Home | History | Annotate | Download | only in QR
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
     12 #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
     19  : traits<_MatrixType>
     20 {
     21   enum { Flags = 0 };
     22 };
     23 
     24 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
     25 
     26 template<typename MatrixType>
     27 struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
     28 {
     29   typedef typename MatrixType::PlainObject ReturnType;
     30 };
     31 
     32 } // end namespace internal
     33 
     34 /** \ingroup QR_Module
     35   *
     36   * \class FullPivHouseholderQR
     37   *
     38   * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
     39   *
     40   * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
     41   *
     42   * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
     43   * such that
     44   * \f[
     45   *  \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
     46   * \f]
     47   * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
     48   * and \b R an upper triangular matrix.
     49   *
     50   * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
     51   * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
     52   *
     53   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
     54   *
     55   * \sa MatrixBase::fullPivHouseholderQr()
     56   */
     57 template<typename _MatrixType> class FullPivHouseholderQR
     58 {
     59   public:
     60 
     61     typedef _MatrixType MatrixType;
     62     enum {
     63       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     64       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     65       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     66       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     67     };
     68     typedef typename MatrixType::Scalar Scalar;
     69     typedef typename MatrixType::RealScalar RealScalar;
     70     // FIXME should be int
     71     typedef typename MatrixType::StorageIndex StorageIndex;
     72     typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
     73     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
     74     typedef Matrix<StorageIndex, 1,
     75                    EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
     76                    EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
     77     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
     78     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
     79     typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
     80     typedef typename MatrixType::PlainObject PlainObject;
     81 
     82     /** \brief Default Constructor.
     83       *
     84       * The default constructor is useful in cases in which the user intends to
     85       * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
     86       */
     87     FullPivHouseholderQR()
     88       : m_qr(),
     89         m_hCoeffs(),
     90         m_rows_transpositions(),
     91         m_cols_transpositions(),
     92         m_cols_permutation(),
     93         m_temp(),
     94         m_isInitialized(false),
     95         m_usePrescribedThreshold(false) {}
     96 
     97     /** \brief Default Constructor with memory preallocation
     98       *
     99       * Like the default constructor but with preallocation of the internal data
    100       * according to the specified problem \a size.
    101       * \sa FullPivHouseholderQR()
    102       */
    103     FullPivHouseholderQR(Index rows, Index cols)
    104       : m_qr(rows, cols),
    105         m_hCoeffs((std::min)(rows,cols)),
    106         m_rows_transpositions((std::min)(rows,cols)),
    107         m_cols_transpositions((std::min)(rows,cols)),
    108         m_cols_permutation(cols),
    109         m_temp(cols),
    110         m_isInitialized(false),
    111         m_usePrescribedThreshold(false) {}
    112 
    113     /** \brief Constructs a QR factorization from a given matrix
    114       *
    115       * This constructor computes the QR factorization of the matrix \a matrix by calling
    116       * the method compute(). It is a short cut for:
    117       *
    118       * \code
    119       * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
    120       * qr.compute(matrix);
    121       * \endcode
    122       *
    123       * \sa compute()
    124       */
    125     template<typename InputType>
    126     explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix)
    127       : m_qr(matrix.rows(), matrix.cols()),
    128         m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
    129         m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
    130         m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
    131         m_cols_permutation(matrix.cols()),
    132         m_temp(matrix.cols()),
    133         m_isInitialized(false),
    134         m_usePrescribedThreshold(false)
    135     {
    136       compute(matrix.derived());
    137     }
    138 
    139     /** \brief Constructs a QR factorization from a given matrix
    140       *
    141       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
    142       *
    143       * \sa FullPivHouseholderQR(const EigenBase&)
    144       */
    145     template<typename InputType>
    146     explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
    147       : m_qr(matrix.derived()),
    148         m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
    149         m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
    150         m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
    151         m_cols_permutation(matrix.cols()),
    152         m_temp(matrix.cols()),
    153         m_isInitialized(false),
    154         m_usePrescribedThreshold(false)
    155     {
    156       computeInPlace();
    157     }
    158 
    159     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
    160       * \c *this is the QR decomposition.
    161       *
    162       * \param b the right-hand-side of the equation to solve.
    163       *
    164       * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
    165       * and an arbitrary solution otherwise.
    166       *
    167       * \note_about_checking_solutions
    168       *
    169       * \note_about_arbitrary_choice_of_solution
    170       *
    171       * Example: \include FullPivHouseholderQR_solve.cpp
    172       * Output: \verbinclude FullPivHouseholderQR_solve.out
    173       */
    174     template<typename Rhs>
    175     inline const Solve<FullPivHouseholderQR, Rhs>
    176     solve(const MatrixBase<Rhs>& b) const
    177     {
    178       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    179       return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived());
    180     }
    181 
    182     /** \returns Expression object representing the matrix Q
    183       */
    184     MatrixQReturnType matrixQ(void) const;
    185 
    186     /** \returns a reference to the matrix where the Householder QR decomposition is stored
    187       */
    188     const MatrixType& matrixQR() const
    189     {
    190       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    191       return m_qr;
    192     }
    193 
    194     template<typename InputType>
    195     FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
    196 
    197     /** \returns a const reference to the column permutation matrix */
    198     const PermutationType& colsPermutation() const
    199     {
    200       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    201       return m_cols_permutation;
    202     }
    203 
    204     /** \returns a const reference to the vector of indices representing the rows transpositions */
    205     const IntDiagSizeVectorType& rowsTranspositions() const
    206     {
    207       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    208       return m_rows_transpositions;
    209     }
    210 
    211     /** \returns the absolute value of the determinant of the matrix of which
    212       * *this is the QR decomposition. It has only linear complexity
    213       * (that is, O(n) where n is the dimension of the square matrix)
    214       * as the QR decomposition has already been computed.
    215       *
    216       * \note This is only for square matrices.
    217       *
    218       * \warning a determinant can be very big or small, so for matrices
    219       * of large enough dimension, there is a risk of overflow/underflow.
    220       * One way to work around that is to use logAbsDeterminant() instead.
    221       *
    222       * \sa logAbsDeterminant(), MatrixBase::determinant()
    223       */
    224     typename MatrixType::RealScalar absDeterminant() const;
    225 
    226     /** \returns the natural log of the absolute value of the determinant of the matrix of which
    227       * *this is the QR decomposition. It has only linear complexity
    228       * (that is, O(n) where n is the dimension of the square matrix)
    229       * as the QR decomposition has already been computed.
    230       *
    231       * \note This is only for square matrices.
    232       *
    233       * \note This method is useful to work around the risk of overflow/underflow that's inherent
    234       * to determinant computation.
    235       *
    236       * \sa absDeterminant(), MatrixBase::determinant()
    237       */
    238     typename MatrixType::RealScalar logAbsDeterminant() const;
    239 
    240     /** \returns the rank of the matrix of which *this is the QR decomposition.
    241       *
    242       * \note This method has to determine which pivots should be considered nonzero.
    243       *       For that, it uses the threshold value that you can control by calling
    244       *       setThreshold(const RealScalar&).
    245       */
    246     inline Index rank() const
    247     {
    248       using std::abs;
    249       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    250       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
    251       Index result = 0;
    252       for(Index i = 0; i < m_nonzero_pivots; ++i)
    253         result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
    254       return result;
    255     }
    256 
    257     /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
    258       *
    259       * \note This method has to determine which pivots should be considered nonzero.
    260       *       For that, it uses the threshold value that you can control by calling
    261       *       setThreshold(const RealScalar&).
    262       */
    263     inline Index dimensionOfKernel() const
    264     {
    265       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    266       return cols() - rank();
    267     }
    268 
    269     /** \returns true if the matrix of which *this is the QR decomposition represents an injective
    270       *          linear map, i.e. has trivial kernel; false otherwise.
    271       *
    272       * \note This method has to determine which pivots should be considered nonzero.
    273       *       For that, it uses the threshold value that you can control by calling
    274       *       setThreshold(const RealScalar&).
    275       */
    276     inline bool isInjective() const
    277     {
    278       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    279       return rank() == cols();
    280     }
    281 
    282     /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
    283       *          linear map; false otherwise.
    284       *
    285       * \note This method has to determine which pivots should be considered nonzero.
    286       *       For that, it uses the threshold value that you can control by calling
    287       *       setThreshold(const RealScalar&).
    288       */
    289     inline bool isSurjective() const
    290     {
    291       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    292       return rank() == rows();
    293     }
    294 
    295     /** \returns true if the matrix of which *this is the QR decomposition is invertible.
    296       *
    297       * \note This method has to determine which pivots should be considered nonzero.
    298       *       For that, it uses the threshold value that you can control by calling
    299       *       setThreshold(const RealScalar&).
    300       */
    301     inline bool isInvertible() const
    302     {
    303       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    304       return isInjective() && isSurjective();
    305     }
    306 
    307     /** \returns the inverse of the matrix of which *this is the QR decomposition.
    308       *
    309       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
    310       *       Use isInvertible() to first determine whether this matrix is invertible.
    311       */
    312     inline const Inverse<FullPivHouseholderQR> inverse() const
    313     {
    314       eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    315       return Inverse<FullPivHouseholderQR>(*this);
    316     }
    317 
    318     inline Index rows() const { return m_qr.rows(); }
    319     inline Index cols() const { return m_qr.cols(); }
    320 
    321     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
    322       *
    323       * For advanced uses only.
    324       */
    325     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    326 
    327     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
    328       * who need to determine when pivots are to be considered nonzero. This is not used for the
    329       * QR decomposition itself.
    330       *
    331       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
    332       * uses a formula to automatically determine a reasonable threshold.
    333       * Once you have called the present method setThreshold(const RealScalar&),
    334       * your value is used instead.
    335       *
    336       * \param threshold The new value to use as the threshold.
    337       *
    338       * A pivot will be considered nonzero if its absolute value is strictly greater than
    339       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
    340       * where maxpivot is the biggest pivot.
    341       *
    342       * If you want to come back to the default behavior, call setThreshold(Default_t)
    343       */
    344     FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
    345     {
    346       m_usePrescribedThreshold = true;
    347       m_prescribedThreshold = threshold;
    348       return *this;
    349     }
    350 
    351     /** Allows to come back to the default behavior, letting Eigen use its default formula for
    352       * determining the threshold.
    353       *
    354       * You should pass the special object Eigen::Default as parameter here.
    355       * \code qr.setThreshold(Eigen::Default); \endcode
    356       *
    357       * See the documentation of setThreshold(const RealScalar&).
    358       */
    359     FullPivHouseholderQR& setThreshold(Default_t)
    360     {
    361       m_usePrescribedThreshold = false;
    362       return *this;
    363     }
    364 
    365     /** Returns the threshold that will be used by certain methods such as rank().
    366       *
    367       * See the documentation of setThreshold(const RealScalar&).
    368       */
    369     RealScalar threshold() const
    370     {
    371       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    372       return m_usePrescribedThreshold ? m_prescribedThreshold
    373       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
    374       // and turns out to be identical to Higham's formula used already in LDLt.
    375                                       : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
    376     }
    377 
    378     /** \returns the number of nonzero pivots in the QR decomposition.
    379       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
    380       * So that notion isn't really intrinsically interesting, but it is
    381       * still useful when implementing algorithms.
    382       *
    383       * \sa rank()
    384       */
    385     inline Index nonzeroPivots() const
    386     {
    387       eigen_assert(m_isInitialized && "LU is not initialized.");
    388       return m_nonzero_pivots;
    389     }
    390 
    391     /** \returns the absolute value of the biggest pivot, i.e. the biggest
    392       *          diagonal coefficient of U.
    393       */
    394     RealScalar maxPivot() const { return m_maxpivot; }
    395 
    396     #ifndef EIGEN_PARSED_BY_DOXYGEN
    397     template<typename RhsType, typename DstType>
    398     EIGEN_DEVICE_FUNC
    399     void _solve_impl(const RhsType &rhs, DstType &dst) const;
    400     #endif
    401 
    402   protected:
    403 
    404     static void check_template_parameters()
    405     {
    406       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    407     }
    408 
    409     void computeInPlace();
    410 
    411     MatrixType m_qr;
    412     HCoeffsType m_hCoeffs;
    413     IntDiagSizeVectorType m_rows_transpositions;
    414     IntDiagSizeVectorType m_cols_transpositions;
    415     PermutationType m_cols_permutation;
    416     RowVectorType m_temp;
    417     bool m_isInitialized, m_usePrescribedThreshold;
    418     RealScalar m_prescribedThreshold, m_maxpivot;
    419     Index m_nonzero_pivots;
    420     RealScalar m_precision;
    421     Index m_det_pq;
    422 };
    423 
    424 template<typename MatrixType>
    425 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
    426 {
    427   using std::abs;
    428   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    429   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    430   return abs(m_qr.diagonal().prod());
    431 }
    432 
    433 template<typename MatrixType>
    434 typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
    435 {
    436   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    437   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
    438   return m_qr.diagonal().cwiseAbs().array().log().sum();
    439 }
    440 
    441 /** Performs the QR factorization of the given matrix \a matrix. The result of
    442   * the factorization is stored into \c *this, and a reference to \c *this
    443   * is returned.
    444   *
    445   * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
    446   */
    447 template<typename MatrixType>
    448 template<typename InputType>
    449 FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
    450 {
    451   m_qr = matrix.derived();
    452   computeInPlace();
    453   return *this;
    454 }
    455 
    456 template<typename MatrixType>
    457 void FullPivHouseholderQR<MatrixType>::computeInPlace()
    458 {
    459   check_template_parameters();
    460 
    461   using std::abs;
    462   Index rows = m_qr.rows();
    463   Index cols = m_qr.cols();
    464   Index size = (std::min)(rows,cols);
    465 
    466 
    467   m_hCoeffs.resize(size);
    468 
    469   m_temp.resize(cols);
    470 
    471   m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
    472 
    473   m_rows_transpositions.resize(size);
    474   m_cols_transpositions.resize(size);
    475   Index number_of_transpositions = 0;
    476 
    477   RealScalar biggest(0);
    478 
    479   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
    480   m_maxpivot = RealScalar(0);
    481 
    482   for (Index k = 0; k < size; ++k)
    483   {
    484     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
    485     typedef internal::scalar_score_coeff_op<Scalar> Scoring;
    486     typedef typename Scoring::result_type Score;
    487 
    488     Score score = m_qr.bottomRightCorner(rows-k, cols-k)
    489                       .unaryExpr(Scoring())
    490                       .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
    491     row_of_biggest_in_corner += k;
    492     col_of_biggest_in_corner += k;
    493     RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score);
    494     if(k==0) biggest = biggest_in_corner;
    495 
    496     // if the corner is negligible, then we have less than full rank, and we can finish early
    497     if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
    498     {
    499       m_nonzero_pivots = k;
    500       for(Index i = k; i < size; i++)
    501       {
    502         m_rows_transpositions.coeffRef(i) = i;
    503         m_cols_transpositions.coeffRef(i) = i;
    504         m_hCoeffs.coeffRef(i) = Scalar(0);
    505       }
    506       break;
    507     }
    508 
    509     m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
    510     m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
    511     if(k != row_of_biggest_in_corner) {
    512       m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
    513       ++number_of_transpositions;
    514     }
    515     if(k != col_of_biggest_in_corner) {
    516       m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
    517       ++number_of_transpositions;
    518     }
    519 
    520     RealScalar beta;
    521     m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    522     m_qr.coeffRef(k,k) = beta;
    523 
    524     // remember the maximum absolute value of diagonal coefficients
    525     if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
    526 
    527     m_qr.bottomRightCorner(rows-k, cols-k-1)
    528         .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
    529   }
    530 
    531   m_cols_permutation.setIdentity(cols);
    532   for(Index k = 0; k < size; ++k)
    533     m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
    534 
    535   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
    536   m_isInitialized = true;
    537 }
    538 
    539 #ifndef EIGEN_PARSED_BY_DOXYGEN
    540 template<typename _MatrixType>
    541 template<typename RhsType, typename DstType>
    542 void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
    543 {
    544   eigen_assert(rhs.rows() == rows());
    545   const Index l_rank = rank();
    546 
    547   // FIXME introduce nonzeroPivots() and use it here. and more generally,
    548   // make the same improvements in this dec as in FullPivLU.
    549   if(l_rank==0)
    550   {
    551     dst.setZero();
    552     return;
    553   }
    554 
    555   typename RhsType::PlainObject c(rhs);
    556 
    557   Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
    558   for (Index k = 0; k < l_rank; ++k)
    559   {
    560     Index remainingSize = rows()-k;
    561     c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
    562     c.bottomRightCorner(remainingSize, rhs.cols())
    563       .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
    564                                m_hCoeffs.coeff(k), &temp.coeffRef(0));
    565   }
    566 
    567   m_qr.topLeftCorner(l_rank, l_rank)
    568       .template triangularView<Upper>()
    569       .solveInPlace(c.topRows(l_rank));
    570 
    571   for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
    572   for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
    573 }
    574 #endif
    575 
    576 namespace internal {
    577 
    578 template<typename DstXprType, typename MatrixType>
    579 struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
    580 {
    581   typedef FullPivHouseholderQR<MatrixType> QrType;
    582   typedef Inverse<QrType> SrcXprType;
    583   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
    584   {
    585     dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
    586   }
    587 };
    588 
    589 /** \ingroup QR_Module
    590   *
    591   * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
    592   *
    593   * \tparam MatrixType type of underlying dense matrix
    594   */
    595 template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
    596   : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
    597 {
    598 public:
    599   typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
    600   typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    601   typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
    602                  MatrixType::MaxRowsAtCompileTime> WorkVectorType;
    603 
    604   FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
    605                                         const HCoeffsType&      hCoeffs,
    606                                         const IntDiagSizeVectorType& rowsTranspositions)
    607     : m_qr(qr),
    608       m_hCoeffs(hCoeffs),
    609       m_rowsTranspositions(rowsTranspositions)
    610   {}
    611 
    612   template <typename ResultType>
    613   void evalTo(ResultType& result) const
    614   {
    615     const Index rows = m_qr.rows();
    616     WorkVectorType workspace(rows);
    617     evalTo(result, workspace);
    618   }
    619 
    620   template <typename ResultType>
    621   void evalTo(ResultType& result, WorkVectorType& workspace) const
    622   {
    623     using numext::conj;
    624     // compute the product H'_0 H'_1 ... H'_n-1,
    625     // where H_k is the k-th Householder transformation I - h_k v_k v_k'
    626     // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
    627     const Index rows = m_qr.rows();
    628     const Index cols = m_qr.cols();
    629     const Index size = (std::min)(rows, cols);
    630     workspace.resize(rows);
    631     result.setIdentity(rows, rows);
    632     for (Index k = size-1; k >= 0; k--)
    633     {
    634       result.block(k, k, rows-k, rows-k)
    635             .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
    636       result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
    637     }
    638   }
    639 
    640   Index rows() const { return m_qr.rows(); }
    641   Index cols() const { return m_qr.rows(); }
    642 
    643 protected:
    644   typename MatrixType::Nested m_qr;
    645   typename HCoeffsType::Nested m_hCoeffs;
    646   typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
    647 };
    648 
    649 // template<typename MatrixType>
    650 // struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
    651 //  : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
    652 // {};
    653 
    654 } // end namespace internal
    655 
    656 template<typename MatrixType>
    657 inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
    658 {
    659   eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
    660   return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
    661 }
    662 
    663 /** \return the full-pivoting Householder QR decomposition of \c *this.
    664   *
    665   * \sa class FullPivHouseholderQR
    666   */
    667 template<typename Derived>
    668 const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
    669 MatrixBase<Derived>::fullPivHouseholderQr() const
    670 {
    671   return FullPivHouseholderQR<PlainObject>(eval());
    672 }
    673 
    674 } // end namespace Eigen
    675 
    676 #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
    677