Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2018 by                                                 */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the STANDALONE_ macro when compiling it.  You also need to   */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the STANDALONE_ macro defined, as in         */
     31   /*                                                                       */
     32   /*     cc -c -DSTANDALONE_ ftgrays.c                                     */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef STANDALONE_
     95 
     96 
     97   /* The size in bytes of the render pool used by the scan-line converter  */
     98   /* to do all of its work.                                                */
     99 #define FT_RENDER_POOL_SIZE  16384L
    100 
    101 
    102   /* Auxiliary macros for token concatenation. */
    103 #define FT_ERR_XCAT( x, y )  x ## y
    104 #define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
    105 
    106 #define FT_BEGIN_STMNT  do {
    107 #define FT_END_STMNT    } while ( 0 )
    108 
    109 #define FT_MIN( a, b )  ( (a) < (b) ? (a) : (b) )
    110 #define FT_MAX( a, b )  ( (a) > (b) ? (a) : (b) )
    111 #define FT_ABS( a )     ( (a) < 0 ? -(a) : (a) )
    112 
    113 
    114   /*
    115    *  Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
    116    *  algorithm.  We use alpha = 1, beta = 3/8, giving us results with a
    117    *  largest error less than 7% compared to the exact value.
    118    */
    119 #define FT_HYPOT( x, y )                 \
    120           ( x = FT_ABS( x ),             \
    121             y = FT_ABS( y ),             \
    122             x > y ? x + ( 3 * y >> 3 )   \
    123                   : y + ( 3 * x >> 3 ) )
    124 
    125 
    126   /* define this to dump debugging information */
    127 /* #define FT_DEBUG_LEVEL_TRACE */
    128 
    129 
    130 #ifdef FT_DEBUG_LEVEL_TRACE
    131 #include <stdio.h>
    132 #include <stdarg.h>
    133 #endif
    134 
    135 #include <stddef.h>
    136 #include <string.h>
    137 #include <setjmp.h>
    138 #include <limits.h>
    139 #define FT_CHAR_BIT   CHAR_BIT
    140 #define FT_UINT_MAX   UINT_MAX
    141 #define FT_INT_MAX    INT_MAX
    142 #define FT_ULONG_MAX  ULONG_MAX
    143 
    144 #define ADD_LONG( a, b )                                    \
    145           (long)( (unsigned long)(a) + (unsigned long)(b) )
    146 #define SUB_LONG( a, b )                                    \
    147           (long)( (unsigned long)(a) - (unsigned long)(b) )
    148 #define MUL_LONG( a, b )                                    \
    149           (long)( (unsigned long)(a) * (unsigned long)(b) )
    150 #define NEG_LONG( a )                                       \
    151           (long)( -(unsigned long)(a) )
    152 
    153 
    154 #define ft_memset   memset
    155 
    156 #define ft_setjmp   setjmp
    157 #define ft_longjmp  longjmp
    158 #define ft_jmp_buf  jmp_buf
    159 
    160 typedef ptrdiff_t  FT_PtrDist;
    161 
    162 
    163 #define ErrRaster_Invalid_Mode      -2
    164 #define ErrRaster_Invalid_Outline   -1
    165 #define ErrRaster_Invalid_Argument  -3
    166 #define ErrRaster_Memory_Overflow   -4
    167 
    168 #define FT_BEGIN_HEADER
    169 #define FT_END_HEADER
    170 
    171 #include "ftimage.h"
    172 #include "ftgrays.h"
    173 
    174 
    175   /* This macro is used to indicate that a function parameter is unused. */
    176   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    177   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    178   /* ANSI compilers (e.g. LCC).                                          */
    179 #define FT_UNUSED( x )  (x) = (x)
    180 
    181 
    182   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    183 
    184 #ifdef FT_DEBUG_LEVEL_TRACE
    185 
    186   void
    187   FT_Message( const char*  fmt,
    188               ... )
    189   {
    190     va_list  ap;
    191 
    192 
    193     va_start( ap, fmt );
    194     vfprintf( stderr, fmt, ap );
    195     va_end( ap );
    196   }
    197 
    198 
    199   /* empty function useful for setting a breakpoint to catch errors */
    200   int
    201   FT_Throw( int          error,
    202             int          line,
    203             const char*  file )
    204   {
    205     FT_UNUSED( error );
    206     FT_UNUSED( line );
    207     FT_UNUSED( file );
    208 
    209     return 0;
    210   }
    211 
    212 
    213   /* we don't handle tracing levels in stand-alone mode; */
    214 #ifndef FT_TRACE5
    215 #define FT_TRACE5( varformat )  FT_Message varformat
    216 #endif
    217 #ifndef FT_TRACE7
    218 #define FT_TRACE7( varformat )  FT_Message varformat
    219 #endif
    220 #ifndef FT_ERROR
    221 #define FT_ERROR( varformat )   FT_Message varformat
    222 #endif
    223 
    224 #define FT_THROW( e )                               \
    225           ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
    226                       __LINE__,                     \
    227                       __FILE__ )                  | \
    228             FT_ERR_CAT( ErrRaster, e )            )
    229 
    230 #else /* !FT_DEBUG_LEVEL_TRACE */
    231 
    232 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    233 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    234 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    235 #define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
    236 
    237 
    238 #endif /* !FT_DEBUG_LEVEL_TRACE */
    239 
    240 
    241 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    242                                  move_to_, line_to_,   \
    243                                  conic_to_, cubic_to_, \
    244                                  shift_, delta_ )      \
    245           static const FT_Outline_Funcs class_ =       \
    246           {                                            \
    247             move_to_,                                  \
    248             line_to_,                                  \
    249             conic_to_,                                 \
    250             cubic_to_,                                 \
    251             shift_,                                    \
    252             delta_                                     \
    253          };
    254 
    255 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    256                                 raster_new_, raster_reset_,       \
    257                                 raster_set_mode_, raster_render_, \
    258                                 raster_done_ )                    \
    259           const FT_Raster_Funcs class_ =                          \
    260           {                                                       \
    261             glyph_format_,                                        \
    262             raster_new_,                                          \
    263             raster_reset_,                                        \
    264             raster_set_mode_,                                     \
    265             raster_render_,                                       \
    266             raster_done_                                          \
    267          };
    268 
    269 
    270 #else /* !STANDALONE_ */
    271 
    272 
    273 #include <ft2build.h>
    274 #include "ftgrays.h"
    275 #include FT_INTERNAL_OBJECTS_H
    276 #include FT_INTERNAL_DEBUG_H
    277 #include FT_INTERNAL_CALC_H
    278 #include FT_OUTLINE_H
    279 
    280 #include "ftsmerrs.h"
    281 
    282 #include "ftspic.h"
    283 
    284 #define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
    285 #define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
    286 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    287 
    288 
    289 #endif /* !STANDALONE_ */
    290 
    291 
    292 #ifndef FT_MEM_SET
    293 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    294 #endif
    295 
    296 #ifndef FT_MEM_ZERO
    297 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    298 #endif
    299 
    300 #ifndef FT_ZERO
    301 #define FT_ZERO( p )  FT_MEM_ZERO( p, sizeof ( *(p) ) )
    302 #endif
    303 
    304   /* as usual, for the speed hungry :-) */
    305 
    306 #undef RAS_ARG
    307 #undef RAS_ARG_
    308 #undef RAS_VAR
    309 #undef RAS_VAR_
    310 
    311 #ifndef FT_STATIC_RASTER
    312 
    313 #define RAS_ARG   gray_PWorker  worker
    314 #define RAS_ARG_  gray_PWorker  worker,
    315 
    316 #define RAS_VAR   worker
    317 #define RAS_VAR_  worker,
    318 
    319 #else /* FT_STATIC_RASTER */
    320 
    321 #define RAS_ARG   void
    322 #define RAS_ARG_  /* empty */
    323 #define RAS_VAR   /* empty */
    324 #define RAS_VAR_  /* empty */
    325 
    326 #endif /* FT_STATIC_RASTER */
    327 
    328 
    329   /* must be at least 6 bits! */
    330 #define PIXEL_BITS  8
    331 
    332 #undef FLOOR
    333 #undef CEILING
    334 #undef TRUNC
    335 #undef SCALED
    336 
    337 #define ONE_PIXEL       ( 1 << PIXEL_BITS )
    338 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    339 #define SUBPIXELS( x )  ( (TPos)(x) * ONE_PIXEL )
    340 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    341 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    342 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    343 
    344 #if PIXEL_BITS >= 6
    345 #define UPSCALE( x )    ( (x) * ( ONE_PIXEL >> 6 ) )
    346 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    347 #else
    348 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    349 #define DOWNSCALE( x )  ( (x) * ( 64 >> PIXEL_BITS ) )
    350 #endif
    351 
    352 
    353   /* Compute `dividend / divisor' and return both its quotient and     */
    354   /* remainder, cast to a specific type.  This macro also ensures that */
    355   /* the remainder is always positive.  We use the remainder to keep   */
    356   /* track of accumulating errors and compensate for them.             */
    357 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    358   FT_BEGIN_STMNT                                                   \
    359     (quotient)  = (type)( (dividend) / (divisor) );                \
    360     (remainder) = (type)( (dividend) % (divisor) );                \
    361     if ( (remainder) < 0 )                                         \
    362     {                                                              \
    363       (quotient)--;                                                \
    364       (remainder) += (type)(divisor);                              \
    365     }                                                              \
    366   FT_END_STMNT
    367 
    368 #ifdef  __arm__
    369   /* Work around a bug specific to GCC which make the compiler fail to */
    370   /* optimize a division and modulo operation on the same parameters   */
    371   /* into a single call to `__aeabi_idivmod'.  See                     */
    372   /*                                                                   */
    373   /*  https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721               */
    374 #undef FT_DIV_MOD
    375 #define FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
    376   FT_BEGIN_STMNT                                                   \
    377     (quotient)  = (type)( (dividend) / (divisor) );                \
    378     (remainder) = (type)( (dividend) - (quotient) * (divisor) );   \
    379     if ( (remainder) < 0 )                                         \
    380     {                                                              \
    381       (quotient)--;                                                \
    382       (remainder) += (type)(divisor);                              \
    383     }                                                              \
    384   FT_END_STMNT
    385 #endif /* __arm__ */
    386 
    387 
    388   /* These macros speed up repetitive divisions by replacing them */
    389   /* with multiplications and right shifts.                       */
    390 #define FT_UDIVPREP( c, b )                                        \
    391   long  b ## _r = c ? (long)( FT_ULONG_MAX >> PIXEL_BITS ) / ( b ) \
    392                     : 0
    393 #define FT_UDIV( a, b )                                        \
    394   ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >>   \
    395     ( sizeof( long ) * FT_CHAR_BIT - PIXEL_BITS ) )
    396 
    397 
    398   /*************************************************************************/
    399   /*                                                                       */
    400   /*   TYPE DEFINITIONS                                                    */
    401   /*                                                                       */
    402 
    403   /* don't change the following types to FT_Int or FT_Pos, since we might */
    404   /* need to define them to "float" or "double" when experimenting with   */
    405   /* new algorithms                                                       */
    406 
    407   typedef long  TPos;     /* sub-pixel coordinate              */
    408   typedef int   TCoord;   /* integer scanline/pixel coordinate */
    409   typedef int   TArea;    /* cell areas, coordinate products   */
    410 
    411 
    412   typedef struct TCell_*  PCell;
    413 
    414   typedef struct  TCell_
    415   {
    416     TCoord  x;     /* same with gray_TWorker.ex    */
    417     TCoord  cover; /* same with gray_TWorker.cover */
    418     TArea   area;
    419     PCell   next;
    420 
    421   } TCell;
    422 
    423   typedef struct TPixmap_
    424   {
    425     unsigned char*  origin;  /* pixmap origin at the bottom-left */
    426     int             pitch;   /* pitch to go down one row */
    427 
    428   } TPixmap;
    429 
    430   /* maximum number of gray cells in the buffer */
    431 #if FT_RENDER_POOL_SIZE > 2048
    432 #define FT_MAX_GRAY_POOL  ( FT_RENDER_POOL_SIZE / sizeof ( TCell ) )
    433 #else
    434 #define FT_MAX_GRAY_POOL  ( 2048 / sizeof ( TCell ) )
    435 #endif
    436 
    437 
    438 #if defined( _MSC_VER )      /* Visual C++ (and Intel C++) */
    439   /* We disable the warning `structure was padded due to   */
    440   /* __declspec(align())' in order to compile cleanly with */
    441   /* the maximum level of warnings.                        */
    442 #pragma warning( push )
    443 #pragma warning( disable : 4324 )
    444 #endif /* _MSC_VER */
    445 
    446   typedef struct  gray_TWorker_
    447   {
    448     ft_jmp_buf  jump_buffer;
    449 
    450     TCoord  ex, ey;
    451     TCoord  min_ex, max_ex;
    452     TCoord  min_ey, max_ey;
    453 
    454     TArea   area;
    455     TCoord  cover;
    456     int     invalid;
    457 
    458     PCell*      ycells;
    459     PCell       cells;
    460     FT_PtrDist  max_cells;
    461     FT_PtrDist  num_cells;
    462 
    463     TPos    x,  y;
    464 
    465     FT_Outline  outline;
    466     TPixmap     target;
    467 
    468     FT_Raster_Span_Func  render_span;
    469     void*                render_span_data;
    470 
    471   } gray_TWorker, *gray_PWorker;
    472 
    473 #if defined( _MSC_VER )
    474 #pragma warning( pop )
    475 #endif
    476 
    477 
    478 #ifndef FT_STATIC_RASTER
    479 #define ras  (*worker)
    480 #else
    481   static gray_TWorker  ras;
    482 #endif
    483 
    484 
    485   typedef struct gray_TRaster_
    486   {
    487     void*         memory;
    488 
    489   } gray_TRaster, *gray_PRaster;
    490 
    491 
    492 #ifdef FT_DEBUG_LEVEL_TRACE
    493 
    494   /* to be called while in the debugger --                                */
    495   /* this function causes a compiler warning since it is unused otherwise */
    496   static void
    497   gray_dump_cells( RAS_ARG )
    498   {
    499     int  y;
    500 
    501 
    502     for ( y = ras.min_ey; y < ras.max_ey; y++ )
    503     {
    504       PCell  cell = ras.ycells[y - ras.min_ey];
    505 
    506 
    507       printf( "%3d:", y );
    508 
    509       for ( ; cell != NULL; cell = cell->next )
    510         printf( " (%3d, c:%4d, a:%6d)",
    511                 cell->x, cell->cover, cell->area );
    512       printf( "\n" );
    513     }
    514   }
    515 
    516 #endif /* FT_DEBUG_LEVEL_TRACE */
    517 
    518 
    519   /*************************************************************************/
    520   /*                                                                       */
    521   /* Record the current cell in the table.                                 */
    522   /*                                                                       */
    523   static void
    524   gray_record_cell( RAS_ARG )
    525   {
    526     PCell  *pcell, cell;
    527     TCoord  x = ras.ex;
    528 
    529 
    530     pcell = &ras.ycells[ras.ey - ras.min_ey];
    531     for (;;)
    532     {
    533       cell = *pcell;
    534       if ( !cell || cell->x > x )
    535         break;
    536 
    537       if ( cell->x == x )
    538         goto Found;
    539 
    540       pcell = &cell->next;
    541     }
    542 
    543     if ( ras.num_cells >= ras.max_cells )
    544       ft_longjmp( ras.jump_buffer, 1 );
    545 
    546     /* insert new cell */
    547     cell        = ras.cells + ras.num_cells++;
    548     cell->x     = x;
    549     cell->area  = ras.area;
    550     cell->cover = ras.cover;
    551 
    552     cell->next  = *pcell;
    553     *pcell      = cell;
    554 
    555     return;
    556 
    557   Found:
    558     /* update old cell */
    559     cell->area  += ras.area;
    560     cell->cover += ras.cover;
    561   }
    562 
    563 
    564   /*************************************************************************/
    565   /*                                                                       */
    566   /* Set the current cell to a new position.                               */
    567   /*                                                                       */
    568   static void
    569   gray_set_cell( RAS_ARG_ TCoord  ex,
    570                           TCoord  ey )
    571   {
    572     /* Move the cell pointer to a new position.  We set the `invalid'      */
    573     /* flag to indicate that the cell isn't part of those we're interested */
    574     /* in during the render phase.  This means that:                       */
    575     /*                                                                     */
    576     /* . the new vertical position must be within min_ey..max_ey-1.        */
    577     /* . the new horizontal position must be strictly less than max_ex     */
    578     /*                                                                     */
    579     /* Note that if a cell is to the left of the clipping region, it is    */
    580     /* actually set to the (min_ex-1) horizontal position.                 */
    581 
    582     if ( ex < ras.min_ex )
    583       ex = ras.min_ex - 1;
    584 
    585     /* record the current one if it is valid and substantial */
    586     if ( !ras.invalid && ( ras.area || ras.cover ) )
    587       gray_record_cell( RAS_VAR );
    588 
    589     ras.area  = 0;
    590     ras.cover = 0;
    591     ras.ex    = ex;
    592     ras.ey    = ey;
    593 
    594     ras.invalid = ( ey >= ras.max_ey || ey < ras.min_ey ||
    595                     ex >= ras.max_ex );
    596   }
    597 
    598 
    599 #ifndef FT_LONG64
    600 
    601   /*************************************************************************/
    602   /*                                                                       */
    603   /* Render a scanline as one or more cells.                               */
    604   /*                                                                       */
    605   static void
    606   gray_render_scanline( RAS_ARG_ TCoord  ey,
    607                                  TPos    x1,
    608                                  TCoord  y1,
    609                                  TPos    x2,
    610                                  TCoord  y2 )
    611   {
    612     TCoord  ex1, ex2, fx1, fx2, first, dy, delta, mod;
    613     TPos    p, dx;
    614     int     incr;
    615 
    616 
    617     ex1 = TRUNC( x1 );
    618     ex2 = TRUNC( x2 );
    619 
    620     /* trivial case.  Happens often */
    621     if ( y1 == y2 )
    622     {
    623       gray_set_cell( RAS_VAR_ ex2, ey );
    624       return;
    625     }
    626 
    627     fx1   = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    628     fx2   = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    629 
    630     /* everything is located in a single cell.  That is easy! */
    631     /*                                                        */
    632     if ( ex1 == ex2 )
    633       goto End;
    634 
    635     /* ok, we'll have to render a run of adjacent cells on the same */
    636     /* scanline...                                                  */
    637     /*                                                              */
    638     dx = x2 - x1;
    639     dy = y2 - y1;
    640 
    641     if ( dx > 0 )
    642     {
    643       p     = ( ONE_PIXEL - fx1 ) * dy;
    644       first = ONE_PIXEL;
    645       incr  = 1;
    646     }
    647     else
    648     {
    649       p     = fx1 * dy;
    650       first = 0;
    651       incr  = -1;
    652       dx    = -dx;
    653     }
    654 
    655     FT_DIV_MOD( TCoord, p, dx, delta, mod );
    656 
    657     ras.area  += (TArea)( ( fx1 + first ) * delta );
    658     ras.cover += delta;
    659     y1        += delta;
    660     ex1       += incr;
    661     gray_set_cell( RAS_VAR_ ex1, ey );
    662 
    663     if ( ex1 != ex2 )
    664     {
    665       TCoord  lift, rem;
    666 
    667 
    668       p = ONE_PIXEL * dy;
    669       FT_DIV_MOD( TCoord, p, dx, lift, rem );
    670 
    671       do
    672       {
    673         delta = lift;
    674         mod  += rem;
    675         if ( mod >= (TCoord)dx )
    676         {
    677           mod -= (TCoord)dx;
    678           delta++;
    679         }
    680 
    681         ras.area  += (TArea)( ONE_PIXEL * delta );
    682         ras.cover += delta;
    683         y1        += delta;
    684         ex1       += incr;
    685         gray_set_cell( RAS_VAR_ ex1, ey );
    686       } while ( ex1 != ex2 );
    687     }
    688 
    689     fx1 = ONE_PIXEL - first;
    690 
    691   End:
    692     dy = y2 - y1;
    693 
    694     ras.area  += (TArea)( ( fx1 + fx2 ) * dy );
    695     ras.cover += dy;
    696   }
    697 
    698 
    699   /*************************************************************************/
    700   /*                                                                       */
    701   /* Render a given line as a series of scanlines.                         */
    702   /*                                                                       */
    703   static void
    704   gray_render_line( RAS_ARG_ TPos  to_x,
    705                              TPos  to_y )
    706   {
    707     TCoord  ey1, ey2, fy1, fy2, first, delta, mod;
    708     TPos    p, dx, dy, x, x2;
    709     int     incr;
    710 
    711 
    712     ey1 = TRUNC( ras.y );
    713     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    714 
    715     /* perform vertical clipping */
    716     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
    717          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
    718       goto End;
    719 
    720     fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
    721     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    722 
    723     /* everything is on a single scanline */
    724     if ( ey1 == ey2 )
    725     {
    726       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    727       goto End;
    728     }
    729 
    730     dx = to_x - ras.x;
    731     dy = to_y - ras.y;
    732 
    733     /* vertical line - avoid calling gray_render_scanline */
    734     if ( dx == 0 )
    735     {
    736       TCoord  ex     = TRUNC( ras.x );
    737       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    738       TArea   area;
    739 
    740 
    741       if ( dy > 0)
    742       {
    743         first = ONE_PIXEL;
    744         incr  = 1;
    745       }
    746       else
    747       {
    748         first = 0;
    749         incr  = -1;
    750       }
    751 
    752       delta      = first - fy1;
    753       ras.area  += (TArea)two_fx * delta;
    754       ras.cover += delta;
    755       ey1       += incr;
    756 
    757       gray_set_cell( RAS_VAR_ ex, ey1 );
    758 
    759       delta = first + first - ONE_PIXEL;
    760       area  = (TArea)two_fx * delta;
    761       while ( ey1 != ey2 )
    762       {
    763         ras.area  += area;
    764         ras.cover += delta;
    765         ey1       += incr;
    766 
    767         gray_set_cell( RAS_VAR_ ex, ey1 );
    768       }
    769 
    770       delta      = fy2 - ONE_PIXEL + first;
    771       ras.area  += (TArea)two_fx * delta;
    772       ras.cover += delta;
    773 
    774       goto End;
    775     }
    776 
    777     /* ok, we have to render several scanlines */
    778     if ( dy > 0)
    779     {
    780       p     = ( ONE_PIXEL - fy1 ) * dx;
    781       first = ONE_PIXEL;
    782       incr  = 1;
    783     }
    784     else
    785     {
    786       p     = fy1 * dx;
    787       first = 0;
    788       incr  = -1;
    789       dy    = -dy;
    790     }
    791 
    792     FT_DIV_MOD( TCoord, p, dy, delta, mod );
    793 
    794     x = ras.x + delta;
    795     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, first );
    796 
    797     ey1 += incr;
    798     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    799 
    800     if ( ey1 != ey2 )
    801     {
    802       TCoord  lift, rem;
    803 
    804 
    805       p    = ONE_PIXEL * dx;
    806       FT_DIV_MOD( TCoord, p, dy, lift, rem );
    807 
    808       do
    809       {
    810         delta = lift;
    811         mod  += rem;
    812         if ( mod >= (TCoord)dy )
    813         {
    814           mod -= (TCoord)dy;
    815           delta++;
    816         }
    817 
    818         x2 = x + delta;
    819         gray_render_scanline( RAS_VAR_ ey1,
    820                                        x, ONE_PIXEL - first,
    821                                        x2, first );
    822         x = x2;
    823 
    824         ey1 += incr;
    825         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    826       } while ( ey1 != ey2 );
    827     }
    828 
    829     gray_render_scanline( RAS_VAR_ ey1,
    830                                    x, ONE_PIXEL - first,
    831                                    to_x, fy2 );
    832 
    833   End:
    834     ras.x       = to_x;
    835     ras.y       = to_y;
    836   }
    837 
    838 #else
    839 
    840   /*************************************************************************/
    841   /*                                                                       */
    842   /* Render a straight line across multiple cells in any direction.        */
    843   /*                                                                       */
    844   static void
    845   gray_render_line( RAS_ARG_ TPos  to_x,
    846                              TPos  to_y )
    847   {
    848     TPos    dx, dy, fx1, fy1, fx2, fy2;
    849     TCoord  ex1, ex2, ey1, ey2;
    850 
    851 
    852     ey1 = TRUNC( ras.y );
    853     ey2 = TRUNC( to_y );
    854 
    855     /* perform vertical clipping */
    856     if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
    857          ( ey1 <  ras.min_ey && ey2 <  ras.min_ey ) )
    858       goto End;
    859 
    860     ex1 = TRUNC( ras.x );
    861     ex2 = TRUNC( to_x );
    862 
    863     fx1 = ras.x - SUBPIXELS( ex1 );
    864     fy1 = ras.y - SUBPIXELS( ey1 );
    865 
    866     dx = to_x - ras.x;
    867     dy = to_y - ras.y;
    868 
    869     if ( ex1 == ex2 && ey1 == ey2 )       /* inside one cell */
    870       ;
    871     else if ( dy == 0 ) /* ex1 != ex2 */  /* any horizontal line */
    872     {
    873       ex1 = ex2;
    874       gray_set_cell( RAS_VAR_ ex1, ey1 );
    875     }
    876     else if ( dx == 0 )
    877     {
    878       if ( dy > 0 )                       /* vertical line up */
    879         do
    880         {
    881           fy2 = ONE_PIXEL;
    882           ras.cover += ( fy2 - fy1 );
    883           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
    884           fy1 = 0;
    885           ey1++;
    886           gray_set_cell( RAS_VAR_ ex1, ey1 );
    887         } while ( ey1 != ey2 );
    888       else                                /* vertical line down */
    889         do
    890         {
    891           fy2 = 0;
    892           ras.cover += ( fy2 - fy1 );
    893           ras.area  += ( fy2 - fy1 ) * fx1 * 2;
    894           fy1 = ONE_PIXEL;
    895           ey1--;
    896           gray_set_cell( RAS_VAR_ ex1, ey1 );
    897         } while ( ey1 != ey2 );
    898     }
    899     else                                  /* any other line */
    900     {
    901       TPos  prod = dx * fy1 - dy * fx1;
    902       FT_UDIVPREP( ex1 != ex2, dx );
    903       FT_UDIVPREP( ey1 != ey2, dy );
    904 
    905 
    906       /* The fundamental value `prod' determines which side and the  */
    907       /* exact coordinate where the line exits current cell.  It is  */
    908       /* also easily updated when moving from one cell to the next.  */
    909       do
    910       {
    911         if      ( prod                                   <= 0 &&
    912                   prod - dx * ONE_PIXEL                  >  0 ) /* left */
    913         {
    914           fx2 = 0;
    915           fy2 = (TPos)FT_UDIV( -prod, -dx );
    916           prod -= dy * ONE_PIXEL;
    917           ras.cover += ( fy2 - fy1 );
    918           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    919           fx1 = ONE_PIXEL;
    920           fy1 = fy2;
    921           ex1--;
    922         }
    923         else if ( prod - dx * ONE_PIXEL                  <= 0 &&
    924                   prod - dx * ONE_PIXEL + dy * ONE_PIXEL >  0 ) /* up */
    925         {
    926           prod -= dx * ONE_PIXEL;
    927           fx2 = (TPos)FT_UDIV( -prod, dy );
    928           fy2 = ONE_PIXEL;
    929           ras.cover += ( fy2 - fy1 );
    930           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    931           fx1 = fx2;
    932           fy1 = 0;
    933           ey1++;
    934         }
    935         else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
    936                   prod                  + dy * ONE_PIXEL >= 0 ) /* right */
    937         {
    938           prod += dy * ONE_PIXEL;
    939           fx2 = ONE_PIXEL;
    940           fy2 = (TPos)FT_UDIV( prod, dx );
    941           ras.cover += ( fy2 - fy1 );
    942           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    943           fx1 = 0;
    944           fy1 = fy2;
    945           ex1++;
    946         }
    947         else /* ( prod                  + dy * ONE_PIXEL <  0 &&
    948                   prod                                   >  0 )    down */
    949         {
    950           fx2 = (TPos)FT_UDIV( prod, -dy );
    951           fy2 = 0;
    952           prod += dx * ONE_PIXEL;
    953           ras.cover += ( fy2 - fy1 );
    954           ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    955           fx1 = fx2;
    956           fy1 = ONE_PIXEL;
    957           ey1--;
    958         }
    959 
    960         gray_set_cell( RAS_VAR_ ex1, ey1 );
    961       } while ( ex1 != ex2 || ey1 != ey2 );
    962     }
    963 
    964     fx2 = to_x - SUBPIXELS( ex2 );
    965     fy2 = to_y - SUBPIXELS( ey2 );
    966 
    967     ras.cover += ( fy2 - fy1 );
    968     ras.area  += ( fy2 - fy1 ) * ( fx1 + fx2 );
    969 
    970   End:
    971     ras.x       = to_x;
    972     ras.y       = to_y;
    973   }
    974 
    975 #endif
    976 
    977   static void
    978   gray_split_conic( FT_Vector*  base )
    979   {
    980     TPos  a, b;
    981 
    982 
    983     base[4].x = base[2].x;
    984     b = base[1].x;
    985     a = base[3].x = ( base[2].x + b ) / 2;
    986     b = base[1].x = ( base[0].x + b ) / 2;
    987     base[2].x = ( a + b ) / 2;
    988 
    989     base[4].y = base[2].y;
    990     b = base[1].y;
    991     a = base[3].y = ( base[2].y + b ) / 2;
    992     b = base[1].y = ( base[0].y + b ) / 2;
    993     base[2].y = ( a + b ) / 2;
    994   }
    995 
    996 
    997   static void
    998   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    999                               const FT_Vector*  to )
   1000   {
   1001     FT_Vector   bez_stack[16 * 2 + 1];  /* enough to accommodate bisections */
   1002     FT_Vector*  arc = bez_stack;
   1003     TPos        dx, dy;
   1004     int         draw, split;
   1005 
   1006 
   1007     arc[0].x = UPSCALE( to->x );
   1008     arc[0].y = UPSCALE( to->y );
   1009     arc[1].x = UPSCALE( control->x );
   1010     arc[1].y = UPSCALE( control->y );
   1011     arc[2].x = ras.x;
   1012     arc[2].y = ras.y;
   1013 
   1014     /* short-cut the arc that crosses the current band */
   1015     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
   1016            TRUNC( arc[1].y ) >= ras.max_ey &&
   1017            TRUNC( arc[2].y ) >= ras.max_ey ) ||
   1018          ( TRUNC( arc[0].y ) <  ras.min_ey &&
   1019            TRUNC( arc[1].y ) <  ras.min_ey &&
   1020            TRUNC( arc[2].y ) <  ras.min_ey ) )
   1021     {
   1022       ras.x = arc[0].x;
   1023       ras.y = arc[0].y;
   1024       return;
   1025     }
   1026 
   1027     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
   1028     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
   1029     if ( dx < dy )
   1030       dx = dy;
   1031 
   1032     /* We can calculate the number of necessary bisections because  */
   1033     /* each bisection predictably reduces deviation exactly 4-fold. */
   1034     /* Even 32-bit deviation would vanish after 16 bisections.      */
   1035     draw = 1;
   1036     while ( dx > ONE_PIXEL / 4 )
   1037     {
   1038       dx   >>= 2;
   1039       draw <<= 1;
   1040     }
   1041 
   1042     /* We use decrement counter to count the total number of segments */
   1043     /* to draw starting from 2^level. Before each draw we split as    */
   1044     /* many times as there are trailing zeros in the counter.         */
   1045     do
   1046     {
   1047       split = 1;
   1048       while ( ( draw & split ) == 0 )
   1049       {
   1050         gray_split_conic( arc );
   1051         arc += 2;
   1052         split <<= 1;
   1053       }
   1054 
   1055       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1056       arc -= 2;
   1057 
   1058     } while ( --draw );
   1059   }
   1060 
   1061 
   1062   static void
   1063   gray_split_cubic( FT_Vector*  base )
   1064   {
   1065     TPos  a, b, c, d;
   1066 
   1067 
   1068     base[6].x = base[3].x;
   1069     c = base[1].x;
   1070     d = base[2].x;
   1071     base[1].x = a = ( base[0].x + c ) / 2;
   1072     base[5].x = b = ( base[3].x + d ) / 2;
   1073     c = ( c + d ) / 2;
   1074     base[2].x = a = ( a + c ) / 2;
   1075     base[4].x = b = ( b + c ) / 2;
   1076     base[3].x = ( a + b ) / 2;
   1077 
   1078     base[6].y = base[3].y;
   1079     c = base[1].y;
   1080     d = base[2].y;
   1081     base[1].y = a = ( base[0].y + c ) / 2;
   1082     base[5].y = b = ( base[3].y + d ) / 2;
   1083     c = ( c + d ) / 2;
   1084     base[2].y = a = ( a + c ) / 2;
   1085     base[4].y = b = ( b + c ) / 2;
   1086     base[3].y = ( a + b ) / 2;
   1087   }
   1088 
   1089 
   1090   static void
   1091   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
   1092                               const FT_Vector*  control2,
   1093                               const FT_Vector*  to )
   1094   {
   1095     FT_Vector   bez_stack[16 * 3 + 1];  /* enough to accommodate bisections */
   1096     FT_Vector*  arc = bez_stack;
   1097     TPos        dx, dy, dx_, dy_;
   1098     TPos        dx1, dy1, dx2, dy2;
   1099     TPos        L, s, s_limit;
   1100 
   1101 
   1102     arc[0].x = UPSCALE( to->x );
   1103     arc[0].y = UPSCALE( to->y );
   1104     arc[1].x = UPSCALE( control2->x );
   1105     arc[1].y = UPSCALE( control2->y );
   1106     arc[2].x = UPSCALE( control1->x );
   1107     arc[2].y = UPSCALE( control1->y );
   1108     arc[3].x = ras.x;
   1109     arc[3].y = ras.y;
   1110 
   1111     /* short-cut the arc that crosses the current band */
   1112     if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
   1113            TRUNC( arc[1].y ) >= ras.max_ey &&
   1114            TRUNC( arc[2].y ) >= ras.max_ey &&
   1115            TRUNC( arc[3].y ) >= ras.max_ey ) ||
   1116          ( TRUNC( arc[0].y ) <  ras.min_ey &&
   1117            TRUNC( arc[1].y ) <  ras.min_ey &&
   1118            TRUNC( arc[2].y ) <  ras.min_ey &&
   1119            TRUNC( arc[3].y ) <  ras.min_ey ) )
   1120     {
   1121       ras.x = arc[0].x;
   1122       ras.y = arc[0].y;
   1123       return;
   1124     }
   1125 
   1126     for (;;)
   1127     {
   1128       /* Decide whether to split or draw. See `Rapid Termination          */
   1129       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
   1130       /* F. Hain, at                                                      */
   1131       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
   1132 
   1133       /* dx and dy are x and y components of the P0-P3 chord vector. */
   1134       dx = dx_ = arc[3].x - arc[0].x;
   1135       dy = dy_ = arc[3].y - arc[0].y;
   1136 
   1137       L = FT_HYPOT( dx_, dy_ );
   1138 
   1139       /* Avoid possible arithmetic overflow below by splitting. */
   1140       if ( L > 32767 )
   1141         goto Split;
   1142 
   1143       /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
   1144       s_limit = L * (TPos)( ONE_PIXEL / 6 );
   1145 
   1146       /* s is L * the perpendicular distance from P1 to the line P0-P3. */
   1147       dx1 = arc[1].x - arc[0].x;
   1148       dy1 = arc[1].y - arc[0].y;
   1149       s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx1 ), MUL_LONG( dx, dy1 ) ) );
   1150 
   1151       if ( s > s_limit )
   1152         goto Split;
   1153 
   1154       /* s is L * the perpendicular distance from P2 to the line P0-P3. */
   1155       dx2 = arc[2].x - arc[0].x;
   1156       dy2 = arc[2].y - arc[0].y;
   1157       s = FT_ABS( SUB_LONG( MUL_LONG( dy, dx2 ), MUL_LONG( dx, dy2 ) ) );
   1158 
   1159       if ( s > s_limit )
   1160         goto Split;
   1161 
   1162       /* Split super curvy segments where the off points are so far
   1163          from the chord that the angles P0-P1-P3 or P0-P2-P3 become
   1164          acute as detected by appropriate dot products. */
   1165       if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
   1166            dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
   1167         goto Split;
   1168 
   1169       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1170 
   1171       if ( arc == bez_stack )
   1172         return;
   1173 
   1174       arc -= 3;
   1175       continue;
   1176 
   1177     Split:
   1178       gray_split_cubic( arc );
   1179       arc += 3;
   1180     }
   1181   }
   1182 
   1183 
   1184   static int
   1185   gray_move_to( const FT_Vector*  to,
   1186                 gray_PWorker      worker )
   1187   {
   1188     TPos  x, y;
   1189 
   1190 
   1191     /* start to a new position */
   1192     x = UPSCALE( to->x );
   1193     y = UPSCALE( to->y );
   1194 
   1195     gray_set_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1196 
   1197     ras.x = x;
   1198     ras.y = y;
   1199     return 0;
   1200   }
   1201 
   1202 
   1203   static int
   1204   gray_line_to( const FT_Vector*  to,
   1205                 gray_PWorker      worker )
   1206   {
   1207     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1208     return 0;
   1209   }
   1210 
   1211 
   1212   static int
   1213   gray_conic_to( const FT_Vector*  control,
   1214                  const FT_Vector*  to,
   1215                  gray_PWorker      worker )
   1216   {
   1217     gray_render_conic( RAS_VAR_ control, to );
   1218     return 0;
   1219   }
   1220 
   1221 
   1222   static int
   1223   gray_cubic_to( const FT_Vector*  control1,
   1224                  const FT_Vector*  control2,
   1225                  const FT_Vector*  to,
   1226                  gray_PWorker      worker )
   1227   {
   1228     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1229     return 0;
   1230   }
   1231 
   1232 
   1233   static void
   1234   gray_hline( RAS_ARG_ TCoord  x,
   1235                        TCoord  y,
   1236                        TArea   coverage,
   1237                        TCoord  acount )
   1238   {
   1239     /* scale the coverage from 0..(ONE_PIXEL*ONE_PIXEL*2) to 0..256  */
   1240     coverage >>= PIXEL_BITS * 2 + 1 - 8;
   1241     if ( coverage < 0 )
   1242       coverage = -coverage - 1;
   1243 
   1244     /* compute the line's coverage depending on the outline fill rule */
   1245     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1246     {
   1247       coverage &= 511;
   1248 
   1249       if ( coverage >= 256 )
   1250         coverage = 511 - coverage;
   1251     }
   1252     else
   1253     {
   1254       /* normal non-zero winding rule */
   1255       if ( coverage >= 256 )
   1256         coverage = 255;
   1257     }
   1258 
   1259     if ( ras.render_span )  /* for FT_RASTER_FLAG_DIRECT only */
   1260     {
   1261       FT_Span  span;
   1262 
   1263 
   1264       span.x        = (short)x;
   1265       span.len      = (unsigned short)acount;
   1266       span.coverage = (unsigned char)coverage;
   1267 
   1268       ras.render_span( y, 1, &span, ras.render_span_data );
   1269     }
   1270     else
   1271     {
   1272       unsigned char*  q = ras.target.origin - ras.target.pitch * y + x;
   1273       unsigned char   c = (unsigned char)coverage;
   1274 
   1275 
   1276       /* For small-spans it is faster to do it by ourselves than
   1277        * calling `memset'.  This is mainly due to the cost of the
   1278        * function call.
   1279        */
   1280       switch ( acount )
   1281       {
   1282       case 7: *q++ = c;
   1283       case 6: *q++ = c;
   1284       case 5: *q++ = c;
   1285       case 4: *q++ = c;
   1286       case 3: *q++ = c;
   1287       case 2: *q++ = c;
   1288       case 1: *q   = c;
   1289       case 0: break;
   1290       default:
   1291         FT_MEM_SET( q, c, acount );
   1292       }
   1293     }
   1294   }
   1295 
   1296 
   1297   static void
   1298   gray_sweep( RAS_ARG )
   1299   {
   1300     int  y;
   1301 
   1302 
   1303     for ( y = ras.min_ey; y < ras.max_ey; y++ )
   1304     {
   1305       PCell   cell  = ras.ycells[y - ras.min_ey];
   1306       TCoord  x     = ras.min_ex;
   1307       TArea   cover = 0;
   1308       TArea   area;
   1309 
   1310 
   1311       for ( ; cell != NULL; cell = cell->next )
   1312       {
   1313         if ( cover != 0 && cell->x > x )
   1314           gray_hline( RAS_VAR_ x, y, cover, cell->x - x );
   1315 
   1316         cover += (TArea)cell->cover * ( ONE_PIXEL * 2 );
   1317         area   = cover - cell->area;
   1318 
   1319         if ( area != 0 && cell->x >= ras.min_ex )
   1320           gray_hline( RAS_VAR_ cell->x, y, area, 1 );
   1321 
   1322         x = cell->x + 1;
   1323       }
   1324 
   1325       if ( cover != 0 )
   1326         gray_hline( RAS_VAR_ x, y, cover, ras.max_ex - x );
   1327     }
   1328   }
   1329 
   1330 
   1331 #ifdef STANDALONE_
   1332 
   1333   /*************************************************************************/
   1334   /*                                                                       */
   1335   /*  The following functions should only compile in stand-alone mode,     */
   1336   /*  i.e., when building this component without the rest of FreeType.     */
   1337   /*                                                                       */
   1338   /*************************************************************************/
   1339 
   1340   /*************************************************************************/
   1341   /*                                                                       */
   1342   /* <Function>                                                            */
   1343   /*    FT_Outline_Decompose                                               */
   1344   /*                                                                       */
   1345   /* <Description>                                                         */
   1346   /*    Walk over an outline's structure to decompose it into individual   */
   1347   /*    segments and Bzier arcs.  This function is also able to emit      */
   1348   /*    `move to' and `close to' operations to indicate the start and end  */
   1349   /*    of new contours in the outline.                                    */
   1350   /*                                                                       */
   1351   /* <Input>                                                               */
   1352   /*    outline        :: A pointer to the source target.                  */
   1353   /*                                                                       */
   1354   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1355   /*                      called during decomposition to indicate path     */
   1356   /*                      operations.                                      */
   1357   /*                                                                       */
   1358   /* <InOut>                                                               */
   1359   /*    user           :: A typeless pointer which is passed to each       */
   1360   /*                      emitter during the decomposition.  It can be     */
   1361   /*                      used to store the state during the               */
   1362   /*                      decomposition.                                   */
   1363   /*                                                                       */
   1364   /* <Return>                                                              */
   1365   /*    Error code.  0 means success.                                      */
   1366   /*                                                                       */
   1367   static int
   1368   FT_Outline_Decompose( const FT_Outline*        outline,
   1369                         const FT_Outline_Funcs*  func_interface,
   1370                         void*                    user )
   1371   {
   1372 #undef SCALED
   1373 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1374 
   1375     FT_Vector   v_last;
   1376     FT_Vector   v_control;
   1377     FT_Vector   v_start;
   1378 
   1379     FT_Vector*  point;
   1380     FT_Vector*  limit;
   1381     char*       tags;
   1382 
   1383     int         error;
   1384 
   1385     int   n;         /* index of contour in outline     */
   1386     int   first;     /* index of first point in contour */
   1387     char  tag;       /* current point's state           */
   1388 
   1389     int   shift;
   1390     TPos  delta;
   1391 
   1392 
   1393     if ( !outline )
   1394       return FT_THROW( Invalid_Outline );
   1395 
   1396     if ( !func_interface )
   1397       return FT_THROW( Invalid_Argument );
   1398 
   1399     shift = func_interface->shift;
   1400     delta = func_interface->delta;
   1401     first = 0;
   1402 
   1403     for ( n = 0; n < outline->n_contours; n++ )
   1404     {
   1405       int  last;  /* index of last point in contour */
   1406 
   1407 
   1408       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1409 
   1410       last  = outline->contours[n];
   1411       if ( last < 0 )
   1412         goto Invalid_Outline;
   1413       limit = outline->points + last;
   1414 
   1415       v_start   = outline->points[first];
   1416       v_start.x = SCALED( v_start.x );
   1417       v_start.y = SCALED( v_start.y );
   1418 
   1419       v_last   = outline->points[last];
   1420       v_last.x = SCALED( v_last.x );
   1421       v_last.y = SCALED( v_last.y );
   1422 
   1423       v_control = v_start;
   1424 
   1425       point = outline->points + first;
   1426       tags  = outline->tags   + first;
   1427       tag   = FT_CURVE_TAG( tags[0] );
   1428 
   1429       /* A contour cannot start with a cubic control point! */
   1430       if ( tag == FT_CURVE_TAG_CUBIC )
   1431         goto Invalid_Outline;
   1432 
   1433       /* check first point to determine origin */
   1434       if ( tag == FT_CURVE_TAG_CONIC )
   1435       {
   1436         /* first point is conic control.  Yes, this happens. */
   1437         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1438         {
   1439           /* start at last point if it is on the curve */
   1440           v_start = v_last;
   1441           limit--;
   1442         }
   1443         else
   1444         {
   1445           /* if both first and last points are conic,         */
   1446           /* start at their middle and record its position    */
   1447           /* for closure                                      */
   1448           v_start.x = ( v_start.x + v_last.x ) / 2;
   1449           v_start.y = ( v_start.y + v_last.y ) / 2;
   1450 
   1451           v_last = v_start;
   1452         }
   1453         point--;
   1454         tags--;
   1455       }
   1456 
   1457       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1458                   v_start.x / 64.0, v_start.y / 64.0 ));
   1459       error = func_interface->move_to( &v_start, user );
   1460       if ( error )
   1461         goto Exit;
   1462 
   1463       while ( point < limit )
   1464       {
   1465         point++;
   1466         tags++;
   1467 
   1468         tag = FT_CURVE_TAG( tags[0] );
   1469         switch ( tag )
   1470         {
   1471         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1472           {
   1473             FT_Vector  vec;
   1474 
   1475 
   1476             vec.x = SCALED( point->x );
   1477             vec.y = SCALED( point->y );
   1478 
   1479             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1480                         vec.x / 64.0, vec.y / 64.0 ));
   1481             error = func_interface->line_to( &vec, user );
   1482             if ( error )
   1483               goto Exit;
   1484             continue;
   1485           }
   1486 
   1487         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1488           v_control.x = SCALED( point->x );
   1489           v_control.y = SCALED( point->y );
   1490 
   1491         Do_Conic:
   1492           if ( point < limit )
   1493           {
   1494             FT_Vector  vec;
   1495             FT_Vector  v_middle;
   1496 
   1497 
   1498             point++;
   1499             tags++;
   1500             tag = FT_CURVE_TAG( tags[0] );
   1501 
   1502             vec.x = SCALED( point->x );
   1503             vec.y = SCALED( point->y );
   1504 
   1505             if ( tag == FT_CURVE_TAG_ON )
   1506             {
   1507               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1508                           " with control (%.2f, %.2f)\n",
   1509                           vec.x / 64.0, vec.y / 64.0,
   1510                           v_control.x / 64.0, v_control.y / 64.0 ));
   1511               error = func_interface->conic_to( &v_control, &vec, user );
   1512               if ( error )
   1513                 goto Exit;
   1514               continue;
   1515             }
   1516 
   1517             if ( tag != FT_CURVE_TAG_CONIC )
   1518               goto Invalid_Outline;
   1519 
   1520             v_middle.x = ( v_control.x + vec.x ) / 2;
   1521             v_middle.y = ( v_control.y + vec.y ) / 2;
   1522 
   1523             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1524                         " with control (%.2f, %.2f)\n",
   1525                         v_middle.x / 64.0, v_middle.y / 64.0,
   1526                         v_control.x / 64.0, v_control.y / 64.0 ));
   1527             error = func_interface->conic_to( &v_control, &v_middle, user );
   1528             if ( error )
   1529               goto Exit;
   1530 
   1531             v_control = vec;
   1532             goto Do_Conic;
   1533           }
   1534 
   1535           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1536                       " with control (%.2f, %.2f)\n",
   1537                       v_start.x / 64.0, v_start.y / 64.0,
   1538                       v_control.x / 64.0, v_control.y / 64.0 ));
   1539           error = func_interface->conic_to( &v_control, &v_start, user );
   1540           goto Close;
   1541 
   1542         default:  /* FT_CURVE_TAG_CUBIC */
   1543           {
   1544             FT_Vector  vec1, vec2;
   1545 
   1546 
   1547             if ( point + 1 > limit                             ||
   1548                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1549               goto Invalid_Outline;
   1550 
   1551             point += 2;
   1552             tags  += 2;
   1553 
   1554             vec1.x = SCALED( point[-2].x );
   1555             vec1.y = SCALED( point[-2].y );
   1556 
   1557             vec2.x = SCALED( point[-1].x );
   1558             vec2.y = SCALED( point[-1].y );
   1559 
   1560             if ( point <= limit )
   1561             {
   1562               FT_Vector  vec;
   1563 
   1564 
   1565               vec.x = SCALED( point->x );
   1566               vec.y = SCALED( point->y );
   1567 
   1568               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1569                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1570                           vec.x / 64.0, vec.y / 64.0,
   1571                           vec1.x / 64.0, vec1.y / 64.0,
   1572                           vec2.x / 64.0, vec2.y / 64.0 ));
   1573               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1574               if ( error )
   1575                 goto Exit;
   1576               continue;
   1577             }
   1578 
   1579             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1580                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1581                         v_start.x / 64.0, v_start.y / 64.0,
   1582                         vec1.x / 64.0, vec1.y / 64.0,
   1583                         vec2.x / 64.0, vec2.y / 64.0 ));
   1584             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1585             goto Close;
   1586           }
   1587         }
   1588       }
   1589 
   1590       /* close the contour with a line segment */
   1591       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1592                   v_start.x / 64.0, v_start.y / 64.0 ));
   1593       error = func_interface->line_to( &v_start, user );
   1594 
   1595    Close:
   1596       if ( error )
   1597         goto Exit;
   1598 
   1599       first = last + 1;
   1600     }
   1601 
   1602     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1603     return 0;
   1604 
   1605   Exit:
   1606     FT_TRACE5(( "FT_Outline_Decompose: Error 0x%x\n", error ));
   1607     return error;
   1608 
   1609   Invalid_Outline:
   1610     return FT_THROW( Invalid_Outline );
   1611   }
   1612 
   1613 
   1614   /*************************************************************************/
   1615   /*                                                                       */
   1616   /* <Function>                                                            */
   1617   /*    FT_Outline_Get_CBox                                                */
   1618   /*                                                                       */
   1619   /* <Description>                                                         */
   1620   /*    Return an outline's `control box'.  The control box encloses all   */
   1621   /*    the outline's points, including Bzier control points.  Though it  */
   1622   /*    coincides with the exact bounding box for most glyphs, it can be   */
   1623   /*    slightly larger in some situations (like when rotating an outline  */
   1624   /*    that contains Bzier outside arcs).                                */
   1625   /*                                                                       */
   1626   /*    Computing the control box is very fast, while getting the bounding */
   1627   /*    box can take much more time as it needs to walk over all segments  */
   1628   /*    and arcs in the outline.  To get the latter, you can use the       */
   1629   /*    `ftbbox' component, which is dedicated to this single task.        */
   1630   /*                                                                       */
   1631   /* <Input>                                                               */
   1632   /*    outline :: A pointer to the source outline descriptor.             */
   1633   /*                                                                       */
   1634   /* <Output>                                                              */
   1635   /*    acbox   :: The outline's control box.                              */
   1636   /*                                                                       */
   1637   /* <Note>                                                                */
   1638   /*    See @FT_Glyph_Get_CBox for a discussion of tricky fonts.           */
   1639   /*                                                                       */
   1640 
   1641   static void
   1642   FT_Outline_Get_CBox( const FT_Outline*  outline,
   1643                        FT_BBox           *acbox )
   1644   {
   1645     TPos  xMin, yMin, xMax, yMax;
   1646 
   1647 
   1648     if ( outline && acbox )
   1649     {
   1650       if ( outline->n_points == 0 )
   1651       {
   1652         xMin = 0;
   1653         yMin = 0;
   1654         xMax = 0;
   1655         yMax = 0;
   1656       }
   1657       else
   1658       {
   1659         FT_Vector*  vec   = outline->points;
   1660         FT_Vector*  limit = vec + outline->n_points;
   1661 
   1662 
   1663         xMin = xMax = vec->x;
   1664         yMin = yMax = vec->y;
   1665         vec++;
   1666 
   1667         for ( ; vec < limit; vec++ )
   1668         {
   1669           TPos  x, y;
   1670 
   1671 
   1672           x = vec->x;
   1673           if ( x < xMin ) xMin = x;
   1674           if ( x > xMax ) xMax = x;
   1675 
   1676           y = vec->y;
   1677           if ( y < yMin ) yMin = y;
   1678           if ( y > yMax ) yMax = y;
   1679         }
   1680       }
   1681       acbox->xMin = xMin;
   1682       acbox->xMax = xMax;
   1683       acbox->yMin = yMin;
   1684       acbox->yMax = yMax;
   1685     }
   1686   }
   1687 
   1688 #endif /* STANDALONE_ */
   1689 
   1690 
   1691   FT_DEFINE_OUTLINE_FUNCS(
   1692     func_interface,
   1693 
   1694     (FT_Outline_MoveTo_Func) gray_move_to,   /* move_to  */
   1695     (FT_Outline_LineTo_Func) gray_line_to,   /* line_to  */
   1696     (FT_Outline_ConicTo_Func)gray_conic_to,  /* conic_to */
   1697     (FT_Outline_CubicTo_Func)gray_cubic_to,  /* cubic_to */
   1698 
   1699     0,                                       /* shift    */
   1700     0                                        /* delta    */
   1701   )
   1702 
   1703 
   1704   static int
   1705   gray_convert_glyph_inner( RAS_ARG )
   1706   {
   1707 
   1708     volatile int  error = 0;
   1709 
   1710 #ifdef FT_CONFIG_OPTION_PIC
   1711       FT_Outline_Funcs func_interface;
   1712       Init_Class_func_interface(&func_interface);
   1713 #endif
   1714 
   1715     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1716     {
   1717       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1718       if ( !ras.invalid )
   1719         gray_record_cell( RAS_VAR );
   1720 
   1721       FT_TRACE7(( "band [%d..%d]: %d cell%s\n",
   1722                   ras.min_ey,
   1723                   ras.max_ey,
   1724                   ras.num_cells,
   1725                   ras.num_cells == 1 ? "" : "s" ));
   1726     }
   1727     else
   1728     {
   1729       error = FT_THROW( Memory_Overflow );
   1730 
   1731       FT_TRACE7(( "band [%d..%d]: to be bisected\n",
   1732                   ras.min_ey, ras.max_ey ));
   1733     }
   1734 
   1735     return error;
   1736   }
   1737 
   1738 
   1739   static int
   1740   gray_convert_glyph( RAS_ARG )
   1741   {
   1742     const TCoord  yMin = ras.min_ey;
   1743     const TCoord  yMax = ras.max_ey;
   1744     const TCoord  xMin = ras.min_ex;
   1745     const TCoord  xMax = ras.max_ex;
   1746 
   1747     TCell    buffer[FT_MAX_GRAY_POOL];
   1748     size_t   height = (size_t)( yMax - yMin );
   1749     size_t   n = FT_MAX_GRAY_POOL / 8;
   1750     TCoord   y;
   1751     TCoord   bands[32];  /* enough to accommodate bisections */
   1752     TCoord*  band;
   1753 
   1754 
   1755     /* set up vertical bands */
   1756     if ( height > n )
   1757     {
   1758       /* two divisions rounded up */
   1759       n       = ( height + n - 1 ) / n;
   1760       height  = ( height + n - 1 ) / n;
   1761     }
   1762 
   1763     /* memory management */
   1764     n = ( height * sizeof ( PCell ) + sizeof ( TCell ) - 1 ) / sizeof ( TCell );
   1765 
   1766     ras.cells     = buffer + n;
   1767     ras.max_cells = (FT_PtrDist)( FT_MAX_GRAY_POOL - n );
   1768     ras.ycells    = (PCell*)buffer;
   1769 
   1770     for ( y = yMin; y < yMax; )
   1771     {
   1772       ras.min_ey = y;
   1773       y         += height;
   1774       ras.max_ey = FT_MIN( y, yMax );
   1775 
   1776       band    = bands;
   1777       band[1] = xMin;
   1778       band[0] = xMax;
   1779 
   1780       do
   1781       {
   1782         TCoord  width = band[0] - band[1];
   1783         int     error;
   1784 
   1785 
   1786         FT_MEM_ZERO( ras.ycells, height * sizeof ( PCell ) );
   1787 
   1788         ras.num_cells = 0;
   1789         ras.invalid   = 1;
   1790         ras.min_ex    = band[1];
   1791         ras.max_ex    = band[0];
   1792 
   1793         error = gray_convert_glyph_inner( RAS_VAR );
   1794 
   1795         if ( !error )
   1796         {
   1797           gray_sweep( RAS_VAR );
   1798           band--;
   1799           continue;
   1800         }
   1801         else if ( error != ErrRaster_Memory_Overflow )
   1802           return 1;
   1803 
   1804         /* render pool overflow; we will reduce the render band by half */
   1805         width >>= 1;
   1806 
   1807         /* this should never happen even with tiny rendering pool */
   1808         if ( width == 0 )
   1809         {
   1810           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1811           return 1;
   1812         }
   1813 
   1814         band++;
   1815         band[1]  = band[0];
   1816         band[0] += width;
   1817       } while ( band >= bands );
   1818     }
   1819 
   1820     return 0;
   1821   }
   1822 
   1823 
   1824   static int
   1825   gray_raster_render( FT_Raster                raster,
   1826                       const FT_Raster_Params*  params )
   1827   {
   1828     const FT_Outline*  outline    = (const FT_Outline*)params->source;
   1829     const FT_Bitmap*   target_map = params->target;
   1830     FT_BBox            cbox, clip;
   1831 
   1832 #ifndef FT_STATIC_RASTER
   1833     gray_TWorker  worker[1];
   1834 #endif
   1835 
   1836 
   1837     if ( !raster )
   1838       return FT_THROW( Invalid_Argument );
   1839 
   1840     /* this version does not support monochrome rendering */
   1841     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1842       return FT_THROW( Invalid_Mode );
   1843 
   1844     if ( !outline )
   1845       return FT_THROW( Invalid_Outline );
   1846 
   1847     /* return immediately if the outline is empty */
   1848     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1849       return 0;
   1850 
   1851     if ( !outline->contours || !outline->points )
   1852       return FT_THROW( Invalid_Outline );
   1853 
   1854     if ( outline->n_points !=
   1855            outline->contours[outline->n_contours - 1] + 1 )
   1856       return FT_THROW( Invalid_Outline );
   1857 
   1858     ras.outline = *outline;
   1859 
   1860     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1861     {
   1862       if ( !params->gray_spans )
   1863         return 0;
   1864 
   1865       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   1866       ras.render_span_data = params->user;
   1867     }
   1868     else
   1869     {
   1870       /* if direct mode is not set, we must have a target bitmap */
   1871       if ( !target_map )
   1872         return FT_THROW( Invalid_Argument );
   1873 
   1874       /* nothing to do */
   1875       if ( !target_map->width || !target_map->rows )
   1876         return 0;
   1877 
   1878       if ( !target_map->buffer )
   1879         return FT_THROW( Invalid_Argument );
   1880 
   1881       if ( target_map->pitch < 0 )
   1882         ras.target.origin = target_map->buffer;
   1883       else
   1884         ras.target.origin = target_map->buffer
   1885               + ( target_map->rows - 1 ) * (unsigned int)target_map->pitch;
   1886 
   1887       ras.target.pitch = target_map->pitch;
   1888 
   1889       ras.render_span      = (FT_Raster_Span_Func)NULL;
   1890       ras.render_span_data = NULL;
   1891     }
   1892 
   1893     FT_Outline_Get_CBox( outline, &cbox );
   1894 
   1895     /* reject too large outline coordinates */
   1896     if ( cbox.xMin < -0x1000000L || cbox.xMax > 0x1000000L ||
   1897          cbox.yMin < -0x1000000L || cbox.yMax > 0x1000000L )
   1898       return FT_THROW( Invalid_Outline );
   1899 
   1900     /* truncate the bounding box to integer pixels */
   1901     cbox.xMin = cbox.xMin >> 6;
   1902     cbox.yMin = cbox.yMin >> 6;
   1903     cbox.xMax = ( cbox.xMax + 63 ) >> 6;
   1904     cbox.yMax = ( cbox.yMax + 63 ) >> 6;
   1905 
   1906     /* compute clipping box */
   1907     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1908     {
   1909       /* compute clip box from target pixmap */
   1910       clip.xMin = 0;
   1911       clip.yMin = 0;
   1912       clip.xMax = (FT_Pos)target_map->width;
   1913       clip.yMax = (FT_Pos)target_map->rows;
   1914     }
   1915     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1916       clip = params->clip_box;
   1917     else
   1918     {
   1919       clip.xMin = -32768L;
   1920       clip.yMin = -32768L;
   1921       clip.xMax =  32767L;
   1922       clip.yMax =  32767L;
   1923     }
   1924 
   1925     /* clip to target bitmap, exit if nothing to do */
   1926     ras.min_ex = FT_MAX( cbox.xMin, clip.xMin );
   1927     ras.min_ey = FT_MAX( cbox.yMin, clip.yMin );
   1928     ras.max_ex = FT_MIN( cbox.xMax, clip.xMax );
   1929     ras.max_ey = FT_MIN( cbox.yMax, clip.yMax );
   1930 
   1931     if ( ras.max_ex <= ras.min_ex || ras.max_ey <= ras.min_ey )
   1932       return 0;
   1933 
   1934     return gray_convert_glyph( RAS_VAR );
   1935   }
   1936 
   1937 
   1938   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   1939   /****                         a static object.                   *****/
   1940 
   1941 #ifdef STANDALONE_
   1942 
   1943   static int
   1944   gray_raster_new( void*       memory,
   1945                    FT_Raster*  araster )
   1946   {
   1947     static gray_TRaster  the_raster;
   1948 
   1949     FT_UNUSED( memory );
   1950 
   1951 
   1952     *araster = (FT_Raster)&the_raster;
   1953     FT_ZERO( &the_raster );
   1954 
   1955     return 0;
   1956   }
   1957 
   1958 
   1959   static void
   1960   gray_raster_done( FT_Raster  raster )
   1961   {
   1962     /* nothing */
   1963     FT_UNUSED( raster );
   1964   }
   1965 
   1966 #else /* !STANDALONE_ */
   1967 
   1968   static int
   1969   gray_raster_new( FT_Memory   memory,
   1970                    FT_Raster*  araster )
   1971   {
   1972     FT_Error      error;
   1973     gray_PRaster  raster = NULL;
   1974 
   1975 
   1976     *araster = 0;
   1977     if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
   1978     {
   1979       raster->memory = memory;
   1980       *araster       = (FT_Raster)raster;
   1981     }
   1982 
   1983     return error;
   1984   }
   1985 
   1986 
   1987   static void
   1988   gray_raster_done( FT_Raster  raster )
   1989   {
   1990     FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
   1991 
   1992 
   1993     FT_FREE( raster );
   1994   }
   1995 
   1996 #endif /* !STANDALONE_ */
   1997 
   1998 
   1999   static void
   2000   gray_raster_reset( FT_Raster       raster,
   2001                      unsigned char*  pool_base,
   2002                      unsigned long   pool_size )
   2003   {
   2004     FT_UNUSED( raster );
   2005     FT_UNUSED( pool_base );
   2006     FT_UNUSED( pool_size );
   2007   }
   2008 
   2009 
   2010   static int
   2011   gray_raster_set_mode( FT_Raster      raster,
   2012                         unsigned long  mode,
   2013                         void*          args )
   2014   {
   2015     FT_UNUSED( raster );
   2016     FT_UNUSED( mode );
   2017     FT_UNUSED( args );
   2018 
   2019 
   2020     return 0; /* nothing to do */
   2021   }
   2022 
   2023 
   2024   FT_DEFINE_RASTER_FUNCS(
   2025     ft_grays_raster,
   2026 
   2027     FT_GLYPH_FORMAT_OUTLINE,
   2028 
   2029     (FT_Raster_New_Func)     gray_raster_new,       /* raster_new      */
   2030     (FT_Raster_Reset_Func)   gray_raster_reset,     /* raster_reset    */
   2031     (FT_Raster_Set_Mode_Func)gray_raster_set_mode,  /* raster_set_mode */
   2032     (FT_Raster_Render_Func)  gray_raster_render,    /* raster_render   */
   2033     (FT_Raster_Done_Func)    gray_raster_done       /* raster_done     */
   2034   )
   2035 
   2036 
   2037 /* END */
   2038 
   2039 
   2040 /* Local Variables: */
   2041 /* coding: utf-8    */
   2042 /* End:             */
   2043