Home | History | Annotate | Download | only in src
      1 /*-
      2  * Copyright (c) 2005 Bruce D. Evans and Steven G. Kargl
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice unmodified, this list of conditions, and the following
     10  *    disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25  */
     26 
     27 /*
     28  * Hyperbolic cosine of a complex argument z = x + i y.
     29  *
     30  * cosh(z) = cosh(x+iy)
     31  *         = cosh(x) cos(y) + i sinh(x) sin(y).
     32  *
     33  * Exceptional values are noted in the comments within the source code.
     34  * These values and the return value were taken from n1124.pdf.
     35  * The sign of the result for some exceptional values is unspecified but
     36  * must satisfy both cosh(conj(z)) == conj(cosh(z)) and cosh(-z) == cosh(z).
     37  */
     38 
     39 #include <sys/cdefs.h>
     40 __FBSDID("$FreeBSD: head/lib/msun/src/s_ccosh.c 284423 2015-06-15 20:11:06Z tijl $");
     41 
     42 #include <complex.h>
     43 #include <math.h>
     44 
     45 #include "math_private.h"
     46 
     47 static const double huge = 0x1p1023;
     48 
     49 double complex
     50 ccosh(double complex z)
     51 {
     52 	double x, y, h;
     53 	int32_t hx, hy, ix, iy, lx, ly;
     54 
     55 	x = creal(z);
     56 	y = cimag(z);
     57 
     58 	EXTRACT_WORDS(hx, lx, x);
     59 	EXTRACT_WORDS(hy, ly, y);
     60 
     61 	ix = 0x7fffffff & hx;
     62 	iy = 0x7fffffff & hy;
     63 
     64 	/* Handle the nearly-non-exceptional cases where x and y are finite. */
     65 	if (ix < 0x7ff00000 && iy < 0x7ff00000) {
     66 		if ((iy | ly) == 0)
     67 			return (CMPLX(cosh(x), x * y));
     68 		if (ix < 0x40360000)	/* |x| < 22: normal case */
     69 			return (CMPLX(cosh(x) * cos(y), sinh(x) * sin(y)));
     70 
     71 		/* |x| >= 22, so cosh(x) ~= exp(|x|) */
     72 		if (ix < 0x40862e42) {
     73 			/* x < 710: exp(|x|) won't overflow */
     74 			h = exp(fabs(x)) * 0.5;
     75 			return (CMPLX(h * cos(y), copysign(h, x) * sin(y)));
     76 		} else if (ix < 0x4096bbaa) {
     77 			/* x < 1455: scale to avoid overflow */
     78 			z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
     79 			return (CMPLX(creal(z), cimag(z) * copysign(1, x)));
     80 		} else {
     81 			/* x >= 1455: the result always overflows */
     82 			h = huge * x;
     83 			return (CMPLX(h * h * cos(y), h * sin(y)));
     84 		}
     85 	}
     86 
     87 	/*
     88 	 * cosh(+-0 +- I Inf) = dNaN + I (+-)(+-)0.
     89 	 * The sign of 0 in the result is unspecified.  Choice = product
     90 	 * of the signs of the argument.  Raise the invalid floating-point
     91 	 * exception.
     92 	 *
     93 	 * cosh(+-0 +- I NaN) = d(NaN) + I (+-)(+-)0.
     94 	 * The sign of 0 in the result is unspecified.  Choice = product
     95 	 * of the signs of the argument.
     96 	 */
     97 	if ((ix | lx) == 0)		/* && iy >= 0x7ff00000 */
     98 		return (CMPLX(y - y, x * copysign(0, y)));
     99 
    100 	/*
    101 	 * cosh(+-Inf +- I 0) = +Inf + I (+-)(+-)0.
    102 	 *
    103 	 * cosh(NaN +- I 0)   = d(NaN) + I (+-)(+-)0.
    104 	 * The sign of 0 in the result is unspecified.  Choice = product
    105 	 * of the signs of the argument.
    106 	 */
    107 	if ((iy | ly) == 0)		/* && ix >= 0x7ff00000 */
    108 		return (CMPLX(x * x, copysign(0, x) * y));
    109 
    110 	/*
    111 	 * cosh(x +- I Inf) = dNaN + I dNaN.
    112 	 * Raise the invalid floating-point exception for finite nonzero x.
    113 	 *
    114 	 * cosh(x + I NaN) = d(NaN) + I d(NaN).
    115 	 * Optionally raises the invalid floating-point exception for finite
    116 	 * nonzero x.  Choice = don't raise (except for signaling NaNs).
    117 	 */
    118 	if (ix < 0x7ff00000)		/* && iy >= 0x7ff00000 */
    119 		return (CMPLX(y - y, x * (y - y)));
    120 
    121 	/*
    122 	 * cosh(+-Inf + I NaN)  = +Inf + I d(NaN).
    123 	 *
    124 	 * cosh(+-Inf +- I Inf) = +Inf + I dNaN.
    125 	 * The sign of Inf in the result is unspecified.  Choice = always +.
    126 	 * Raise the invalid floating-point exception.
    127 	 *
    128 	 * cosh(+-Inf + I y)   = +Inf cos(y) +- I Inf sin(y)
    129 	 */
    130 	if (ix == 0x7ff00000 && lx == 0) {
    131 		if (iy >= 0x7ff00000)
    132 			return (CMPLX(INFINITY, x * (y - y)));
    133 		return (CMPLX(INFINITY * cos(y), x * sin(y)));
    134 	}
    135 
    136 	/*
    137 	 * cosh(NaN + I NaN)  = d(NaN) + I d(NaN).
    138 	 *
    139 	 * cosh(NaN +- I Inf) = d(NaN) + I d(NaN).
    140 	 * Optionally raises the invalid floating-point exception.
    141 	 * Choice = raise.
    142 	 *
    143 	 * cosh(NaN + I y)    = d(NaN) + I d(NaN).
    144 	 * Optionally raises the invalid floating-point exception for finite
    145 	 * nonzero y.  Choice = don't raise (except for signaling NaNs).
    146 	 */
    147 	return (CMPLX((x * x) * (y - y), (x + x) * (y - y)));
    148 }
    149 
    150 double complex
    151 ccos(double complex z)
    152 {
    153 
    154 	/* ccos(z) = ccosh(I * z) */
    155 	return (ccosh(CMPLX(-cimag(z), creal(z))));
    156 }
    157