   setHungoffOperand<1>(PrefixData);
   1181   setValueSubclassDataBit(1, PrefixData != nullptr);
   1182 }
   1183 
   1184 Constant *Function::getPrologueData() const {
   1185   assert(hasPrologueData() && getNumOperands());
   1186   return cast<Constant>(Op<2>());
   1187 }
   1188 
   1189 void Function::setPrologueData(Constant *PrologueData) {
   1190   setHungoffOperand<2>(PrologueData);
   1191   setValueSubclassDataBit(2, PrologueData != nullptr);
   1192 }
   1193 
   1194 void Function::allocHungoffUselist() {
   1195   // If we've already allocated a uselist, stop here.
   1196   if (getNumOperands())
   1197     return;
   1198 
   1199   allocHungoffUses(3, /*IsPhi=*/ false);
   1200   setNumHungOffUseOperands(3);
   1201 
   1202   // Initialize the uselist with placeholder operands to allow traversal.
   1203   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
   1204   Op<0>().set(CPN);
   1205   Op<1>().set(CPN);
   1206   Op<2>().set(CPN);
   1207 }
   1208 
   1209 template <int Idx>
   1210 void Function::setHungoffOperand(Constant *C) {
   1211   if (C) {
   1212     allocHungoffUselist();
   1213     Op<Idx>().set(C);
   1214   } else if (getNumOperands()) {
   1215     Op<Idx>().set(
   1216         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
   1217   }
   1218 }
   1219 
   1220 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
   1221   assert(Bit < 16 && "SubclassData contains only 16 bits");
   1222   if (On)
   1223     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
   1224   else
   1225     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
   1226 }
   1227 
   1228 void Function::setEntryCount(uint64_t Count) {
   1229   MDBuilder MDB(getContext());
   1230   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
   1231 }
   1232 
   1233 Optional<uint64_t> Function::getEntryCount() const {
   1234   MDNode *MD = getMetadata(LLVMContext::MD_prof);
   1235   if (MD && MD->getOperand(0))
   1236     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
   1237       if (MDS->getString().equals("function_entry_count")) {
   1238         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
   1239         return CI->getValue().getZExtValue();
   1240       }
   1241   return None;
   1242 }
   1243