Home | History | Annotate | Download | only in ssl
      1 /*
      2  * DTLS implementation written by Nagendra Modadugu
      3  * (nagendra (at) cs.stanford.edu) for the OpenSSL project 2005.
      4  */
      5 /* ====================================================================
      6  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  *
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in
     17  *    the documentation and/or other materials provided with the
     18  *    distribution.
     19  *
     20  * 3. All advertising materials mentioning features or use of this
     21  *    software must display the following acknowledgment:
     22  *    "This product includes software developed by the OpenSSL Project
     23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     24  *
     25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     26  *    endorse or promote products derived from this software without
     27  *    prior written permission. For written permission, please contact
     28  *    openssl-core (at) openssl.org.
     29  *
     30  * 5. Products derived from this software may not be called "OpenSSL"
     31  *    nor may "OpenSSL" appear in their names without prior written
     32  *    permission of the OpenSSL Project.
     33  *
     34  * 6. Redistributions of any form whatsoever must retain the following
     35  *    acknowledgment:
     36  *    "This product includes software developed by the OpenSSL Project
     37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     38  *
     39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     50  * OF THE POSSIBILITY OF SUCH DAMAGE.
     51  * ====================================================================
     52  *
     53  * This product includes cryptographic software written by Eric Young
     54  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     55  * Hudson (tjh (at) cryptsoft.com).
     56  *
     57  */
     58 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
     59  * All rights reserved.
     60  *
     61  * This package is an SSL implementation written
     62  * by Eric Young (eay (at) cryptsoft.com).
     63  * The implementation was written so as to conform with Netscapes SSL.
     64  *
     65  * This library is free for commercial and non-commercial use as long as
     66  * the following conditions are aheared to.  The following conditions
     67  * apply to all code found in this distribution, be it the RC4, RSA,
     68  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     69  * included with this distribution is covered by the same copyright terms
     70  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     71  *
     72  * Copyright remains Eric Young's, and as such any Copyright notices in
     73  * the code are not to be removed.
     74  * If this package is used in a product, Eric Young should be given attribution
     75  * as the author of the parts of the library used.
     76  * This can be in the form of a textual message at program startup or
     77  * in documentation (online or textual) provided with the package.
     78  *
     79  * Redistribution and use in source and binary forms, with or without
     80  * modification, are permitted provided that the following conditions
     81  * are met:
     82  * 1. Redistributions of source code must retain the copyright
     83  *    notice, this list of conditions and the following disclaimer.
     84  * 2. Redistributions in binary form must reproduce the above copyright
     85  *    notice, this list of conditions and the following disclaimer in the
     86  *    documentation and/or other materials provided with the distribution.
     87  * 3. All advertising materials mentioning features or use of this software
     88  *    must display the following acknowledgement:
     89  *    "This product includes cryptographic software written by
     90  *     Eric Young (eay (at) cryptsoft.com)"
     91  *    The word 'cryptographic' can be left out if the rouines from the library
     92  *    being used are not cryptographic related :-).
     93  * 4. If you include any Windows specific code (or a derivative thereof) from
     94  *    the apps directory (application code) you must include an acknowledgement:
     95  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     96  *
     97  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     98  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     99  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    100  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    101  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    102  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    103  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    104  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    105  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    106  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    107  * SUCH DAMAGE.
    108  *
    109  * The licence and distribution terms for any publically available version or
    110  * derivative of this code cannot be changed.  i.e. this code cannot simply be
    111  * copied and put under another distribution licence
    112  * [including the GNU Public Licence.] */
    113 
    114 #include <openssl/ssl.h>
    115 
    116 #include <assert.h>
    117 #include <limits.h>
    118 #include <string.h>
    119 
    120 #include <openssl/buf.h>
    121 #include <openssl/err.h>
    122 #include <openssl/evp.h>
    123 #include <openssl/mem.h>
    124 #include <openssl/rand.h>
    125 
    126 #include "../crypto/internal.h"
    127 #include "internal.h"
    128 
    129 
    130 namespace bssl {
    131 
    132 // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable
    133 // for these values? Notably, why is kMinMTU a function of the transport
    134 // protocol's overhead rather than, say, what's needed to hold a minimally-sized
    135 // handshake fragment plus protocol overhead.
    136 
    137 // kMinMTU is the minimum acceptable MTU value.
    138 static const unsigned int kMinMTU = 256 - 28;
    139 
    140 // kDefaultMTU is the default MTU value to use if neither the user nor
    141 // the underlying BIO supplies one.
    142 static const unsigned int kDefaultMTU = 1500 - 28;
    143 
    144 
    145 // Receiving handshake messages.
    146 
    147 hm_fragment::~hm_fragment() {
    148   OPENSSL_free(data);
    149   OPENSSL_free(reassembly);
    150 }
    151 
    152 static UniquePtr<hm_fragment> dtls1_hm_fragment_new(
    153     const struct hm_header_st *msg_hdr) {
    154   ScopedCBB cbb;
    155   UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>();
    156   if (!frag) {
    157     return nullptr;
    158   }
    159   frag->type = msg_hdr->type;
    160   frag->seq = msg_hdr->seq;
    161   frag->msg_len = msg_hdr->msg_len;
    162 
    163   // Allocate space for the reassembled message and fill in the header.
    164   frag->data =
    165       (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len);
    166   if (frag->data == NULL) {
    167     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    168     return nullptr;
    169   }
    170 
    171   if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) ||
    172       !CBB_add_u8(cbb.get(), msg_hdr->type) ||
    173       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
    174       !CBB_add_u16(cbb.get(), msg_hdr->seq) ||
    175       !CBB_add_u24(cbb.get(), 0 /* frag_off */) ||
    176       !CBB_add_u24(cbb.get(), msg_hdr->msg_len) ||
    177       !CBB_finish(cbb.get(), NULL, NULL)) {
    178     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    179     return nullptr;
    180   }
    181 
    182   // If the handshake message is empty, |frag->reassembly| is NULL.
    183   if (msg_hdr->msg_len > 0) {
    184     // Initialize reassembly bitmask.
    185     if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) {
    186       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
    187       return nullptr;
    188     }
    189     size_t bitmask_len = (msg_hdr->msg_len + 7) / 8;
    190     frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len);
    191     if (frag->reassembly == NULL) {
    192       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    193       return nullptr;
    194     }
    195     OPENSSL_memset(frag->reassembly, 0, bitmask_len);
    196   }
    197 
    198   return frag;
    199 }
    200 
    201 // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|,
    202 // exclusive, set.
    203 static uint8_t bit_range(size_t start, size_t end) {
    204   return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1));
    205 }
    206 
    207 // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive,
    208 // as received in |frag|. If |frag| becomes complete, it clears
    209 // |frag->reassembly|. The range must be within the bounds of |frag|'s message
    210 // and |frag->reassembly| must not be NULL.
    211 static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start,
    212                                    size_t end) {
    213   size_t msg_len = frag->msg_len;
    214 
    215   if (frag->reassembly == NULL || start > end || end > msg_len) {
    216     assert(0);
    217     return;
    218   }
    219   // A zero-length message will never have a pending reassembly.
    220   assert(msg_len > 0);
    221 
    222   if (start == end) {
    223     return;
    224   }
    225 
    226   if ((start >> 3) == (end >> 3)) {
    227     frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7);
    228   } else {
    229     frag->reassembly[start >> 3] |= bit_range(start & 7, 8);
    230     for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) {
    231       frag->reassembly[i] = 0xff;
    232     }
    233     if ((end & 7) != 0) {
    234       frag->reassembly[end >> 3] |= bit_range(0, end & 7);
    235     }
    236   }
    237 
    238   // Check if the fragment is complete.
    239   for (size_t i = 0; i < (msg_len >> 3); i++) {
    240     if (frag->reassembly[i] != 0xff) {
    241       return;
    242     }
    243   }
    244   if ((msg_len & 7) != 0 &&
    245       frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) {
    246     return;
    247   }
    248 
    249   OPENSSL_free(frag->reassembly);
    250   frag->reassembly = NULL;
    251 }
    252 
    253 // dtls1_is_current_message_complete returns whether the current handshake
    254 // message is complete.
    255 static bool dtls1_is_current_message_complete(const SSL *ssl) {
    256   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
    257   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
    258   return frag != NULL && frag->reassembly == NULL;
    259 }
    260 
    261 // dtls1_get_incoming_message returns the incoming message corresponding to
    262 // |msg_hdr|. If none exists, it creates a new one and inserts it in the
    263 // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It
    264 // returns NULL on failure. The caller does not take ownership of the result.
    265 static hm_fragment *dtls1_get_incoming_message(
    266     SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) {
    267   if (msg_hdr->seq < ssl->d1->handshake_read_seq ||
    268       msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) {
    269     *out_alert = SSL_AD_INTERNAL_ERROR;
    270     return NULL;
    271   }
    272 
    273   size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT;
    274   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
    275   if (frag != NULL) {
    276     assert(frag->seq == msg_hdr->seq);
    277     // The new fragment must be compatible with the previous fragments from this
    278     // message.
    279     if (frag->type != msg_hdr->type ||
    280         frag->msg_len != msg_hdr->msg_len) {
    281       OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH);
    282       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
    283       return NULL;
    284     }
    285     return frag;
    286   }
    287 
    288   // This is the first fragment from this message.
    289   ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr);
    290   if (!ssl->d1->incoming_messages[idx]) {
    291     *out_alert = SSL_AD_INTERNAL_ERROR;
    292     return NULL;
    293   }
    294   return ssl->d1->incoming_messages[idx].get();
    295 }
    296 
    297 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
    298                                        uint8_t *out_alert, Span<uint8_t> in) {
    299   uint8_t type;
    300   Span<uint8_t> record;
    301   auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in);
    302   if (ret != ssl_open_record_success) {
    303     return ret;
    304   }
    305 
    306   switch (type) {
    307     case SSL3_RT_APPLICATION_DATA:
    308       // Unencrypted application data records are always illegal.
    309       if (ssl->s3->aead_read_ctx->is_null_cipher()) {
    310         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
    311         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    312         return ssl_open_record_error;
    313       }
    314 
    315       // Out-of-order application data may be received between ChangeCipherSpec
    316       // and finished. Discard it.
    317       return ssl_open_record_discard;
    318 
    319     case SSL3_RT_CHANGE_CIPHER_SPEC:
    320       // We do not support renegotiation, so encrypted ChangeCipherSpec records
    321       // are illegal.
    322       if (!ssl->s3->aead_read_ctx->is_null_cipher()) {
    323         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
    324         *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    325         return ssl_open_record_error;
    326       }
    327 
    328       if (record.size() != 1u || record[0] != SSL3_MT_CCS) {
    329         OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
    330         *out_alert = SSL_AD_ILLEGAL_PARAMETER;
    331         return ssl_open_record_error;
    332       }
    333 
    334       // Flag the ChangeCipherSpec for later.
    335       ssl->d1->has_change_cipher_spec = true;
    336       ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC,
    337                           record);
    338       return ssl_open_record_success;
    339 
    340     case SSL3_RT_HANDSHAKE:
    341       // Break out to main processing.
    342       break;
    343 
    344     default:
    345       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
    346       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    347       return ssl_open_record_error;
    348   }
    349 
    350   CBS cbs;
    351   CBS_init(&cbs, record.data(), record.size());
    352   while (CBS_len(&cbs) > 0) {
    353     // Read a handshake fragment.
    354     struct hm_header_st msg_hdr;
    355     CBS body;
    356     if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) {
    357       OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD);
    358       *out_alert = SSL_AD_DECODE_ERROR;
    359       return ssl_open_record_error;
    360     }
    361 
    362     const size_t frag_off = msg_hdr.frag_off;
    363     const size_t frag_len = msg_hdr.frag_len;
    364     const size_t msg_len = msg_hdr.msg_len;
    365     if (frag_off > msg_len || frag_off + frag_len < frag_off ||
    366         frag_off + frag_len > msg_len ||
    367         msg_len > ssl_max_handshake_message_len(ssl)) {
    368       OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE);
    369       *out_alert = SSL_AD_ILLEGAL_PARAMETER;
    370       return ssl_open_record_error;
    371     }
    372 
    373     // The encrypted epoch in DTLS has only one handshake message.
    374     if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) {
    375       OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
    376       *out_alert = SSL_AD_UNEXPECTED_MESSAGE;
    377       return ssl_open_record_error;
    378     }
    379 
    380     if (msg_hdr.seq < ssl->d1->handshake_read_seq ||
    381         msg_hdr.seq >
    382             (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) {
    383       // Ignore fragments from the past, or ones too far in the future.
    384       continue;
    385     }
    386 
    387     hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr);
    388     if (frag == NULL) {
    389       return ssl_open_record_error;
    390     }
    391     assert(frag->msg_len == msg_len);
    392 
    393     if (frag->reassembly == NULL) {
    394       // The message is already assembled.
    395       continue;
    396     }
    397     assert(msg_len > 0);
    398 
    399     // Copy the body into the fragment.
    400     OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off,
    401                    CBS_data(&body), CBS_len(&body));
    402     dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len);
    403   }
    404 
    405   return ssl_open_record_success;
    406 }
    407 
    408 bool dtls1_get_message(SSL *ssl, SSLMessage *out) {
    409   if (!dtls1_is_current_message_complete(ssl)) {
    410     return false;
    411   }
    412 
    413   size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
    414   hm_fragment *frag = ssl->d1->incoming_messages[idx].get();
    415   out->type = frag->type;
    416   CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len);
    417   CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len);
    418   out->is_v2_hello = false;
    419   if (!ssl->s3->has_message) {
    420     ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw);
    421     ssl->s3->has_message = true;
    422   }
    423   return true;
    424 }
    425 
    426 void dtls1_next_message(SSL *ssl) {
    427   assert(ssl->s3->has_message);
    428   assert(dtls1_is_current_message_complete(ssl));
    429   size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
    430   ssl->d1->incoming_messages[index].reset();
    431   ssl->d1->handshake_read_seq++;
    432   ssl->s3->has_message = false;
    433   // If we previously sent a flight, mark it as having a reply, so
    434   // |on_handshake_complete| can manage post-handshake retransmission.
    435   if (ssl->d1->outgoing_messages_complete) {
    436     ssl->d1->flight_has_reply = true;
    437   }
    438 }
    439 
    440 bool dtls_has_unprocessed_handshake_data(const SSL *ssl) {
    441   if (ssl->d1->has_change_cipher_spec) {
    442     return true;
    443   }
    444 
    445   size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT;
    446   for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) {
    447     // Skip the current message.
    448     if (ssl->s3->has_message && i == current) {
    449       assert(dtls1_is_current_message_complete(ssl));
    450       continue;
    451     }
    452     if (ssl->d1->incoming_messages[i] != nullptr) {
    453       return true;
    454     }
    455   }
    456   return false;
    457 }
    458 
    459 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
    460                           CBS *out_body) {
    461   OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st));
    462 
    463   if (!CBS_get_u8(cbs, &out_hdr->type) ||
    464       !CBS_get_u24(cbs, &out_hdr->msg_len) ||
    465       !CBS_get_u16(cbs, &out_hdr->seq) ||
    466       !CBS_get_u24(cbs, &out_hdr->frag_off) ||
    467       !CBS_get_u24(cbs, &out_hdr->frag_len) ||
    468       !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) {
    469     return false;
    470   }
    471 
    472   return true;
    473 }
    474 
    475 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
    476                                                 uint8_t *out_alert,
    477                                                 Span<uint8_t> in) {
    478   if (!ssl->d1->has_change_cipher_spec) {
    479     // dtls1_open_handshake processes both handshake and ChangeCipherSpec.
    480     auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in);
    481     if (ret != ssl_open_record_success) {
    482       return ret;
    483     }
    484   }
    485   if (ssl->d1->has_change_cipher_spec) {
    486     ssl->d1->has_change_cipher_spec = false;
    487     return ssl_open_record_success;
    488   }
    489   return ssl_open_record_discard;
    490 }
    491 
    492 
    493 // Sending handshake messages.
    494 
    495 void DTLS_OUTGOING_MESSAGE::Clear() {
    496   OPENSSL_free(data);
    497   data = nullptr;
    498 }
    499 
    500 void dtls_clear_outgoing_messages(SSL *ssl) {
    501   for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) {
    502     ssl->d1->outgoing_messages[i].Clear();
    503   }
    504   ssl->d1->outgoing_messages_len = 0;
    505   ssl->d1->outgoing_written = 0;
    506   ssl->d1->outgoing_offset = 0;
    507   ssl->d1->outgoing_messages_complete = false;
    508   ssl->d1->flight_has_reply = false;
    509 }
    510 
    511 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) {
    512   // Pick a modest size hint to save most of the |realloc| calls.
    513   if (!CBB_init(cbb, 64) ||
    514       !CBB_add_u8(cbb, type) ||
    515       !CBB_add_u24(cbb, 0 /* length (filled in later) */) ||
    516       !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) ||
    517       !CBB_add_u24(cbb, 0 /* offset */) ||
    518       !CBB_add_u24_length_prefixed(cbb, body)) {
    519     return false;
    520   }
    521 
    522   return true;
    523 }
    524 
    525 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) {
    526   if (!CBBFinishArray(cbb, out_msg) ||
    527       out_msg->size() < DTLS1_HM_HEADER_LENGTH) {
    528     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    529     return false;
    530   }
    531 
    532   // Fix up the header. Copy the fragment length into the total message
    533   // length.
    534   OPENSSL_memcpy(out_msg->data() + 1,
    535                  out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3);
    536   return true;
    537 }
    538 
    539 // add_outgoing adds a new handshake message or ChangeCipherSpec to the current
    540 // outgoing flight. It returns true on success and false on error.
    541 static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) {
    542   if (ssl->d1->outgoing_messages_complete) {
    543     // If we've begun writing a new flight, we received the peer flight. Discard
    544     // the timer and the our flight.
    545     dtls1_stop_timer(ssl);
    546     dtls_clear_outgoing_messages(ssl);
    547   }
    548 
    549   static_assert(SSL_MAX_HANDSHAKE_FLIGHT <
    550                     (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)),
    551                 "outgoing_messages_len is too small");
    552   if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT ||
    553       data.size() > 0xffffffff) {
    554     assert(false);
    555     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    556     return false;
    557   }
    558 
    559   if (!is_ccs) {
    560     // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript
    561     // on hs.
    562     if (ssl->s3->hs != NULL &&
    563         !ssl->s3->hs->transcript.Update(data)) {
    564       OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    565       return false;
    566     }
    567     ssl->d1->handshake_write_seq++;
    568   }
    569 
    570   DTLS_OUTGOING_MESSAGE *msg =
    571       &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len];
    572   size_t len;
    573   data.Release(&msg->data, &len);
    574   msg->len = len;
    575   msg->epoch = ssl->d1->w_epoch;
    576   msg->is_ccs = is_ccs;
    577 
    578   ssl->d1->outgoing_messages_len++;
    579   return true;
    580 }
    581 
    582 bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) {
    583   return add_outgoing(ssl, false /* handshake */, std::move(data));
    584 }
    585 
    586 bool dtls1_add_change_cipher_spec(SSL *ssl) {
    587   return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>());
    588 }
    589 
    590 bool dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc) {
    591   // The |add_alert| path is only used for warning alerts for now, which DTLS
    592   // never sends. This will be implemented later once closure alerts are
    593   // converted.
    594   assert(false);
    595   OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    596   return false;
    597 }
    598 
    599 // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above
    600 // the minimum.
    601 static void dtls1_update_mtu(SSL *ssl) {
    602   // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the
    603   // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use
    604   // |SSL_set_mtu|. Does this need to be so complex?
    605   if (ssl->d1->mtu < dtls1_min_mtu() &&
    606       !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
    607     long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL);
    608     if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
    609       ssl->d1->mtu = (unsigned)mtu;
    610     } else {
    611       ssl->d1->mtu = kDefaultMTU;
    612       BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL);
    613     }
    614   }
    615 
    616   // The MTU should be above the minimum now.
    617   assert(ssl->d1->mtu >= dtls1_min_mtu());
    618 }
    619 
    620 enum seal_result_t {
    621   seal_error,
    622   seal_no_progress,
    623   seal_partial,
    624   seal_success,
    625 };
    626 
    627 // seal_next_message seals |msg|, which must be the next message, to |out|. If
    628 // progress was made, it returns |seal_partial| or |seal_success| and sets
    629 // |*out_len| to the number of bytes written.
    630 static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out,
    631                                             size_t *out_len, size_t max_out,
    632                                             const DTLS_OUTGOING_MESSAGE *msg) {
    633   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
    634   assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]);
    635 
    636   enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch;
    637   if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) {
    638     use_epoch = dtls1_use_previous_epoch;
    639   } else if (msg->epoch != ssl->d1->w_epoch) {
    640     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    641     return seal_error;
    642   }
    643 
    644   size_t overhead = dtls_max_seal_overhead(ssl, use_epoch);
    645   size_t prefix = dtls_seal_prefix_len(ssl, use_epoch);
    646 
    647   if (msg->is_ccs) {
    648     // Check there is room for the ChangeCipherSpec.
    649     static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS};
    650     if (max_out < sizeof(kChangeCipherSpec) + overhead) {
    651       return seal_no_progress;
    652     }
    653 
    654     if (!dtls_seal_record(ssl, out, out_len, max_out,
    655                           SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec,
    656                           sizeof(kChangeCipherSpec), use_epoch)) {
    657       return seal_error;
    658     }
    659 
    660     ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC,
    661                         kChangeCipherSpec);
    662     return seal_success;
    663   }
    664 
    665   // DTLS messages are serialized as a single fragment in |msg|.
    666   CBS cbs, body;
    667   struct hm_header_st hdr;
    668   CBS_init(&cbs, msg->data, msg->len);
    669   if (!dtls1_parse_fragment(&cbs, &hdr, &body) ||
    670       hdr.frag_off != 0 ||
    671       hdr.frag_len != CBS_len(&body) ||
    672       hdr.msg_len != CBS_len(&body) ||
    673       !CBS_skip(&body, ssl->d1->outgoing_offset) ||
    674       CBS_len(&cbs) != 0) {
    675     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    676     return seal_error;
    677   }
    678 
    679   // Determine how much progress can be made.
    680   if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) {
    681     return seal_no_progress;
    682   }
    683   size_t todo = CBS_len(&body);
    684   if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) {
    685     todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead;
    686   }
    687 
    688   // Assemble a fragment, to be sealed in-place.
    689   ScopedCBB cbb;
    690   uint8_t *frag = out + prefix;
    691   size_t max_frag = max_out - prefix, frag_len;
    692   if (!CBB_init_fixed(cbb.get(), frag, max_frag) ||
    693       !CBB_add_u8(cbb.get(), hdr.type) ||
    694       !CBB_add_u24(cbb.get(), hdr.msg_len) ||
    695       !CBB_add_u16(cbb.get(), hdr.seq) ||
    696       !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) ||
    697       !CBB_add_u24(cbb.get(), todo) ||
    698       !CBB_add_bytes(cbb.get(), CBS_data(&body), todo) ||
    699       !CBB_finish(cbb.get(), NULL, &frag_len)) {
    700     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    701     return seal_error;
    702   }
    703 
    704   ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE,
    705                       MakeSpan(frag, frag_len));
    706 
    707   if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE,
    708                         out + prefix, frag_len, use_epoch)) {
    709     return seal_error;
    710   }
    711 
    712   if (todo == CBS_len(&body)) {
    713     // The next message is complete.
    714     ssl->d1->outgoing_offset = 0;
    715     return seal_success;
    716   }
    717 
    718   ssl->d1->outgoing_offset += todo;
    719   return seal_partial;
    720 }
    721 
    722 // seal_next_packet writes as much of the next flight as possible to |out| and
    723 // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as
    724 // appropriate.
    725 static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len,
    726                              size_t max_out) {
    727   bool made_progress = false;
    728   size_t total = 0;
    729   assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len);
    730   for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len;
    731        ssl->d1->outgoing_written++) {
    732     const DTLS_OUTGOING_MESSAGE *msg =
    733         &ssl->d1->outgoing_messages[ssl->d1->outgoing_written];
    734     size_t len;
    735     enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg);
    736     switch (ret) {
    737       case seal_error:
    738         return false;
    739 
    740       case seal_no_progress:
    741         goto packet_full;
    742 
    743       case seal_partial:
    744       case seal_success:
    745         out += len;
    746         max_out -= len;
    747         total += len;
    748         made_progress = true;
    749 
    750         if (ret == seal_partial) {
    751           goto packet_full;
    752         }
    753         break;
    754     }
    755   }
    756 
    757 packet_full:
    758   // The MTU was too small to make any progress.
    759   if (!made_progress) {
    760     OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL);
    761     return false;
    762   }
    763 
    764   *out_len = total;
    765   return true;
    766 }
    767 
    768 static int send_flight(SSL *ssl) {
    769   if (ssl->s3->write_shutdown != ssl_shutdown_none) {
    770     OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
    771     return -1;
    772   }
    773 
    774   dtls1_update_mtu(ssl);
    775 
    776   int ret = -1;
    777   uint8_t *packet = (uint8_t *)OPENSSL_malloc(ssl->d1->mtu);
    778   if (packet == NULL) {
    779     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    780     goto err;
    781   }
    782 
    783   while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) {
    784     uint8_t old_written = ssl->d1->outgoing_written;
    785     uint32_t old_offset = ssl->d1->outgoing_offset;
    786 
    787     size_t packet_len;
    788     if (!seal_next_packet(ssl, packet, &packet_len, ssl->d1->mtu)) {
    789       goto err;
    790     }
    791 
    792     int bio_ret = BIO_write(ssl->wbio, packet, packet_len);
    793     if (bio_ret <= 0) {
    794       // Retry this packet the next time around.
    795       ssl->d1->outgoing_written = old_written;
    796       ssl->d1->outgoing_offset = old_offset;
    797       ssl->s3->rwstate = SSL_WRITING;
    798       ret = bio_ret;
    799       goto err;
    800     }
    801   }
    802 
    803   if (BIO_flush(ssl->wbio) <= 0) {
    804     ssl->s3->rwstate = SSL_WRITING;
    805     goto err;
    806   }
    807 
    808   ret = 1;
    809 
    810 err:
    811   OPENSSL_free(packet);
    812   return ret;
    813 }
    814 
    815 int dtls1_flush_flight(SSL *ssl) {
    816   ssl->d1->outgoing_messages_complete = true;
    817   // Start the retransmission timer for the next flight (if any).
    818   dtls1_start_timer(ssl);
    819   return send_flight(ssl);
    820 }
    821 
    822 int dtls1_retransmit_outgoing_messages(SSL *ssl) {
    823   // Rewind to the start of the flight and write it again.
    824   //
    825   // TODO(davidben): This does not allow retransmits to be resumed on
    826   // non-blocking write.
    827   ssl->d1->outgoing_written = 0;
    828   ssl->d1->outgoing_offset = 0;
    829 
    830   return send_flight(ssl);
    831 }
    832 
    833 unsigned int dtls1_min_mtu(void) {
    834   return kMinMTU;
    835 }
    836 
    837 }  // namespace bssl
    838