Home | History | Annotate | Download | only in celt
      1 /* Copyright (c) 2002-2008 Jean-Marc Valin
      2    Copyright (c) 2007-2008 CSIRO
      3    Copyright (c) 2007-2009 Xiph.Org Foundation
      4    Written by Jean-Marc Valin */
      5 /**
      6    @file mathops.h
      7    @brief Various math functions
      8 */
      9 /*
     10    Redistribution and use in source and binary forms, with or without
     11    modification, are permitted provided that the following conditions
     12    are met:
     13 
     14    - Redistributions of source code must retain the above copyright
     15    notice, this list of conditions and the following disclaimer.
     16 
     17    - Redistributions in binary form must reproduce the above copyright
     18    notice, this list of conditions and the following disclaimer in the
     19    documentation and/or other materials provided with the distribution.
     20 
     21    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     22    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     23    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     24    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
     25    OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     26    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     27    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     28    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     29    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     30    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     31    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32 */
     33 
     34 #ifndef MATHOPS_H
     35 #define MATHOPS_H
     36 
     37 #include "arch.h"
     38 #include "entcode.h"
     39 #include "os_support.h"
     40 
     41 #define PI 3.141592653f
     42 
     43 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
     44 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
     45 
     46 unsigned isqrt32(opus_uint32 _val);
     47 
     48 /* CELT doesn't need it for fixed-point, by analysis.c does. */
     49 #if !defined(FIXED_POINT) || defined(ANALYSIS_C)
     50 #define cA 0.43157974f
     51 #define cB 0.67848403f
     52 #define cC 0.08595542f
     53 #define cE ((float)PI/2)
     54 static OPUS_INLINE float fast_atan2f(float y, float x) {
     55    float x2, y2;
     56    x2 = x*x;
     57    y2 = y*y;
     58    /* For very small values, we don't care about the answer, so
     59       we can just return 0. */
     60    if (x2 + y2 < 1e-18f)
     61    {
     62       return 0;
     63    }
     64    if(x2<y2){
     65       float den = (y2 + cB*x2) * (y2 + cC*x2);
     66       return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
     67    }else{
     68       float den = (x2 + cB*y2) * (x2 + cC*y2);
     69       return  x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
     70    }
     71 }
     72 #undef cA
     73 #undef cB
     74 #undef cC
     75 #undef cD
     76 #endif
     77 
     78 
     79 #ifndef OVERRIDE_CELT_MAXABS16
     80 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
     81 {
     82    int i;
     83    opus_val16 maxval = 0;
     84    opus_val16 minval = 0;
     85    for (i=0;i<len;i++)
     86    {
     87       maxval = MAX16(maxval, x[i]);
     88       minval = MIN16(minval, x[i]);
     89    }
     90    return MAX32(EXTEND32(maxval),-EXTEND32(minval));
     91 }
     92 #endif
     93 
     94 #ifndef OVERRIDE_CELT_MAXABS32
     95 #ifdef FIXED_POINT
     96 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
     97 {
     98    int i;
     99    opus_val32 maxval = 0;
    100    opus_val32 minval = 0;
    101    for (i=0;i<len;i++)
    102    {
    103       maxval = MAX32(maxval, x[i]);
    104       minval = MIN32(minval, x[i]);
    105    }
    106    return MAX32(maxval, -minval);
    107 }
    108 #else
    109 #define celt_maxabs32(x,len) celt_maxabs16(x,len)
    110 #endif
    111 #endif
    112 
    113 
    114 #ifndef FIXED_POINT
    115 
    116 #define celt_sqrt(x) ((float)sqrt(x))
    117 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
    118 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
    119 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
    120 #define celt_rcp(x) (1.f/(x))
    121 #define celt_div(a,b) ((a)/(b))
    122 #define frac_div32(a,b) ((float)(a)/(b))
    123 
    124 #ifdef FLOAT_APPROX
    125 
    126 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
    127          denorm, +/- inf and NaN are *not* handled */
    128 
    129 /** Base-2 log approximation (log2(x)). */
    130 static OPUS_INLINE float celt_log2(float x)
    131 {
    132    int integer;
    133    float frac;
    134    union {
    135       float f;
    136       opus_uint32 i;
    137    } in;
    138    in.f = x;
    139    integer = (in.i>>23)-127;
    140    in.i -= integer<<23;
    141    frac = in.f - 1.5f;
    142    frac = -0.41445418f + frac*(0.95909232f
    143           + frac*(-0.33951290f + frac*0.16541097f));
    144    return 1+integer+frac;
    145 }
    146 
    147 /** Base-2 exponential approximation (2^x). */
    148 static OPUS_INLINE float celt_exp2(float x)
    149 {
    150    int integer;
    151    float frac;
    152    union {
    153       float f;
    154       opus_uint32 i;
    155    } res;
    156    integer = floor(x);
    157    if (integer < -50)
    158       return 0;
    159    frac = x-integer;
    160    /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
    161    res.f = 0.99992522f + frac * (0.69583354f
    162            + frac * (0.22606716f + 0.078024523f*frac));
    163    res.i = (res.i + (integer<<23)) & 0x7fffffff;
    164    return res.f;
    165 }
    166 
    167 #else
    168 #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
    169 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
    170 #endif
    171 
    172 #endif
    173 
    174 #ifdef FIXED_POINT
    175 
    176 #include "os_support.h"
    177 
    178 #ifndef OVERRIDE_CELT_ILOG2
    179 /** Integer log in base2. Undefined for zero and negative numbers */
    180 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
    181 {
    182    celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
    183    return EC_ILOG(x)-1;
    184 }
    185 #endif
    186 
    187 
    188 /** Integer log in base2. Defined for zero, but not for negative numbers */
    189 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
    190 {
    191    return x <= 0 ? 0 : celt_ilog2(x);
    192 }
    193 
    194 opus_val16 celt_rsqrt_norm(opus_val32 x);
    195 
    196 opus_val32 celt_sqrt(opus_val32 x);
    197 
    198 opus_val16 celt_cos_norm(opus_val32 x);
    199 
    200 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
    201 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
    202 {
    203    int i;
    204    opus_val16 n, frac;
    205    /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
    206        0.15530808010959576, -0.08556153059057618 */
    207    static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
    208    if (x==0)
    209       return -32767;
    210    i = celt_ilog2(x);
    211    n = VSHR32(x,i-15)-32768-16384;
    212    frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
    213    return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
    214 }
    215 
    216 /*
    217  K0 = 1
    218  K1 = log(2)
    219  K2 = 3-4*log(2)
    220  K3 = 3*log(2) - 2
    221 */
    222 #define D0 16383
    223 #define D1 22804
    224 #define D2 14819
    225 #define D3 10204
    226 
    227 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
    228 {
    229    opus_val16 frac;
    230    frac = SHL16(x, 4);
    231    return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
    232 }
    233 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
    234 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
    235 {
    236    int integer;
    237    opus_val16 frac;
    238    integer = SHR16(x,10);
    239    if (integer>14)
    240       return 0x7f000000;
    241    else if (integer < -15)
    242       return 0;
    243    frac = celt_exp2_frac(x-SHL16(integer,10));
    244    return VSHR32(EXTEND32(frac), -integer-2);
    245 }
    246 
    247 opus_val32 celt_rcp(opus_val32 x);
    248 
    249 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
    250 
    251 opus_val32 frac_div32(opus_val32 a, opus_val32 b);
    252 
    253 #define M1 32767
    254 #define M2 -21
    255 #define M3 -11943
    256 #define M4 4936
    257 
    258 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
    259    and normalized by pi/4. Output is in Q15 format */
    260 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
    261 {
    262    return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
    263 }
    264 
    265 #undef M1
    266 #undef M2
    267 #undef M3
    268 #undef M4
    269 
    270 /* atan2() approximation valid for positive input values */
    271 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
    272 {
    273    if (y < x)
    274    {
    275       opus_val32 arg;
    276       arg = celt_div(SHL32(EXTEND32(y),15),x);
    277       if (arg >= 32767)
    278          arg = 32767;
    279       return SHR16(celt_atan01(EXTRACT16(arg)),1);
    280    } else {
    281       opus_val32 arg;
    282       arg = celt_div(SHL32(EXTEND32(x),15),y);
    283       if (arg >= 32767)
    284          arg = 32767;
    285       return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
    286    }
    287 }
    288 
    289 #endif /* FIXED_POINT */
    290 #endif /* MATHOPS_H */
    291