Home | History | Annotate | Download | only in aarch64
      1 /*
      2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch.h>
      8 #include <arch_helpers.h>
      9 #include <assert.h>
     10 #include <bl_common.h>
     11 #include <context.h>
     12 #include <context_mgmt.h>
     13 #include <interrupt_mgmt.h>
     14 #include <platform.h>
     15 #include <platform_def.h>
     16 #include <pubsub_events.h>
     17 #include <smcc_helpers.h>
     18 #include <string.h>
     19 #include <utils.h>
     20 
     21 
     22 /*******************************************************************************
     23  * Context management library initialisation routine. This library is used by
     24  * runtime services to share pointers to 'cpu_context' structures for the secure
     25  * and non-secure states. Management of the structures and their associated
     26  * memory is not done by the context management library e.g. the PSCI service
     27  * manages the cpu context used for entry from and exit to the non-secure state.
     28  * The Secure payload dispatcher service manages the context(s) corresponding to
     29  * the secure state. It also uses this library to get access to the non-secure
     30  * state cpu context pointers.
     31  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
     32  * which will used for programming an entry into a lower EL. The same context
     33  * will used to save state upon exception entry from that EL.
     34  ******************************************************************************/
     35 void cm_init(void)
     36 {
     37 	/*
     38 	 * The context management library has only global data to intialize, but
     39 	 * that will be done when the BSS is zeroed out
     40 	 */
     41 }
     42 
     43 /*******************************************************************************
     44  * The following function initializes the cpu_context 'ctx' for
     45  * first use, and sets the initial entrypoint state as specified by the
     46  * entry_point_info structure.
     47  *
     48  * The security state to initialize is determined by the SECURE attribute
     49  * of the entry_point_info. The function returns a pointer to the initialized
     50  * context and sets this as the next context to return to.
     51  *
     52  * The EE and ST attributes are used to configure the endianess and secure
     53  * timer availability for the new execution context.
     54  *
     55  * To prepare the register state for entry call cm_prepare_el3_exit() and
     56  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
     57  * cm_e1_sysreg_context_restore().
     58  ******************************************************************************/
     59 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
     60 {
     61 	unsigned int security_state;
     62 	uint32_t scr_el3, pmcr_el0;
     63 	el3_state_t *state;
     64 	gp_regs_t *gp_regs;
     65 	unsigned long sctlr_elx;
     66 
     67 	assert(ctx);
     68 
     69 	security_state = GET_SECURITY_STATE(ep->h.attr);
     70 
     71 	/* Clear any residual register values from the context */
     72 	zeromem(ctx, sizeof(*ctx));
     73 
     74 	/*
     75 	 * SCR_EL3 was initialised during reset sequence in macro
     76 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
     77 	 * affect the next EL.
     78 	 *
     79 	 * The following fields are initially set to zero and then updated to
     80 	 * the required value depending on the state of the SPSR_EL3 and the
     81 	 * Security state and entrypoint attributes of the next EL.
     82 	 */
     83 	scr_el3 = read_scr();
     84 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
     85 			SCR_ST_BIT | SCR_HCE_BIT);
     86 	/*
     87 	 * SCR_NS: Set the security state of the next EL.
     88 	 */
     89 	if (security_state != SECURE)
     90 		scr_el3 |= SCR_NS_BIT;
     91 	/*
     92 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
     93 	 *  Exception level as specified by SPSR.
     94 	 */
     95 	if (GET_RW(ep->spsr) == MODE_RW_64)
     96 		scr_el3 |= SCR_RW_BIT;
     97 	/*
     98 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
     99 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
    100 	 *  by the entrypoint attributes.
    101 	 */
    102 	if (EP_GET_ST(ep->h.attr))
    103 		scr_el3 |= SCR_ST_BIT;
    104 
    105 #ifndef HANDLE_EA_EL3_FIRST
    106 	/*
    107 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
    108 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
    109 	 *  Aborts are taken to EL3.
    110 	 */
    111 	scr_el3 &= ~SCR_EA_BIT;
    112 #endif
    113 
    114 #ifdef IMAGE_BL31
    115 	/*
    116 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
    117 	 *  indicated by the interrupt routing model for BL31.
    118 	 */
    119 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
    120 #endif
    121 
    122 	/*
    123 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
    124 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
    125 	 * next mode is Hyp.
    126 	 */
    127 	if ((GET_RW(ep->spsr) == MODE_RW_64
    128 	     && GET_EL(ep->spsr) == MODE_EL2)
    129 	    || (GET_RW(ep->spsr) != MODE_RW_64
    130 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
    131 		scr_el3 |= SCR_HCE_BIT;
    132 	}
    133 
    134 	/*
    135 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
    136 	 * execution state setting all fields rather than relying of the hw.
    137 	 * Some fields have architecturally UNKNOWN reset values and these are
    138 	 * set to zero.
    139 	 *
    140 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
    141 	 *
    142 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
    143 	 *  required by PSCI specification)
    144 	 */
    145 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
    146 	if (GET_RW(ep->spsr) == MODE_RW_64)
    147 		sctlr_elx |= SCTLR_EL1_RES1;
    148 	else {
    149 		/*
    150 		 * If the target execution state is AArch32 then the following
    151 		 * fields need to be set.
    152 		 *
    153 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
    154 		 *  instructions are not trapped to EL1.
    155 		 *
    156 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
    157 		 *  instructions are not trapped to EL1.
    158 		 *
    159 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
    160 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
    161 		 */
    162 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
    163 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
    164 	}
    165 
    166 	/*
    167 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
    168 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
    169 	 * are not part of the stored cpu_context.
    170 	 */
    171 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
    172 
    173 	if (security_state == SECURE) {
    174 		/*
    175 		 * Initialise PMCR_EL0 for secure context only, setting all
    176 		 * fields rather than relying on hw. Some fields are
    177 		 * architecturally UNKNOWN on reset.
    178 		 *
    179 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
    180 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
    181 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
    182 		 *
    183 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
    184 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
    185 		 *
    186 		 * PMCR_EL0.X: Set to zero to disable export of events.
    187 		 *
    188 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
    189 		 *  counts on every clock cycle.
    190 		 */
    191 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
    192 				| PMCR_EL0_DP_BIT)
    193 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
    194 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
    195 	}
    196 
    197 	/* Populate EL3 state so that we've the right context before doing ERET */
    198 	state = get_el3state_ctx(ctx);
    199 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
    200 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
    201 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
    202 
    203 	/*
    204 	 * Store the X0-X7 value from the entrypoint into the context
    205 	 * Use memcpy as we are in control of the layout of the structures
    206 	 */
    207 	gp_regs = get_gpregs_ctx(ctx);
    208 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
    209 }
    210 
    211 /*******************************************************************************
    212  * The following function initializes the cpu_context for a CPU specified by
    213  * its `cpu_idx` for first use, and sets the initial entrypoint state as
    214  * specified by the entry_point_info structure.
    215  ******************************************************************************/
    216 void cm_init_context_by_index(unsigned int cpu_idx,
    217 			      const entry_point_info_t *ep)
    218 {
    219 	cpu_context_t *ctx;
    220 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
    221 	cm_init_context_common(ctx, ep);
    222 }
    223 
    224 /*******************************************************************************
    225  * The following function initializes the cpu_context for the current CPU
    226  * for first use, and sets the initial entrypoint state as specified by the
    227  * entry_point_info structure.
    228  ******************************************************************************/
    229 void cm_init_my_context(const entry_point_info_t *ep)
    230 {
    231 	cpu_context_t *ctx;
    232 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
    233 	cm_init_context_common(ctx, ep);
    234 }
    235 
    236 /*******************************************************************************
    237  * Prepare the CPU system registers for first entry into secure or normal world
    238  *
    239  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
    240  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
    241  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
    242  * For all entries, the EL1 registers are initialized from the cpu_context
    243  ******************************************************************************/
    244 void cm_prepare_el3_exit(uint32_t security_state)
    245 {
    246 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
    247 	cpu_context_t *ctx = cm_get_context(security_state);
    248 
    249 	assert(ctx);
    250 
    251 	if (security_state == NON_SECURE) {
    252 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
    253 		if (scr_el3 & SCR_HCE_BIT) {
    254 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
    255 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
    256 						 CTX_SCTLR_EL1);
    257 			sctlr_elx &= SCTLR_EE_BIT;
    258 			sctlr_elx |= SCTLR_EL2_RES1;
    259 			write_sctlr_el2(sctlr_elx);
    260 		} else if (EL_IMPLEMENTED(2)) {
    261 			/*
    262 			 * EL2 present but unused, need to disable safely.
    263 			 * SCTLR_EL2 can be ignored in this case.
    264 			 *
    265 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
    266 			 * to zero so that Non-secure operations do not trap to
    267 			 * EL2.
    268 			 *
    269 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
    270 			 */
    271 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
    272 
    273 			/*
    274 			 * Initialise CPTR_EL2 setting all fields rather than
    275 			 * relying on the hw. All fields have architecturally
    276 			 * UNKNOWN reset values.
    277 			 *
    278 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
    279 			 *  accesses to the CPACR_EL1 or CPACR from both
    280 			 *  Execution states do not trap to EL2.
    281 			 *
    282 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
    283 			 *  register accesses to the trace registers from both
    284 			 *  Execution states do not trap to EL2.
    285 			 *
    286 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
    287 			 *  to SIMD and floating-point functionality from both
    288 			 *  Execution states do not trap to EL2.
    289 			 */
    290 			write_cptr_el2(CPTR_EL2_RESET_VAL &
    291 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
    292 					| CPTR_EL2_TFP_BIT));
    293 
    294 			/*
    295 			 * Initiliase CNTHCTL_EL2. All fields are
    296 			 * architecturally UNKNOWN on reset and are set to zero
    297 			 * except for field(s) listed below.
    298 			 *
    299 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
    300 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
    301 			 *  physical timer registers.
    302 			 *
    303 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
    304 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
    305 			 *  physical counter registers.
    306 			 */
    307 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
    308 						EL1PCEN_BIT | EL1PCTEN_BIT);
    309 
    310 			/*
    311 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
    312 			 * architecturally UNKNOWN value.
    313 			 */
    314 			write_cntvoff_el2(0);
    315 
    316 			/*
    317 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
    318 			 * MPIDR_EL1 respectively.
    319 			 */
    320 			write_vpidr_el2(read_midr_el1());
    321 			write_vmpidr_el2(read_mpidr_el1());
    322 
    323 			/*
    324 			 * Initialise VTTBR_EL2. All fields are architecturally
    325 			 * UNKNOWN on reset.
    326 			 *
    327 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
    328 			 *  2 address translation is disabled, cache maintenance
    329 			 *  operations depend on the VMID.
    330 			 *
    331 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
    332 			 *  translation is disabled.
    333 			 */
    334 			write_vttbr_el2(VTTBR_RESET_VAL &
    335 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
    336 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
    337 
    338 			/*
    339 			 * Initialise MDCR_EL2, setting all fields rather than
    340 			 * relying on hw. Some fields are architecturally
    341 			 * UNKNOWN on reset.
    342 			 *
    343 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
    344 			 * profiling controls to EL2.
    345 			 *
    346 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
    347 			 * state. Accesses to profiling buffer controls at
    348 			 * non-secure EL1 are not trapped to EL2.
    349 			 *
    350 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
    351 			 *  EL1 System register accesses to the Debug ROM
    352 			 *  registers are not trapped to EL2.
    353 			 *
    354 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
    355 			 *  System register accesses to the powerdown debug
    356 			 *  registers are not trapped to EL2.
    357 			 *
    358 			 * MDCR_EL2.TDA: Set to zero so that System register
    359 			 *  accesses to the debug registers do not trap to EL2.
    360 			 *
    361 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
    362 			 *  are not routed to EL2.
    363 			 *
    364 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
    365 			 *  Monitors.
    366 			 *
    367 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
    368 			 *  EL1 accesses to all Performance Monitors registers
    369 			 *  are not trapped to EL2.
    370 			 *
    371 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
    372 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
    373 			 *  trapped to EL2.
    374 			 *
    375 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
    376 			 *  architecturally-defined reset value.
    377 			 */
    378 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
    379 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
    380 					>> PMCR_EL0_N_SHIFT)) &
    381 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
    382 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
    383 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
    384 					| MDCR_EL2_TPMCR_BIT));
    385 
    386 #if ENABLE_SPE_FOR_LOWER_ELS
    387 			uint64_t id_aa64dfr0_el1;
    388 
    389 			/* Detect if SPE is implemented */
    390 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
    391 				ID_AA64DFR0_PMS_SHIFT;
    392 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
    393 				/*
    394 				 * Make sure traps to EL2 are not generated if
    395 				 * EL2 is implemented but not used.
    396 				 */
    397 				mdcr_el2 &= ~MDCR_EL2_TPMS;
    398 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
    399 			}
    400 #endif
    401 
    402 			write_mdcr_el2(mdcr_el2);
    403 
    404 			/*
    405 			 * Initialise HSTR_EL2. All fields are architecturally
    406 			 * UNKNOWN on reset.
    407 			 *
    408 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
    409 			 *  Non-secure EL0 or EL1 accesses to System registers
    410 			 *  do not trap to EL2.
    411 			 */
    412 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
    413 			/*
    414 			 * Initialise CNTHP_CTL_EL2. All fields are
    415 			 * architecturally UNKNOWN on reset.
    416 			 *
    417 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
    418 			 *  physical timer and prevent timer interrupts.
    419 			 */
    420 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
    421 						~(CNTHP_CTL_ENABLE_BIT));
    422 		}
    423 	}
    424 
    425 	cm_el1_sysregs_context_restore(security_state);
    426 	cm_set_next_eret_context(security_state);
    427 }
    428 
    429 /*******************************************************************************
    430  * The next four functions are used by runtime services to save and restore
    431  * EL1 context on the 'cpu_context' structure for the specified security
    432  * state.
    433  ******************************************************************************/
    434 void cm_el1_sysregs_context_save(uint32_t security_state)
    435 {
    436 	cpu_context_t *ctx;
    437 
    438 	ctx = cm_get_context(security_state);
    439 	assert(ctx);
    440 
    441 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
    442 	el1_sysregs_context_save_post_ops();
    443 
    444 #if IMAGE_BL31
    445 	if (security_state == SECURE)
    446 		PUBLISH_EVENT(cm_exited_secure_world);
    447 	else
    448 		PUBLISH_EVENT(cm_exited_normal_world);
    449 #endif
    450 }
    451 
    452 void cm_el1_sysregs_context_restore(uint32_t security_state)
    453 {
    454 	cpu_context_t *ctx;
    455 
    456 	ctx = cm_get_context(security_state);
    457 	assert(ctx);
    458 
    459 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
    460 
    461 #if IMAGE_BL31
    462 	if (security_state == SECURE)
    463 		PUBLISH_EVENT(cm_entering_secure_world);
    464 	else
    465 		PUBLISH_EVENT(cm_entering_normal_world);
    466 #endif
    467 }
    468 
    469 /*******************************************************************************
    470  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
    471  * given security state with the given entrypoint
    472  ******************************************************************************/
    473 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
    474 {
    475 	cpu_context_t *ctx;
    476 	el3_state_t *state;
    477 
    478 	ctx = cm_get_context(security_state);
    479 	assert(ctx);
    480 
    481 	/* Populate EL3 state so that ERET jumps to the correct entry */
    482 	state = get_el3state_ctx(ctx);
    483 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
    484 }
    485 
    486 /*******************************************************************************
    487  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
    488  * pertaining to the given security state
    489  ******************************************************************************/
    490 void cm_set_elr_spsr_el3(uint32_t security_state,
    491 			uintptr_t entrypoint, uint32_t spsr)
    492 {
    493 	cpu_context_t *ctx;
    494 	el3_state_t *state;
    495 
    496 	ctx = cm_get_context(security_state);
    497 	assert(ctx);
    498 
    499 	/* Populate EL3 state so that ERET jumps to the correct entry */
    500 	state = get_el3state_ctx(ctx);
    501 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
    502 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
    503 }
    504 
    505 /*******************************************************************************
    506  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
    507  * pertaining to the given security state using the value and bit position
    508  * specified in the parameters. It preserves all other bits.
    509  ******************************************************************************/
    510 void cm_write_scr_el3_bit(uint32_t security_state,
    511 			  uint32_t bit_pos,
    512 			  uint32_t value)
    513 {
    514 	cpu_context_t *ctx;
    515 	el3_state_t *state;
    516 	uint32_t scr_el3;
    517 
    518 	ctx = cm_get_context(security_state);
    519 	assert(ctx);
    520 
    521 	/* Ensure that the bit position is a valid one */
    522 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
    523 
    524 	/* Ensure that the 'value' is only a bit wide */
    525 	assert(value <= 1);
    526 
    527 	/*
    528 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
    529 	 * and set it to its new value.
    530 	 */
    531 	state = get_el3state_ctx(ctx);
    532 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
    533 	scr_el3 &= ~(1 << bit_pos);
    534 	scr_el3 |= value << bit_pos;
    535 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
    536 }
    537 
    538 /*******************************************************************************
    539  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
    540  * given security state.
    541  ******************************************************************************/
    542 uint32_t cm_get_scr_el3(uint32_t security_state)
    543 {
    544 	cpu_context_t *ctx;
    545 	el3_state_t *state;
    546 
    547 	ctx = cm_get_context(security_state);
    548 	assert(ctx);
    549 
    550 	/* Populate EL3 state so that ERET jumps to the correct entry */
    551 	state = get_el3state_ctx(ctx);
    552 	return read_ctx_reg(state, CTX_SCR_EL3);
    553 }
    554 
    555 /*******************************************************************************
    556  * This function is used to program the context that's used for exception
    557  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
    558  * the required security state
    559  ******************************************************************************/
    560 void cm_set_next_eret_context(uint32_t security_state)
    561 {
    562 	cpu_context_t *ctx;
    563 
    564 	ctx = cm_get_context(security_state);
    565 	assert(ctx);
    566 
    567 	cm_set_next_context(ctx);
    568 }
    569