1 //===-- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing exception info into assembly files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "EHStreamer.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineModuleInfo.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/MC/MCSymbol.h" 23 #include "llvm/Support/LEB128.h" 24 #include "llvm/Target/TargetLoweringObjectFile.h" 25 26 using namespace llvm; 27 28 EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 29 30 EHStreamer::~EHStreamer() {} 31 32 /// How many leading type ids two landing pads have in common. 33 unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L, 34 const LandingPadInfo *R) { 35 const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds; 36 unsigned LSize = LIds.size(), RSize = RIds.size(); 37 unsigned MinSize = LSize < RSize ? LSize : RSize; 38 unsigned Count = 0; 39 40 for (; Count != MinSize; ++Count) 41 if (LIds[Count] != RIds[Count]) 42 return Count; 43 44 return Count; 45 } 46 47 /// Compute the actions table and gather the first action index for each landing 48 /// pad site. 49 unsigned EHStreamer:: 50 computeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads, 51 SmallVectorImpl<ActionEntry> &Actions, 52 SmallVectorImpl<unsigned> &FirstActions) { 53 54 // The action table follows the call-site table in the LSDA. The individual 55 // records are of two types: 56 // 57 // * Catch clause 58 // * Exception specification 59 // 60 // The two record kinds have the same format, with only small differences. 61 // They are distinguished by the "switch value" field: Catch clauses 62 // (TypeInfos) have strictly positive switch values, and exception 63 // specifications (FilterIds) have strictly negative switch values. Value 0 64 // indicates a catch-all clause. 65 // 66 // Negative type IDs index into FilterIds. Positive type IDs index into 67 // TypeInfos. The value written for a positive type ID is just the type ID 68 // itself. For a negative type ID, however, the value written is the 69 // (negative) byte offset of the corresponding FilterIds entry. The byte 70 // offset is usually equal to the type ID (because the FilterIds entries are 71 // written using a variable width encoding, which outputs one byte per entry 72 // as long as the value written is not too large) but can differ. This kind 73 // of complication does not occur for positive type IDs because type infos are 74 // output using a fixed width encoding. FilterOffsets[i] holds the byte 75 // offset corresponding to FilterIds[i]. 76 77 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 78 SmallVector<int, 16> FilterOffsets; 79 FilterOffsets.reserve(FilterIds.size()); 80 int Offset = -1; 81 82 for (std::vector<unsigned>::const_iterator 83 I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { 84 FilterOffsets.push_back(Offset); 85 Offset -= getULEB128Size(*I); 86 } 87 88 FirstActions.reserve(LandingPads.size()); 89 90 int FirstAction = 0; 91 unsigned SizeActions = 0; 92 const LandingPadInfo *PrevLPI = nullptr; 93 94 for (SmallVectorImpl<const LandingPadInfo *>::const_iterator 95 I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) { 96 const LandingPadInfo *LPI = *I; 97 const std::vector<int> &TypeIds = LPI->TypeIds; 98 unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0; 99 unsigned SizeSiteActions = 0; 100 101 if (NumShared < TypeIds.size()) { 102 unsigned SizeAction = 0; 103 unsigned PrevAction = (unsigned)-1; 104 105 if (NumShared) { 106 unsigned SizePrevIds = PrevLPI->TypeIds.size(); 107 assert(Actions.size()); 108 PrevAction = Actions.size() - 1; 109 SizeAction = getSLEB128Size(Actions[PrevAction].NextAction) + 110 getSLEB128Size(Actions[PrevAction].ValueForTypeID); 111 112 for (unsigned j = NumShared; j != SizePrevIds; ++j) { 113 assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!"); 114 SizeAction -= getSLEB128Size(Actions[PrevAction].ValueForTypeID); 115 SizeAction += -Actions[PrevAction].NextAction; 116 PrevAction = Actions[PrevAction].Previous; 117 } 118 } 119 120 // Compute the actions. 121 for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) { 122 int TypeID = TypeIds[J]; 123 assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); 124 int ValueForTypeID = 125 isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID; 126 unsigned SizeTypeID = getSLEB128Size(ValueForTypeID); 127 128 int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; 129 SizeAction = SizeTypeID + getSLEB128Size(NextAction); 130 SizeSiteActions += SizeAction; 131 132 ActionEntry Action = { ValueForTypeID, NextAction, PrevAction }; 133 Actions.push_back(Action); 134 PrevAction = Actions.size() - 1; 135 } 136 137 // Record the first action of the landing pad site. 138 FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; 139 } // else identical - re-use previous FirstAction 140 141 // Information used when created the call-site table. The action record 142 // field of the call site record is the offset of the first associated 143 // action record, relative to the start of the actions table. This value is 144 // biased by 1 (1 indicating the start of the actions table), and 0 145 // indicates that there are no actions. 146 FirstActions.push_back(FirstAction); 147 148 // Compute this sites contribution to size. 149 SizeActions += SizeSiteActions; 150 151 PrevLPI = LPI; 152 } 153 154 return SizeActions; 155 } 156 157 /// Return `true' if this is a call to a function marked `nounwind'. Return 158 /// `false' otherwise. 159 bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) { 160 assert(MI->isCall() && "This should be a call instruction!"); 161 162 bool MarkedNoUnwind = false; 163 bool SawFunc = false; 164 165 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 166 const MachineOperand &MO = MI->getOperand(I); 167 168 if (!MO.isGlobal()) continue; 169 170 const Function *F = dyn_cast<Function>(MO.getGlobal()); 171 if (!F) continue; 172 173 if (SawFunc) { 174 // Be conservative. If we have more than one function operand for this 175 // call, then we can't make the assumption that it's the callee and 176 // not a parameter to the call. 177 // 178 // FIXME: Determine if there's a way to say that `F' is the callee or 179 // parameter. 180 MarkedNoUnwind = false; 181 break; 182 } 183 184 MarkedNoUnwind = F->doesNotThrow(); 185 SawFunc = true; 186 } 187 188 return MarkedNoUnwind; 189 } 190 191 void EHStreamer::computePadMap( 192 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 193 RangeMapType &PadMap) { 194 // Invokes and nounwind calls have entries in PadMap (due to being bracketed 195 // by try-range labels when lowered). Ordinary calls do not, so appropriate 196 // try-ranges for them need be deduced so we can put them in the LSDA. 197 for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { 198 const LandingPadInfo *LandingPad = LandingPads[i]; 199 for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { 200 MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; 201 assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); 202 PadRange P = { i, j }; 203 PadMap[BeginLabel] = P; 204 } 205 } 206 } 207 208 /// Compute the call-site table. The entry for an invoke has a try-range 209 /// containing the call, a non-zero landing pad, and an appropriate action. The 210 /// entry for an ordinary call has a try-range containing the call and zero for 211 /// the landing pad and the action. Calls marked 'nounwind' have no entry and 212 /// must not be contained in the try-range of any entry - they form gaps in the 213 /// table. Entries must be ordered by try-range address. 214 void EHStreamer:: 215 computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, 216 const SmallVectorImpl<const LandingPadInfo *> &LandingPads, 217 const SmallVectorImpl<unsigned> &FirstActions) { 218 RangeMapType PadMap; 219 computePadMap(LandingPads, PadMap); 220 221 // The end label of the previous invoke or nounwind try-range. 222 MCSymbol *LastLabel = nullptr; 223 224 // Whether there is a potentially throwing instruction (currently this means 225 // an ordinary call) between the end of the previous try-range and now. 226 bool SawPotentiallyThrowing = false; 227 228 // Whether the last CallSite entry was for an invoke. 229 bool PreviousIsInvoke = false; 230 231 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 232 233 // Visit all instructions in order of address. 234 for (const auto &MBB : *Asm->MF) { 235 for (const auto &MI : MBB) { 236 if (!MI.isEHLabel()) { 237 if (MI.isCall()) 238 SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); 239 continue; 240 } 241 242 // End of the previous try-range? 243 MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); 244 if (BeginLabel == LastLabel) 245 SawPotentiallyThrowing = false; 246 247 // Beginning of a new try-range? 248 RangeMapType::const_iterator L = PadMap.find(BeginLabel); 249 if (L == PadMap.end()) 250 // Nope, it was just some random label. 251 continue; 252 253 const PadRange &P = L->second; 254 const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; 255 assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && 256 "Inconsistent landing pad map!"); 257 258 // For Dwarf exception handling (SjLj handling doesn't use this). If some 259 // instruction between the previous try-range and this one may throw, 260 // create a call-site entry with no landing pad for the region between the 261 // try-ranges. 262 if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) { 263 CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 }; 264 CallSites.push_back(Site); 265 PreviousIsInvoke = false; 266 } 267 268 LastLabel = LandingPad->EndLabels[P.RangeIndex]; 269 assert(BeginLabel && LastLabel && "Invalid landing pad!"); 270 271 if (!LandingPad->LandingPadLabel) { 272 // Create a gap. 273 PreviousIsInvoke = false; 274 } else { 275 // This try-range is for an invoke. 276 CallSiteEntry Site = { 277 BeginLabel, 278 LastLabel, 279 LandingPad, 280 FirstActions[P.PadIndex] 281 }; 282 283 // Try to merge with the previous call-site. SJLJ doesn't do this 284 if (PreviousIsInvoke && !IsSJLJ) { 285 CallSiteEntry &Prev = CallSites.back(); 286 if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) { 287 // Extend the range of the previous entry. 288 Prev.EndLabel = Site.EndLabel; 289 continue; 290 } 291 } 292 293 // Otherwise, create a new call-site. 294 if (!IsSJLJ) 295 CallSites.push_back(Site); 296 else { 297 // SjLj EH must maintain the call sites in the order assigned 298 // to them by the SjLjPrepare pass. 299 unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); 300 if (CallSites.size() < SiteNo) 301 CallSites.resize(SiteNo); 302 CallSites[SiteNo - 1] = Site; 303 } 304 PreviousIsInvoke = true; 305 } 306 } 307 } 308 309 // If some instruction between the previous try-range and the end of the 310 // function may throw, create a call-site entry with no landing pad for the 311 // region following the try-range. 312 if (SawPotentiallyThrowing && !IsSJLJ && LastLabel != nullptr) { 313 CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 }; 314 CallSites.push_back(Site); 315 } 316 } 317 318 /// Emit landing pads and actions. 319 /// 320 /// The general organization of the table is complex, but the basic concepts are 321 /// easy. First there is a header which describes the location and organization 322 /// of the three components that follow. 323 /// 324 /// 1. The landing pad site information describes the range of code covered by 325 /// the try. In our case it's an accumulation of the ranges covered by the 326 /// invokes in the try. There is also a reference to the landing pad that 327 /// handles the exception once processed. Finally an index into the actions 328 /// table. 329 /// 2. The action table, in our case, is composed of pairs of type IDs and next 330 /// action offset. Starting with the action index from the landing pad 331 /// site, each type ID is checked for a match to the current exception. If 332 /// it matches then the exception and type id are passed on to the landing 333 /// pad. Otherwise the next action is looked up. This chain is terminated 334 /// with a next action of zero. If no type id is found then the frame is 335 /// unwound and handling continues. 336 /// 3. Type ID table contains references to all the C++ typeinfo for all 337 /// catches in the function. This tables is reverse indexed base 1. 338 void EHStreamer::emitExceptionTable() { 339 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos(); 340 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 341 const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); 342 343 // Sort the landing pads in order of their type ids. This is used to fold 344 // duplicate actions. 345 SmallVector<const LandingPadInfo *, 64> LandingPads; 346 LandingPads.reserve(PadInfos.size()); 347 348 for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) 349 LandingPads.push_back(&PadInfos[i]); 350 351 // Order landing pads lexicographically by type id. 352 std::sort(LandingPads.begin(), LandingPads.end(), 353 [](const LandingPadInfo *L, 354 const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); 355 356 // Compute the actions table and gather the first action index for each 357 // landing pad site. 358 SmallVector<ActionEntry, 32> Actions; 359 SmallVector<unsigned, 64> FirstActions; 360 unsigned SizeActions = 361 computeActionsTable(LandingPads, Actions, FirstActions); 362 363 // Compute the call-site table. 364 SmallVector<CallSiteEntry, 64> CallSites; 365 computeCallSiteTable(CallSites, LandingPads, FirstActions); 366 367 // Final tallies. 368 369 // Call sites. 370 bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; 371 bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true; 372 373 unsigned CallSiteTableLength; 374 if (IsSJLJ) 375 CallSiteTableLength = 0; 376 else { 377 unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4 378 unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4 379 unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4 380 CallSiteTableLength = 381 CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize); 382 } 383 384 for (unsigned i = 0, e = CallSites.size(); i < e; ++i) { 385 CallSiteTableLength += getULEB128Size(CallSites[i].Action); 386 if (IsSJLJ) 387 CallSiteTableLength += getULEB128Size(i); 388 } 389 390 // Type infos. 391 MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection(); 392 unsigned TTypeEncoding; 393 unsigned TypeFormatSize; 394 395 if (!HaveTTData) { 396 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say 397 // that we're omitting that bit. 398 TTypeEncoding = dwarf::DW_EH_PE_omit; 399 // dwarf::DW_EH_PE_absptr 400 TypeFormatSize = Asm->getDataLayout().getPointerSize(); 401 } else { 402 // Okay, we have actual filters or typeinfos to emit. As such, we need to 403 // pick a type encoding for them. We're about to emit a list of pointers to 404 // typeinfo objects at the end of the LSDA. However, unless we're in static 405 // mode, this reference will require a relocation by the dynamic linker. 406 // 407 // Because of this, we have a couple of options: 408 // 409 // 1) If we are in -static mode, we can always use an absolute reference 410 // from the LSDA, because the static linker will resolve it. 411 // 412 // 2) Otherwise, if the LSDA section is writable, we can output the direct 413 // reference to the typeinfo and allow the dynamic linker to relocate 414 // it. Since it is in a writable section, the dynamic linker won't 415 // have a problem. 416 // 417 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable, 418 // we need to use some form of indirection. For example, on Darwin, 419 // we can output a statically-relocatable reference to a dyld stub. The 420 // offset to the stub is constant, but the contents are in a section 421 // that is updated by the dynamic linker. This is easy enough, but we 422 // need to tell the personality function of the unwinder to indirect 423 // through the dyld stub. 424 // 425 // FIXME: When (3) is actually implemented, we'll have to emit the stubs 426 // somewhere. This predicate should be moved to a shared location that is 427 // in target-independent code. 428 // 429 TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding(); 430 TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding); 431 } 432 433 // Begin the exception table. 434 // Sometimes we want not to emit the data into separate section (e.g. ARM 435 // EHABI). In this case LSDASection will be NULL. 436 if (LSDASection) 437 Asm->OutStreamer->SwitchSection(LSDASection); 438 Asm->EmitAlignment(2); 439 440 // Emit the LSDA. 441 MCSymbol *GCCETSym = 442 Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+ 443 Twine(Asm->getFunctionNumber())); 444 Asm->OutStreamer->EmitLabel(GCCETSym); 445 Asm->OutStreamer->EmitLabel(Asm->getCurExceptionSym()); 446 447 // Emit the LSDA header. 448 Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart"); 449 Asm->EmitEncodingByte(TTypeEncoding, "@TType"); 450 451 // The type infos need to be aligned. GCC does this by inserting padding just 452 // before the type infos. However, this changes the size of the exception 453 // table, so you need to take this into account when you output the exception 454 // table size. However, the size is output using a variable length encoding. 455 // So by increasing the size by inserting padding, you may increase the number 456 // of bytes used for writing the size. If it increases, say by one byte, then 457 // you now need to output one less byte of padding to get the type infos 458 // aligned. However this decreases the size of the exception table. This 459 // changes the value you have to output for the exception table size. Due to 460 // the variable length encoding, the number of bytes used for writing the 461 // length may decrease. If so, you then have to increase the amount of 462 // padding. And so on. If you look carefully at the GCC code you will see that 463 // it indeed does this in a loop, going on and on until the values stabilize. 464 // We chose another solution: don't output padding inside the table like GCC 465 // does, instead output it before the table. 466 unsigned SizeTypes = TypeInfos.size() * TypeFormatSize; 467 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 468 unsigned TTypeBaseOffset = 469 sizeof(int8_t) + // Call site format 470 CallSiteTableLengthSize + // Call site table length size 471 CallSiteTableLength + // Call site table length 472 SizeActions + // Actions size 473 SizeTypes; 474 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 475 unsigned TotalSize = 476 sizeof(int8_t) + // LPStart format 477 sizeof(int8_t) + // TType format 478 (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size 479 TTypeBaseOffset; // TType base offset 480 unsigned SizeAlign = (4 - TotalSize) & 3; 481 482 if (HaveTTData) { 483 // Account for any extra padding that will be added to the call site table 484 // length. 485 Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign); 486 SizeAlign = 0; 487 } 488 489 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 490 491 // SjLj Exception handling 492 if (IsSJLJ) { 493 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 494 495 // Add extra padding if it wasn't added to the TType base offset. 496 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 497 498 // Emit the landing pad site information. 499 unsigned idx = 0; 500 for (SmallVectorImpl<CallSiteEntry>::const_iterator 501 I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) { 502 const CallSiteEntry &S = *I; 503 504 // Offset of the landing pad, counted in 16-byte bundles relative to the 505 // @LPStart address. 506 if (VerboseAsm) { 507 Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<"); 508 Asm->OutStreamer->AddComment(" On exception at call site "+Twine(idx)); 509 } 510 Asm->EmitULEB128(idx); 511 512 // Offset of the first associated action record, relative to the start of 513 // the action table. This value is biased by 1 (1 indicates the start of 514 // the action table), and 0 indicates that there are no actions. 515 if (VerboseAsm) { 516 if (S.Action == 0) 517 Asm->OutStreamer->AddComment(" Action: cleanup"); 518 else 519 Asm->OutStreamer->AddComment(" Action: " + 520 Twine((S.Action - 1) / 2 + 1)); 521 } 522 Asm->EmitULEB128(S.Action); 523 } 524 } else { 525 // Itanium LSDA exception handling 526 527 // The call-site table is a list of all call sites that may throw an 528 // exception (including C++ 'throw' statements) in the procedure 529 // fragment. It immediately follows the LSDA header. Each entry indicates, 530 // for a given call, the first corresponding action record and corresponding 531 // landing pad. 532 // 533 // The table begins with the number of bytes, stored as an LEB128 534 // compressed, unsigned integer. The records immediately follow the record 535 // count. They are sorted in increasing call-site address. Each record 536 // indicates: 537 // 538 // * The position of the call-site. 539 // * The position of the landing pad. 540 // * The first action record for that call site. 541 // 542 // A missing entry in the call-site table indicates that a call is not 543 // supposed to throw. 544 545 // Emit the landing pad call site table. 546 Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site"); 547 548 // Add extra padding if it wasn't added to the TType base offset. 549 Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign); 550 551 unsigned Entry = 0; 552 for (SmallVectorImpl<CallSiteEntry>::const_iterator 553 I = CallSites.begin(), E = CallSites.end(); I != E; ++I) { 554 const CallSiteEntry &S = *I; 555 556 MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin(); 557 558 MCSymbol *BeginLabel = S.BeginLabel; 559 if (!BeginLabel) 560 BeginLabel = EHFuncBeginSym; 561 MCSymbol *EndLabel = S.EndLabel; 562 if (!EndLabel) 563 EndLabel = Asm->getFunctionEnd(); 564 565 // Offset of the call site relative to the previous call site, counted in 566 // number of 16-byte bundles. The first call site is counted relative to 567 // the start of the procedure fragment. 568 if (VerboseAsm) 569 Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<"); 570 Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4); 571 if (VerboseAsm) 572 Asm->OutStreamer->AddComment(Twine(" Call between ") + 573 BeginLabel->getName() + " and " + 574 EndLabel->getName()); 575 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 576 577 // Offset of the landing pad, counted in 16-byte bundles relative to the 578 // @LPStart address. 579 if (!S.LPad) { 580 if (VerboseAsm) 581 Asm->OutStreamer->AddComment(" has no landing pad"); 582 Asm->OutStreamer->EmitIntValue(0, 4/*size*/); 583 } else { 584 if (VerboseAsm) 585 Asm->OutStreamer->AddComment(Twine(" jumps to ") + 586 S.LPad->LandingPadLabel->getName()); 587 Asm->EmitLabelDifference(S.LPad->LandingPadLabel, EHFuncBeginSym, 4); 588 } 589 590 // Offset of the first associated action record, relative to the start of 591 // the action table. This value is biased by 1 (1 indicates the start of 592 // the action table), and 0 indicates that there are no actions. 593 if (VerboseAsm) { 594 if (S.Action == 0) 595 Asm->OutStreamer->AddComment(" On action: cleanup"); 596 else 597 Asm->OutStreamer->AddComment(" On action: " + 598 Twine((S.Action - 1) / 2 + 1)); 599 } 600 Asm->EmitULEB128(S.Action); 601 } 602 } 603 604 // Emit the Action Table. 605 int Entry = 0; 606 for (SmallVectorImpl<ActionEntry>::const_iterator 607 I = Actions.begin(), E = Actions.end(); I != E; ++I) { 608 const ActionEntry &Action = *I; 609 610 if (VerboseAsm) { 611 // Emit comments that decode the action table. 612 Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<"); 613 } 614 615 // Type Filter 616 // 617 // Used by the runtime to match the type of the thrown exception to the 618 // type of the catch clauses or the types in the exception specification. 619 if (VerboseAsm) { 620 if (Action.ValueForTypeID > 0) 621 Asm->OutStreamer->AddComment(" Catch TypeInfo " + 622 Twine(Action.ValueForTypeID)); 623 else if (Action.ValueForTypeID < 0) 624 Asm->OutStreamer->AddComment(" Filter TypeInfo " + 625 Twine(Action.ValueForTypeID)); 626 else 627 Asm->OutStreamer->AddComment(" Cleanup"); 628 } 629 Asm->EmitSLEB128(Action.ValueForTypeID); 630 631 // Action Record 632 // 633 // Self-relative signed displacement in bytes of the next action record, 634 // or 0 if there is no next action record. 635 if (VerboseAsm) { 636 if (Action.NextAction == 0) { 637 Asm->OutStreamer->AddComment(" No further actions"); 638 } else { 639 unsigned NextAction = Entry + (Action.NextAction + 1) / 2; 640 Asm->OutStreamer->AddComment(" Continue to action "+Twine(NextAction)); 641 } 642 } 643 Asm->EmitSLEB128(Action.NextAction); 644 } 645 646 emitTypeInfos(TTypeEncoding); 647 648 Asm->EmitAlignment(2); 649 } 650 651 void EHStreamer::emitTypeInfos(unsigned TTypeEncoding) { 652 const std::vector<const GlobalValue *> &TypeInfos = MMI->getTypeInfos(); 653 const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); 654 655 bool VerboseAsm = Asm->OutStreamer->isVerboseAsm(); 656 657 int Entry = 0; 658 // Emit the Catch TypeInfos. 659 if (VerboseAsm && !TypeInfos.empty()) { 660 Asm->OutStreamer->AddComment(">> Catch TypeInfos <<"); 661 Asm->OutStreamer->AddBlankLine(); 662 Entry = TypeInfos.size(); 663 } 664 665 for (const GlobalValue *GV : make_range(TypeInfos.rbegin(), 666 TypeInfos.rend())) { 667 if (VerboseAsm) 668 Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--)); 669 Asm->EmitTTypeReference(GV, TTypeEncoding); 670 } 671 672 // Emit the Exception Specifications. 673 if (VerboseAsm && !FilterIds.empty()) { 674 Asm->OutStreamer->AddComment(">> Filter TypeInfos <<"); 675 Asm->OutStreamer->AddBlankLine(); 676 Entry = 0; 677 } 678 for (std::vector<unsigned>::const_iterator 679 I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) { 680 unsigned TypeID = *I; 681 if (VerboseAsm) { 682 --Entry; 683 if (isFilterEHSelector(TypeID)) 684 Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry)); 685 } 686 687 Asm->EmitULEB128(TypeID); 688 } 689 } 690