Home | History | Annotate | Download | only in Analysis
      1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This simple pass provides alias and mod/ref information for global values
     11 // that do not have their address taken, and keeps track of whether functions
     12 // read or write memory (are "pure").  For this simple (but very common) case,
     13 // we can provide pretty accurate and useful information.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/Analysis/GlobalsModRef.h"
     18 #include "llvm/ADT/SCCIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/MemoryBuiltins.h"
     22 #include "llvm/Analysis/TargetLibraryInfo.h"
     23 #include "llvm/Analysis/ValueTracking.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/InstIterator.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Module.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Support/CommandLine.h"
     31 using namespace llvm;
     32 
     33 #define DEBUG_TYPE "globalsmodref-aa"
     34 
     35 STATISTIC(NumNonAddrTakenGlobalVars,
     36           "Number of global vars without address taken");
     37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
     38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
     39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
     40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
     41 
     42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
     43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
     44 // rare cases may not be conservatively correct. In particular, in the face of
     45 // transforms which cause assymetry between how effective GetUnderlyingObject
     46 // is for two pointers, it may produce incorrect results.
     47 //
     48 // These unsafe results have been returned by GMR for many years without
     49 // causing significant issues in the wild and so we provide a mechanism to
     50 // re-enable them for users of LLVM that have a particular performance
     51 // sensitivity and no known issues. The option also makes it easy to evaluate
     52 // the performance impact of these results.
     53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
     54     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
     55 
     56 /// The mod/ref information collected for a particular function.
     57 ///
     58 /// We collect information about mod/ref behavior of a function here, both in
     59 /// general and as pertains to specific globals. We only have this detailed
     60 /// information when we know *something* useful about the behavior. If we
     61 /// saturate to fully general mod/ref, we remove the info for the function.
     62 class GlobalsAAResult::FunctionInfo {
     63   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
     64 
     65   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
     66   /// should provide this much alignment at least, but this makes it clear we
     67   /// specifically rely on this amount of alignment.
     68   struct LLVM_ALIGNAS(8) AlignedMap {
     69     AlignedMap() {}
     70     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
     71     GlobalInfoMapType Map;
     72   };
     73 
     74   /// Pointer traits for our aligned map.
     75   struct AlignedMapPointerTraits {
     76     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
     77     static inline AlignedMap *getFromVoidPointer(void *P) {
     78       return (AlignedMap *)P;
     79     }
     80     enum { NumLowBitsAvailable = 3 };
     81     static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
     82                   "AlignedMap insufficiently aligned to have enough low bits.");
     83   };
     84 
     85   /// The bit that flags that this function may read any global. This is
     86   /// chosen to mix together with ModRefInfo bits.
     87   enum { MayReadAnyGlobal = 4 };
     88 
     89   /// Checks to document the invariants of the bit packing here.
     90   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
     91                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
     92   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
     93                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
     94                 "Insufficient low bits to store our flag and ModRef info.");
     95 
     96 public:
     97   FunctionInfo() : Info() {}
     98   ~FunctionInfo() {
     99     delete Info.getPointer();
    100   }
    101   // Spell out the copy ond move constructors and assignment operators to get
    102   // deep copy semantics and correct move semantics in the face of the
    103   // pointer-int pair.
    104   FunctionInfo(const FunctionInfo &Arg)
    105       : Info(nullptr, Arg.Info.getInt()) {
    106     if (const auto *ArgPtr = Arg.Info.getPointer())
    107       Info.setPointer(new AlignedMap(*ArgPtr));
    108   }
    109   FunctionInfo(FunctionInfo &&Arg)
    110       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
    111     Arg.Info.setPointerAndInt(nullptr, 0);
    112   }
    113   FunctionInfo &operator=(const FunctionInfo &RHS) {
    114     delete Info.getPointer();
    115     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
    116     if (const auto *RHSPtr = RHS.Info.getPointer())
    117       Info.setPointer(new AlignedMap(*RHSPtr));
    118     return *this;
    119   }
    120   FunctionInfo &operator=(FunctionInfo &&RHS) {
    121     delete Info.getPointer();
    122     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
    123     RHS.Info.setPointerAndInt(nullptr, 0);
    124     return *this;
    125   }
    126 
    127   /// Returns the \c ModRefInfo info for this function.
    128   ModRefInfo getModRefInfo() const {
    129     return ModRefInfo(Info.getInt() & MRI_ModRef);
    130   }
    131 
    132   /// Adds new \c ModRefInfo for this function to its state.
    133   void addModRefInfo(ModRefInfo NewMRI) {
    134     Info.setInt(Info.getInt() | NewMRI);
    135   }
    136 
    137   /// Returns whether this function may read any global variable, and we don't
    138   /// know which global.
    139   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
    140 
    141   /// Sets this function as potentially reading from any global.
    142   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
    143 
    144   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
    145   /// global, which may be more precise than the general information above.
    146   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
    147     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
    148     if (AlignedMap *P = Info.getPointer()) {
    149       auto I = P->Map.find(&GV);
    150       if (I != P->Map.end())
    151         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
    152     }
    153     return GlobalMRI;
    154   }
    155 
    156   /// Add mod/ref info from another function into ours, saturating towards
    157   /// MRI_ModRef.
    158   void addFunctionInfo(const FunctionInfo &FI) {
    159     addModRefInfo(FI.getModRefInfo());
    160 
    161     if (FI.mayReadAnyGlobal())
    162       setMayReadAnyGlobal();
    163 
    164     if (AlignedMap *P = FI.Info.getPointer())
    165       for (const auto &G : P->Map)
    166         addModRefInfoForGlobal(*G.first, G.second);
    167   }
    168 
    169   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
    170     AlignedMap *P = Info.getPointer();
    171     if (!P) {
    172       P = new AlignedMap();
    173       Info.setPointer(P);
    174     }
    175     auto &GlobalMRI = P->Map[&GV];
    176     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
    177   }
    178 
    179   /// Clear a global's ModRef info. Should be used when a global is being
    180   /// deleted.
    181   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
    182     if (AlignedMap *P = Info.getPointer())
    183       P->Map.erase(&GV);
    184   }
    185 
    186 private:
    187   /// All of the information is encoded into a single pointer, with a three bit
    188   /// integer in the low three bits. The high bit provides a flag for when this
    189   /// function may read any global. The low two bits are the ModRefInfo. And
    190   /// the pointer, when non-null, points to a map from GlobalValue to
    191   /// ModRefInfo specific to that GlobalValue.
    192   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
    193 };
    194 
    195 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
    196   Value *V = getValPtr();
    197   if (auto *F = dyn_cast<Function>(V))
    198     GAR->FunctionInfos.erase(F);
    199 
    200   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    201     if (GAR->NonAddressTakenGlobals.erase(GV)) {
    202       // This global might be an indirect global.  If so, remove it and
    203       // remove any AllocRelatedValues for it.
    204       if (GAR->IndirectGlobals.erase(GV)) {
    205         // Remove any entries in AllocsForIndirectGlobals for this global.
    206         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
    207                   E = GAR->AllocsForIndirectGlobals.end();
    208              I != E; ++I)
    209           if (I->second == GV)
    210             GAR->AllocsForIndirectGlobals.erase(I);
    211       }
    212 
    213       // Scan the function info we have collected and remove this global
    214       // from all of them.
    215       for (auto &FIPair : GAR->FunctionInfos)
    216         FIPair.second.eraseModRefInfoForGlobal(*GV);
    217     }
    218   }
    219 
    220   // If this is an allocation related to an indirect global, remove it.
    221   GAR->AllocsForIndirectGlobals.erase(V);
    222 
    223   // And clear out the handle.
    224   setValPtr(nullptr);
    225   GAR->Handles.erase(I);
    226   // This object is now destroyed!
    227 }
    228 
    229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
    230   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    231 
    232   if (FunctionInfo *FI = getFunctionInfo(F)) {
    233     if (FI->getModRefInfo() == MRI_NoModRef)
    234       Min = FMRB_DoesNotAccessMemory;
    235     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
    236       Min = FMRB_OnlyReadsMemory;
    237   }
    238 
    239   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
    240 }
    241 
    242 FunctionModRefBehavior
    243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
    244   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    245 
    246   if (!CS.hasOperandBundles())
    247     if (const Function *F = CS.getCalledFunction())
    248       if (FunctionInfo *FI = getFunctionInfo(F)) {
    249         if (FI->getModRefInfo() == MRI_NoModRef)
    250           Min = FMRB_DoesNotAccessMemory;
    251         else if ((FI->getModRefInfo() & MRI_Mod) == 0)
    252           Min = FMRB_OnlyReadsMemory;
    253       }
    254 
    255   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    256 }
    257 
    258 /// Returns the function info for the function, or null if we don't have
    259 /// anything useful to say about it.
    260 GlobalsAAResult::FunctionInfo *
    261 GlobalsAAResult::getFunctionInfo(const Function *F) {
    262   auto I = FunctionInfos.find(F);
    263   if (I != FunctionInfos.end())
    264     return &I->second;
    265   return nullptr;
    266 }
    267 
    268 /// AnalyzeGlobals - Scan through the users of all of the internal
    269 /// GlobalValue's in the program.  If none of them have their "address taken"
    270 /// (really, their address passed to something nontrivial), record this fact,
    271 /// and record the functions that they are used directly in.
    272 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
    273   SmallPtrSet<Function *, 32> TrackedFunctions;
    274   for (Function &F : M)
    275     if (F.hasLocalLinkage())
    276       if (!AnalyzeUsesOfPointer(&F)) {
    277         // Remember that we are tracking this global.
    278         NonAddressTakenGlobals.insert(&F);
    279         TrackedFunctions.insert(&F);
    280         Handles.emplace_front(*this, &F);
    281         Handles.front().I = Handles.begin();
    282         ++NumNonAddrTakenFunctions;
    283       }
    284 
    285   SmallPtrSet<Function *, 16> Readers, Writers;
    286   for (GlobalVariable &GV : M.globals())
    287     if (GV.hasLocalLinkage()) {
    288       if (!AnalyzeUsesOfPointer(&GV, &Readers,
    289                                 GV.isConstant() ? nullptr : &Writers)) {
    290         // Remember that we are tracking this global, and the mod/ref fns
    291         NonAddressTakenGlobals.insert(&GV);
    292         Handles.emplace_front(*this, &GV);
    293         Handles.front().I = Handles.begin();
    294 
    295         for (Function *Reader : Readers) {
    296           if (TrackedFunctions.insert(Reader).second) {
    297             Handles.emplace_front(*this, Reader);
    298             Handles.front().I = Handles.begin();
    299           }
    300           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
    301         }
    302 
    303         if (!GV.isConstant()) // No need to keep track of writers to constants
    304           for (Function *Writer : Writers) {
    305             if (TrackedFunctions.insert(Writer).second) {
    306               Handles.emplace_front(*this, Writer);
    307               Handles.front().I = Handles.begin();
    308             }
    309             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
    310           }
    311         ++NumNonAddrTakenGlobalVars;
    312 
    313         // If this global holds a pointer type, see if it is an indirect global.
    314         if (GV.getValueType()->isPointerTy() &&
    315             AnalyzeIndirectGlobalMemory(&GV))
    316           ++NumIndirectGlobalVars;
    317       }
    318       Readers.clear();
    319       Writers.clear();
    320     }
    321 }
    322 
    323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
    324 /// If this is used by anything complex (i.e., the address escapes), return
    325 /// true.  Also, while we are at it, keep track of those functions that read and
    326 /// write to the value.
    327 ///
    328 /// If OkayStoreDest is non-null, stores into this global are allowed.
    329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
    330                                            SmallPtrSetImpl<Function *> *Readers,
    331                                            SmallPtrSetImpl<Function *> *Writers,
    332                                            GlobalValue *OkayStoreDest) {
    333   if (!V->getType()->isPointerTy())
    334     return true;
    335 
    336   for (Use &U : V->uses()) {
    337     User *I = U.getUser();
    338     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    339       if (Readers)
    340         Readers->insert(LI->getParent()->getParent());
    341     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    342       if (V == SI->getOperand(1)) {
    343         if (Writers)
    344           Writers->insert(SI->getParent()->getParent());
    345       } else if (SI->getOperand(1) != OkayStoreDest) {
    346         return true; // Storing the pointer
    347       }
    348     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
    349       if (AnalyzeUsesOfPointer(I, Readers, Writers))
    350         return true;
    351     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
    352       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
    353         return true;
    354     } else if (auto CS = CallSite(I)) {
    355       // Make sure that this is just the function being called, not that it is
    356       // passing into the function.
    357       if (CS.isDataOperand(&U)) {
    358         // Detect calls to free.
    359         if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
    360           if (Writers)
    361             Writers->insert(CS->getParent()->getParent());
    362         } else {
    363           return true; // Argument of an unknown call.
    364         }
    365       }
    366     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    367       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
    368         return true; // Allow comparison against null.
    369     } else {
    370       return true;
    371     }
    372   }
    373 
    374   return false;
    375 }
    376 
    377 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
    378 /// which holds a pointer type.  See if the global always points to non-aliased
    379 /// heap memory: that is, all initializers of the globals are allocations, and
    380 /// those allocations have no use other than initialization of the global.
    381 /// Further, all loads out of GV must directly use the memory, not store the
    382 /// pointer somewhere.  If this is true, we consider the memory pointed to by
    383 /// GV to be owned by GV and can disambiguate other pointers from it.
    384 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
    385   // Keep track of values related to the allocation of the memory, f.e. the
    386   // value produced by the malloc call and any casts.
    387   std::vector<Value *> AllocRelatedValues;
    388 
    389   // If the initializer is a valid pointer, bail.
    390   if (Constant *C = GV->getInitializer())
    391     if (!C->isNullValue())
    392       return false;
    393 
    394   // Walk the user list of the global.  If we find anything other than a direct
    395   // load or store, bail out.
    396   for (User *U : GV->users()) {
    397     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    398       // The pointer loaded from the global can only be used in simple ways:
    399       // we allow addressing of it and loading storing to it.  We do *not* allow
    400       // storing the loaded pointer somewhere else or passing to a function.
    401       if (AnalyzeUsesOfPointer(LI))
    402         return false; // Loaded pointer escapes.
    403       // TODO: Could try some IP mod/ref of the loaded pointer.
    404     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    405       // Storing the global itself.
    406       if (SI->getOperand(0) == GV)
    407         return false;
    408 
    409       // If storing the null pointer, ignore it.
    410       if (isa<ConstantPointerNull>(SI->getOperand(0)))
    411         continue;
    412 
    413       // Check the value being stored.
    414       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
    415                                        GV->getParent()->getDataLayout());
    416 
    417       if (!isAllocLikeFn(Ptr, &TLI))
    418         return false; // Too hard to analyze.
    419 
    420       // Analyze all uses of the allocation.  If any of them are used in a
    421       // non-simple way (e.g. stored to another global) bail out.
    422       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
    423                                GV))
    424         return false; // Loaded pointer escapes.
    425 
    426       // Remember that this allocation is related to the indirect global.
    427       AllocRelatedValues.push_back(Ptr);
    428     } else {
    429       // Something complex, bail out.
    430       return false;
    431     }
    432   }
    433 
    434   // Okay, this is an indirect global.  Remember all of the allocations for
    435   // this global in AllocsForIndirectGlobals.
    436   while (!AllocRelatedValues.empty()) {
    437     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
    438     Handles.emplace_front(*this, AllocRelatedValues.back());
    439     Handles.front().I = Handles.begin();
    440     AllocRelatedValues.pop_back();
    441   }
    442   IndirectGlobals.insert(GV);
    443   Handles.emplace_front(*this, GV);
    444   Handles.front().I = Handles.begin();
    445   return true;
    446 }
    447 
    448 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
    449   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    450   // visit all callees before callers (leaf-first).
    451   unsigned SCCID = 0;
    452   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    453     const std::vector<CallGraphNode *> &SCC = *I;
    454     assert(!SCC.empty() && "SCC with no functions?");
    455 
    456     for (auto *CGN : SCC)
    457       if (Function *F = CGN->getFunction())
    458         FunctionToSCCMap[F] = SCCID;
    459     ++SCCID;
    460   }
    461 }
    462 
    463 /// AnalyzeCallGraph - At this point, we know the functions where globals are
    464 /// immediately stored to and read from.  Propagate this information up the call
    465 /// graph to all callers and compute the mod/ref info for all memory for each
    466 /// function.
    467 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
    468   // We do a bottom-up SCC traversal of the call graph.  In other words, we
    469   // visit all callees before callers (leaf-first).
    470   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
    471     const std::vector<CallGraphNode *> &SCC = *I;
    472     assert(!SCC.empty() && "SCC with no functions?");
    473 
    474     if (!SCC[0]->getFunction() || !SCC[0]->getFunction()->isDefinitionExact()) {
    475       // Calls externally or not exact - can't say anything useful. Remove any
    476       // existing function records (may have been created when scanning
    477       // globals).
    478       for (auto *Node : SCC)
    479         FunctionInfos.erase(Node->getFunction());
    480       continue;
    481     }
    482 
    483     FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
    484     bool KnowNothing = false;
    485 
    486     // Collect the mod/ref properties due to called functions.  We only compute
    487     // one mod-ref set.
    488     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
    489       Function *F = SCC[i]->getFunction();
    490       if (!F) {
    491         KnowNothing = true;
    492         break;
    493       }
    494 
    495       if (F->isDeclaration()) {
    496         // Try to get mod/ref behaviour from function attributes.
    497         if (F->doesNotAccessMemory()) {
    498           // Can't do better than that!
    499         } else if (F->onlyReadsMemory()) {
    500           FI.addModRefInfo(MRI_Ref);
    501           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
    502             // This function might call back into the module and read a global -
    503             // consider every global as possibly being read by this function.
    504             FI.setMayReadAnyGlobal();
    505         } else {
    506           FI.addModRefInfo(MRI_ModRef);
    507           // Can't say anything useful unless it's an intrinsic - they don't
    508           // read or write global variables of the kind considered here.
    509           KnowNothing = !F->isIntrinsic();
    510         }
    511         continue;
    512       }
    513 
    514       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
    515            CI != E && !KnowNothing; ++CI)
    516         if (Function *Callee = CI->second->getFunction()) {
    517           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
    518             // Propagate function effect up.
    519             FI.addFunctionInfo(*CalleeFI);
    520           } else {
    521             // Can't say anything about it.  However, if it is inside our SCC,
    522             // then nothing needs to be done.
    523             CallGraphNode *CalleeNode = CG[Callee];
    524             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
    525               KnowNothing = true;
    526           }
    527         } else {
    528           KnowNothing = true;
    529         }
    530     }
    531 
    532     // If we can't say anything useful about this SCC, remove all SCC functions
    533     // from the FunctionInfos map.
    534     if (KnowNothing) {
    535       for (auto *Node : SCC)
    536         FunctionInfos.erase(Node->getFunction());
    537       continue;
    538     }
    539 
    540     // Scan the function bodies for explicit loads or stores.
    541     for (auto *Node : SCC) {
    542       if (FI.getModRefInfo() == MRI_ModRef)
    543         break; // The mod/ref lattice saturates here.
    544       for (Instruction &I : instructions(Node->getFunction())) {
    545         if (FI.getModRefInfo() == MRI_ModRef)
    546           break; // The mod/ref lattice saturates here.
    547 
    548         // We handle calls specially because the graph-relevant aspects are
    549         // handled above.
    550         if (auto CS = CallSite(&I)) {
    551           if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
    552             // FIXME: It is completely unclear why this is necessary and not
    553             // handled by the above graph code.
    554             FI.addModRefInfo(MRI_ModRef);
    555           } else if (Function *Callee = CS.getCalledFunction()) {
    556             // The callgraph doesn't include intrinsic calls.
    557             if (Callee->isIntrinsic()) {
    558               FunctionModRefBehavior Behaviour =
    559                   AAResultBase::getModRefBehavior(Callee);
    560               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
    561             }
    562           }
    563           continue;
    564         }
    565 
    566         // All non-call instructions we use the primary predicates for whether
    567         // thay read or write memory.
    568         if (I.mayReadFromMemory())
    569           FI.addModRefInfo(MRI_Ref);
    570         if (I.mayWriteToMemory())
    571           FI.addModRefInfo(MRI_Mod);
    572       }
    573     }
    574 
    575     if ((FI.getModRefInfo() & MRI_Mod) == 0)
    576       ++NumReadMemFunctions;
    577     if (FI.getModRefInfo() == MRI_NoModRef)
    578       ++NumNoMemFunctions;
    579 
    580     // Finally, now that we know the full effect on this SCC, clone the
    581     // information to each function in the SCC.
    582     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
    583     // get invalidated if DenseMap decides to re-hash.
    584     FunctionInfo CachedFI = FI;
    585     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
    586       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
    587   }
    588 }
    589 
    590 // GV is a non-escaping global. V is a pointer address that has been loaded from.
    591 // If we can prove that V must escape, we can conclude that a load from V cannot
    592 // alias GV.
    593 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
    594                                                const Value *V,
    595                                                int &Depth,
    596                                                const DataLayout &DL) {
    597   SmallPtrSet<const Value *, 8> Visited;
    598   SmallVector<const Value *, 8> Inputs;
    599   Visited.insert(V);
    600   Inputs.push_back(V);
    601   do {
    602     const Value *Input = Inputs.pop_back_val();
    603 
    604     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
    605         isa<InvokeInst>(Input))
    606       // Arguments to functions or returns from functions are inherently
    607       // escaping, so we can immediately classify those as not aliasing any
    608       // non-addr-taken globals.
    609       //
    610       // (Transitive) loads from a global are also safe - if this aliased
    611       // another global, its address would escape, so no alias.
    612       continue;
    613 
    614     // Recurse through a limited number of selects, loads and PHIs. This is an
    615     // arbitrary depth of 4, lower numbers could be used to fix compile time
    616     // issues if needed, but this is generally expected to be only be important
    617     // for small depths.
    618     if (++Depth > 4)
    619       return false;
    620 
    621     if (auto *LI = dyn_cast<LoadInst>(Input)) {
    622       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
    623       continue;
    624     }
    625     if (auto *SI = dyn_cast<SelectInst>(Input)) {
    626       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
    627       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
    628       if (Visited.insert(LHS).second)
    629         Inputs.push_back(LHS);
    630       if (Visited.insert(RHS).second)
    631         Inputs.push_back(RHS);
    632       continue;
    633     }
    634     if (auto *PN = dyn_cast<PHINode>(Input)) {
    635       for (const Value *Op : PN->incoming_values()) {
    636         Op = GetUnderlyingObject(Op, DL);
    637         if (Visited.insert(Op).second)
    638           Inputs.push_back(Op);
    639       }
    640       continue;
    641     }
    642 
    643     return false;
    644   } while (!Inputs.empty());
    645 
    646   // All inputs were known to be no-alias.
    647   return true;
    648 }
    649 
    650 // There are particular cases where we can conclude no-alias between
    651 // a non-addr-taken global and some other underlying object. Specifically,
    652 // a non-addr-taken global is known to not be escaped from any function. It is
    653 // also incorrect for a transformation to introduce an escape of a global in
    654 // a way that is observable when it was not there previously. One function
    655 // being transformed to introduce an escape which could possibly be observed
    656 // (via loading from a global or the return value for example) within another
    657 // function is never safe. If the observation is made through non-atomic
    658 // operations on different threads, it is a data-race and UB. If the
    659 // observation is well defined, by being observed the transformation would have
    660 // changed program behavior by introducing the observed escape, making it an
    661 // invalid transform.
    662 //
    663 // This property does require that transformations which *temporarily* escape
    664 // a global that was not previously escaped, prior to restoring it, cannot rely
    665 // on the results of GMR::alias. This seems a reasonable restriction, although
    666 // currently there is no way to enforce it. There is also no realistic
    667 // optimization pass that would make this mistake. The closest example is
    668 // a transformation pass which does reg2mem of SSA values but stores them into
    669 // global variables temporarily before restoring the global variable's value.
    670 // This could be useful to expose "benign" races for example. However, it seems
    671 // reasonable to require that a pass which introduces escapes of global
    672 // variables in this way to either not trust AA results while the escape is
    673 // active, or to be forced to operate as a module pass that cannot co-exist
    674 // with an alias analysis such as GMR.
    675 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
    676                                                  const Value *V) {
    677   // In order to know that the underlying object cannot alias the
    678   // non-addr-taken global, we must know that it would have to be an escape.
    679   // Thus if the underlying object is a function argument, a load from
    680   // a global, or the return of a function, it cannot alias. We can also
    681   // recurse through PHI nodes and select nodes provided all of their inputs
    682   // resolve to one of these known-escaping roots.
    683   SmallPtrSet<const Value *, 8> Visited;
    684   SmallVector<const Value *, 8> Inputs;
    685   Visited.insert(V);
    686   Inputs.push_back(V);
    687   int Depth = 0;
    688   do {
    689     const Value *Input = Inputs.pop_back_val();
    690 
    691     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
    692       // If one input is the very global we're querying against, then we can't
    693       // conclude no-alias.
    694       if (InputGV == GV)
    695         return false;
    696 
    697       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
    698       // FIXME: The condition can be refined, but be conservative for now.
    699       auto *GVar = dyn_cast<GlobalVariable>(GV);
    700       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
    701       if (GVar && InputGVar &&
    702           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
    703           !GVar->isInterposable() && !InputGVar->isInterposable()) {
    704         Type *GVType = GVar->getInitializer()->getType();
    705         Type *InputGVType = InputGVar->getInitializer()->getType();
    706         if (GVType->isSized() && InputGVType->isSized() &&
    707             (DL.getTypeAllocSize(GVType) > 0) &&
    708             (DL.getTypeAllocSize(InputGVType) > 0))
    709           continue;
    710       }
    711 
    712       // Conservatively return false, even though we could be smarter
    713       // (e.g. look through GlobalAliases).
    714       return false;
    715     }
    716 
    717     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
    718         isa<InvokeInst>(Input)) {
    719       // Arguments to functions or returns from functions are inherently
    720       // escaping, so we can immediately classify those as not aliasing any
    721       // non-addr-taken globals.
    722       continue;
    723     }
    724 
    725     // Recurse through a limited number of selects, loads and PHIs. This is an
    726     // arbitrary depth of 4, lower numbers could be used to fix compile time
    727     // issues if needed, but this is generally expected to be only be important
    728     // for small depths.
    729     if (++Depth > 4)
    730       return false;
    731 
    732     if (auto *LI = dyn_cast<LoadInst>(Input)) {
    733       // A pointer loaded from a global would have been captured, and we know
    734       // that the global is non-escaping, so no alias.
    735       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
    736       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
    737         // The load does not alias with GV.
    738         continue;
    739       // Otherwise, a load could come from anywhere, so bail.
    740       return false;
    741     }
    742     if (auto *SI = dyn_cast<SelectInst>(Input)) {
    743       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
    744       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
    745       if (Visited.insert(LHS).second)
    746         Inputs.push_back(LHS);
    747       if (Visited.insert(RHS).second)
    748         Inputs.push_back(RHS);
    749       continue;
    750     }
    751     if (auto *PN = dyn_cast<PHINode>(Input)) {
    752       for (const Value *Op : PN->incoming_values()) {
    753         Op = GetUnderlyingObject(Op, DL);
    754         if (Visited.insert(Op).second)
    755           Inputs.push_back(Op);
    756       }
    757       continue;
    758     }
    759 
    760     // FIXME: It would be good to handle other obvious no-alias cases here, but
    761     // it isn't clear how to do so reasonbly without building a small version
    762     // of BasicAA into this code. We could recurse into AAResultBase::alias
    763     // here but that seems likely to go poorly as we're inside the
    764     // implementation of such a query. Until then, just conservatievly retun
    765     // false.
    766     return false;
    767   } while (!Inputs.empty());
    768 
    769   // If all the inputs to V were definitively no-alias, then V is no-alias.
    770   return true;
    771 }
    772 
    773 /// alias - If one of the pointers is to a global that we are tracking, and the
    774 /// other is some random pointer, we know there cannot be an alias, because the
    775 /// address of the global isn't taken.
    776 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
    777                                    const MemoryLocation &LocB) {
    778   // Get the base object these pointers point to.
    779   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
    780   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
    781 
    782   // If either of the underlying values is a global, they may be non-addr-taken
    783   // globals, which we can answer queries about.
    784   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
    785   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
    786   if (GV1 || GV2) {
    787     // If the global's address is taken, pretend we don't know it's a pointer to
    788     // the global.
    789     if (GV1 && !NonAddressTakenGlobals.count(GV1))
    790       GV1 = nullptr;
    791     if (GV2 && !NonAddressTakenGlobals.count(GV2))
    792       GV2 = nullptr;
    793 
    794     // If the two pointers are derived from two different non-addr-taken
    795     // globals we know these can't alias.
    796     if (GV1 && GV2 && GV1 != GV2)
    797       return NoAlias;
    798 
    799     // If one is and the other isn't, it isn't strictly safe but we can fake
    800     // this result if necessary for performance. This does not appear to be
    801     // a common problem in practice.
    802     if (EnableUnsafeGlobalsModRefAliasResults)
    803       if ((GV1 || GV2) && GV1 != GV2)
    804         return NoAlias;
    805 
    806     // Check for a special case where a non-escaping global can be used to
    807     // conclude no-alias.
    808     if ((GV1 || GV2) && GV1 != GV2) {
    809       const GlobalValue *GV = GV1 ? GV1 : GV2;
    810       const Value *UV = GV1 ? UV2 : UV1;
    811       if (isNonEscapingGlobalNoAlias(GV, UV))
    812         return NoAlias;
    813     }
    814 
    815     // Otherwise if they are both derived from the same addr-taken global, we
    816     // can't know the two accesses don't overlap.
    817   }
    818 
    819   // These pointers may be based on the memory owned by an indirect global.  If
    820   // so, we may be able to handle this.  First check to see if the base pointer
    821   // is a direct load from an indirect global.
    822   GV1 = GV2 = nullptr;
    823   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
    824     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    825       if (IndirectGlobals.count(GV))
    826         GV1 = GV;
    827   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
    828     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
    829       if (IndirectGlobals.count(GV))
    830         GV2 = GV;
    831 
    832   // These pointers may also be from an allocation for the indirect global.  If
    833   // so, also handle them.
    834   if (!GV1)
    835     GV1 = AllocsForIndirectGlobals.lookup(UV1);
    836   if (!GV2)
    837     GV2 = AllocsForIndirectGlobals.lookup(UV2);
    838 
    839   // Now that we know whether the two pointers are related to indirect globals,
    840   // use this to disambiguate the pointers. If the pointers are based on
    841   // different indirect globals they cannot alias.
    842   if (GV1 && GV2 && GV1 != GV2)
    843     return NoAlias;
    844 
    845   // If one is based on an indirect global and the other isn't, it isn't
    846   // strictly safe but we can fake this result if necessary for performance.
    847   // This does not appear to be a common problem in practice.
    848   if (EnableUnsafeGlobalsModRefAliasResults)
    849     if ((GV1 || GV2) && GV1 != GV2)
    850       return NoAlias;
    851 
    852   return AAResultBase::alias(LocA, LocB);
    853 }
    854 
    855 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
    856                                                      const GlobalValue *GV) {
    857   if (CS.doesNotAccessMemory())
    858     return MRI_NoModRef;
    859   ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
    860 
    861   // Iterate through all the arguments to the called function. If any argument
    862   // is based on GV, return the conservative result.
    863   for (auto &A : CS.args()) {
    864     SmallVector<Value*, 4> Objects;
    865     GetUnderlyingObjects(A, Objects, DL);
    866 
    867     // All objects must be identified.
    868     if (!std::all_of(Objects.begin(), Objects.end(), isIdentifiedObject) &&
    869         // Try ::alias to see if all objects are known not to alias GV.
    870         !std::all_of(Objects.begin(), Objects.end(), [&](Value *V) {
    871           return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
    872           }))
    873       return ConservativeResult;
    874 
    875     if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end())
    876       return ConservativeResult;
    877   }
    878 
    879   // We identified all objects in the argument list, and none of them were GV.
    880   return MRI_NoModRef;
    881 }
    882 
    883 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
    884                                           const MemoryLocation &Loc) {
    885   unsigned Known = MRI_ModRef;
    886 
    887   // If we are asking for mod/ref info of a direct call with a pointer to a
    888   // global we are tracking, return information if we have it.
    889   if (const GlobalValue *GV =
    890           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
    891     if (GV->hasLocalLinkage())
    892       if (const Function *F = CS.getCalledFunction())
    893         if (NonAddressTakenGlobals.count(GV))
    894           if (const FunctionInfo *FI = getFunctionInfo(F))
    895             Known = FI->getModRefInfoForGlobal(*GV) |
    896               getModRefInfoForArgument(CS, GV);
    897 
    898   if (Known == MRI_NoModRef)
    899     return MRI_NoModRef; // No need to query other mod/ref analyses
    900   return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
    901 }
    902 
    903 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
    904                                  const TargetLibraryInfo &TLI)
    905     : AAResultBase(), DL(DL), TLI(TLI) {}
    906 
    907 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
    908     : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
    909       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
    910       IndirectGlobals(std::move(Arg.IndirectGlobals)),
    911       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
    912       FunctionInfos(std::move(Arg.FunctionInfos)),
    913       Handles(std::move(Arg.Handles)) {
    914   // Update the parent for each DeletionCallbackHandle.
    915   for (auto &H : Handles) {
    916     assert(H.GAR == &Arg);
    917     H.GAR = this;
    918   }
    919 }
    920 
    921 GlobalsAAResult::~GlobalsAAResult() {}
    922 
    923 /*static*/ GlobalsAAResult
    924 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
    925                                CallGraph &CG) {
    926   GlobalsAAResult Result(M.getDataLayout(), TLI);
    927 
    928   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
    929   Result.CollectSCCMembership(CG);
    930 
    931   // Find non-addr taken globals.
    932   Result.AnalyzeGlobals(M);
    933 
    934   // Propagate on CG.
    935   Result.AnalyzeCallGraph(CG, M);
    936 
    937   return Result;
    938 }
    939 
    940 char GlobalsAA::PassID;
    941 
    942 GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> &AM) {
    943   return GlobalsAAResult::analyzeModule(M,
    944                                         AM.getResult<TargetLibraryAnalysis>(M),
    945                                         AM.getResult<CallGraphAnalysis>(M));
    946 }
    947 
    948 char GlobalsAAWrapperPass::ID = 0;
    949 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
    950                       "Globals Alias Analysis", false, true)
    951 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
    952 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    953 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
    954                     "Globals Alias Analysis", false, true)
    955 
    956 ModulePass *llvm::createGlobalsAAWrapperPass() {
    957   return new GlobalsAAWrapperPass();
    958 }
    959 
    960 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
    961   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
    962 }
    963 
    964 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
    965   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
    966       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
    967       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
    968   return false;
    969 }
    970 
    971 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
    972   Result.reset();
    973   return false;
    974 }
    975 
    976 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    977   AU.setPreservesAll();
    978   AU.addRequired<CallGraphWrapperPass>();
    979   AU.addRequired<TargetLibraryInfoWrapperPass>();
    980 }
    981