Home | History | Annotate | Download | only in sensorservice
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <stdio.h>
     18 
     19 #include <utils/Log.h>
     20 
     21 #include "Fusion.h"
     22 
     23 namespace android {
     24 
     25 // -----------------------------------------------------------------------
     26 
     27 /*==================== BEGIN FUSION SENSOR PARAMETER =========================*/
     28 
     29 /* Note:
     30  *   If a platform uses software fusion, it is necessary to tune the following
     31  *   parameters to fit the hardware sensors prior to release.
     32  *
     33  *   The DEFAULT_ parameters will be used in FUSION_9AXIS and FUSION_NOMAG mode.
     34  *   The GEOMAG_ parameters will be used in FUSION_NOGYRO mode.
     35  */
     36 
     37 /*
     38  * GYRO_VAR gives the measured variance of the gyro's output per
     39  * Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
     40  * which is independent of the sampling frequency.
     41  *
     42  * The variance of gyro's output at a given sampling period can be
     43  * calculated as:
     44  *      variance(T) = GYRO_VAR / T
     45  *
     46  * The variance of the INTEGRATED OUTPUT at a given sampling period can be
     47  * calculated as:
     48  *       variance_integrate_output(T) = GYRO_VAR * T
     49  */
     50 static const float DEFAULT_GYRO_VAR = 1e-7;      // (rad/s)^2 / Hz
     51 static const float DEFAULT_GYRO_BIAS_VAR = 1e-12;  // (rad/s)^2 / s (guessed)
     52 static const float GEOMAG_GYRO_VAR = 1e-4;      // (rad/s)^2 / Hz
     53 static const float GEOMAG_GYRO_BIAS_VAR = 1e-8;  // (rad/s)^2 / s (guessed)
     54 
     55 /*
     56  * Standard deviations of accelerometer and magnetometer
     57  */
     58 static const float DEFAULT_ACC_STDEV  = 0.015f; // m/s^2 (measured 0.08 / CDD 0.05)
     59 static const float DEFAULT_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
     60 static const float GEOMAG_ACC_STDEV  = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
     61 static const float GEOMAG_MAG_STDEV  = 0.1f;   // uT    (measured 0.7  / CDD 0.5)
     62 
     63 
     64 /* ====================== END FUSION SENSOR PARAMETER ========================*/
     65 
     66 static const float SYMMETRY_TOLERANCE = 1e-10f;
     67 
     68 /*
     69  * Accelerometer updates will not be performed near free fall to avoid
     70  * ill-conditioning and div by zeros.
     71  * Threshhold: 10% of g, in m/s^2
     72  */
     73 static const float NOMINAL_GRAVITY = 9.81f;
     74 static const float FREE_FALL_THRESHOLD = 0.1f * (NOMINAL_GRAVITY);
     75 
     76 /*
     77  * The geomagnetic-field should be between 30uT and 60uT.
     78  * Fields strengths greater than this likely indicate a local magnetic
     79  * disturbance which we do not want to update into the fused frame.
     80  */
     81 static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
     82 static const float MAX_VALID_MAGNETIC_FIELD_SQ =
     83         MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
     84 
     85 /*
     86  * Values of the field smaller than this should be ignored in fusion to avoid
     87  * ill-conditioning. This state can happen with anomalous local magnetic
     88  * disturbances canceling the Earth field.
     89  */
     90 static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
     91 static const float MIN_VALID_MAGNETIC_FIELD_SQ =
     92         MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
     93 
     94 /*
     95  * If the cross product of two vectors has magnitude squared less than this,
     96  * we reject it as invalid due to alignment of the vectors.
     97  * This threshold is used to check for the case where the magnetic field sample
     98  * is parallel to the gravity field, which can happen in certain places due
     99  * to magnetic field disturbances.
    100  */
    101 static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
    102 static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
    103     MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
    104 
    105 static const float SQRT_3 = 1.732f;
    106 static const float WVEC_EPS = 1e-4f/SQRT_3;
    107 // -----------------------------------------------------------------------
    108 
    109 template <typename TYPE, size_t C, size_t R>
    110 static mat<TYPE, R, R> scaleCovariance(
    111         const mat<TYPE, C, R>& A,
    112         const mat<TYPE, C, C>& P) {
    113     // A*P*transpose(A);
    114     mat<TYPE, R, R> APAt;
    115     for (size_t r=0 ; r<R ; r++) {
    116         for (size_t j=r ; j<R ; j++) {
    117             double apat(0);
    118             for (size_t c=0 ; c<C ; c++) {
    119                 double v(A[c][r]*P[c][c]*0.5);
    120                 for (size_t k=c+1 ; k<C ; k++)
    121                     v += A[k][r] * P[c][k];
    122                 apat += 2 * v * A[c][j];
    123             }
    124             APAt[j][r] = apat;
    125             APAt[r][j] = apat;
    126         }
    127     }
    128     return APAt;
    129 }
    130 
    131 template <typename TYPE, typename OTHER_TYPE>
    132 static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
    133     mat<TYPE, 3, 3> r;
    134     r[0][0] = diag;
    135     r[1][1] = diag;
    136     r[2][2] = diag;
    137     r[0][1] = p.z;
    138     r[1][0] =-p.z;
    139     r[0][2] =-p.y;
    140     r[2][0] = p.y;
    141     r[1][2] = p.x;
    142     r[2][1] =-p.x;
    143     return r;
    144 }
    145 
    146 
    147 template<typename TYPE, size_t SIZE>
    148 class Covariance {
    149     mat<TYPE, SIZE, SIZE> mSumXX;
    150     vec<TYPE, SIZE> mSumX;
    151     size_t mN;
    152 public:
    153     Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
    154     void update(const vec<TYPE, SIZE>& x) {
    155         mSumXX += x*transpose(x);
    156         mSumX  += x;
    157         mN++;
    158     }
    159     mat<TYPE, SIZE, SIZE> operator()() const {
    160         const float N = 1.0f / mN;
    161         return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
    162     }
    163     void reset() {
    164         mN = 0;
    165         mSumXX = 0;
    166         mSumX = 0;
    167     }
    168     size_t getCount() const {
    169         return mN;
    170     }
    171 };
    172 
    173 // -----------------------------------------------------------------------
    174 
    175 Fusion::Fusion() {
    176     Phi[0][1] = 0;
    177     Phi[1][1] = 1;
    178 
    179     Ba.x = 0;
    180     Ba.y = 0;
    181     Ba.z = 1;
    182 
    183     Bm.x = 0;
    184     Bm.y = 1;
    185     Bm.z = 0;
    186 
    187     x0 = 0;
    188     x1 = 0;
    189 
    190     init();
    191 }
    192 
    193 void Fusion::init(int mode) {
    194     mInitState = 0;
    195 
    196     mGyroRate = 0;
    197 
    198     mCount[0] = 0;
    199     mCount[1] = 0;
    200     mCount[2] = 0;
    201 
    202     mData = 0;
    203     mMode = mode;
    204 
    205     if (mMode != FUSION_NOGYRO) { //normal or game rotation
    206         mParam.gyroVar = DEFAULT_GYRO_VAR;
    207         mParam.gyroBiasVar = DEFAULT_GYRO_BIAS_VAR;
    208         mParam.accStdev = DEFAULT_ACC_STDEV;
    209         mParam.magStdev = DEFAULT_MAG_STDEV;
    210     } else {
    211         mParam.gyroVar = GEOMAG_GYRO_VAR;
    212         mParam.gyroBiasVar = GEOMAG_GYRO_BIAS_VAR;
    213         mParam.accStdev = GEOMAG_ACC_STDEV;
    214         mParam.magStdev = GEOMAG_MAG_STDEV;
    215     }
    216 }
    217 
    218 void Fusion::initFusion(const vec4_t& q, float dT)
    219 {
    220     // initial estimate: E{ x(t0) }
    221     x0 = q;
    222     x1 = 0;
    223 
    224     // process noise covariance matrix: G.Q.Gt, with
    225     //
    226     //  G = | -1 0 |        Q = | q00 q10 |
    227     //      |  0 1 |            | q01 q11 |
    228     //
    229     // q00 = sv^2.dt + 1/3.su^2.dt^3
    230     // q10 = q01 = 1/2.su^2.dt^2
    231     // q11 = su^2.dt
    232     //
    233 
    234     const float dT2 = dT*dT;
    235     const float dT3 = dT2*dT;
    236 
    237     // variance of integrated output at 1/dT Hz (random drift)
    238     const float q00 = mParam.gyroVar * dT + 0.33333f * mParam.gyroBiasVar * dT3;
    239 
    240     // variance of drift rate ramp
    241     const float q11 = mParam.gyroBiasVar * dT;
    242     const float q10 = 0.5f * mParam.gyroBiasVar * dT2;
    243     const float q01 = q10;
    244 
    245     GQGt[0][0] =  q00;      // rad^2
    246     GQGt[1][0] = -q10;
    247     GQGt[0][1] = -q01;
    248     GQGt[1][1] =  q11;      // (rad/s)^2
    249 
    250     // initial covariance: Var{ x(t0) }
    251     // TODO: initialize P correctly
    252     P = 0;
    253 }
    254 
    255 bool Fusion::hasEstimate() const {
    256     return ((mInitState & MAG) || (mMode == FUSION_NOMAG)) &&
    257            ((mInitState & GYRO) || (mMode == FUSION_NOGYRO)) &&
    258            (mInitState & ACC);
    259 }
    260 
    261 bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
    262     if (hasEstimate())
    263         return true;
    264 
    265     if (what == ACC) {
    266         mData[0] += d * (1/length(d));
    267         mCount[0]++;
    268         mInitState |= ACC;
    269         if (mMode == FUSION_NOGYRO ) {
    270             mGyroRate = dT;
    271         }
    272     } else if (what == MAG) {
    273         mData[1] += d * (1/length(d));
    274         mCount[1]++;
    275         mInitState |= MAG;
    276     } else if (what == GYRO) {
    277         mGyroRate = dT;
    278         mData[2] += d*dT;
    279         mCount[2]++;
    280         mInitState |= GYRO;
    281     }
    282 
    283     if (hasEstimate()) {
    284         // Average all the values we collected so far
    285         mData[0] *= 1.0f/mCount[0];
    286         if (mMode != FUSION_NOMAG) {
    287             mData[1] *= 1.0f/mCount[1];
    288         }
    289         mData[2] *= 1.0f/mCount[2];
    290 
    291         // calculate the MRPs from the data collection, this gives us
    292         // a rough estimate of our initial state
    293         mat33_t R;
    294         vec3_t  up(mData[0]);
    295         vec3_t  east;
    296 
    297         if (mMode != FUSION_NOMAG) {
    298             east = normalize(cross_product(mData[1], up));
    299         } else {
    300             east = getOrthogonal(up);
    301         }
    302 
    303         vec3_t north(cross_product(up, east));
    304         R << east << north << up;
    305         const vec4_t q = matrixToQuat(R);
    306 
    307         initFusion(q, mGyroRate);
    308     }
    309 
    310     return false;
    311 }
    312 
    313 void Fusion::handleGyro(const vec3_t& w, float dT) {
    314     if (!checkInitComplete(GYRO, w, dT))
    315         return;
    316 
    317     predict(w, dT);
    318 }
    319 
    320 status_t Fusion::handleAcc(const vec3_t& a, float dT) {
    321     if (!checkInitComplete(ACC, a, dT))
    322         return BAD_VALUE;
    323 
    324     // ignore acceleration data if we're close to free-fall
    325     const float l = length(a);
    326     if (l < FREE_FALL_THRESHOLD) {
    327         return BAD_VALUE;
    328     }
    329 
    330     const float l_inv = 1.0f/l;
    331 
    332     if ( mMode == FUSION_NOGYRO ) {
    333         //geo mag
    334         vec3_t w_dummy;
    335         w_dummy = x1; //bias
    336         predict(w_dummy, dT);
    337     }
    338 
    339     if ( mMode == FUSION_NOMAG) {
    340         vec3_t m;
    341         m = getRotationMatrix()*Bm;
    342         update(m, Bm, mParam.magStdev);
    343     }
    344 
    345     vec3_t unityA = a * l_inv;
    346     const float d = sqrtf(fabsf(l- NOMINAL_GRAVITY));
    347     const float p = l_inv * mParam.accStdev*expf(d);
    348 
    349     update(unityA, Ba, p);
    350     return NO_ERROR;
    351 }
    352 
    353 status_t Fusion::handleMag(const vec3_t& m) {
    354     if (!checkInitComplete(MAG, m))
    355         return BAD_VALUE;
    356 
    357     // the geomagnetic-field should be between 30uT and 60uT
    358     // reject if too large to avoid spurious magnetic sources
    359     const float magFieldSq = length_squared(m);
    360     if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
    361         return BAD_VALUE;
    362     } else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
    363         // Also reject if too small since we will get ill-defined (zero mag)
    364         // cross-products below
    365         return BAD_VALUE;
    366     }
    367 
    368     // Orthogonalize the magnetic field to the gravity field, mapping it into
    369     // tangent to Earth.
    370     const vec3_t up( getRotationMatrix() * Ba );
    371     const vec3_t east( cross_product(m, up) );
    372 
    373     // If the m and up vectors align, the cross product magnitude will
    374     // approach 0.
    375     // Reject this case as well to avoid div by zero problems and
    376     // ill-conditioning below.
    377     if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
    378         return BAD_VALUE;
    379     }
    380 
    381     // If we have created an orthogonal magnetic field successfully,
    382     // then pass it in as the update.
    383     vec3_t north( cross_product(up, east) );
    384 
    385     const float l_inv = 1 / length(north);
    386     north *= l_inv;
    387 
    388     update(north, Bm,  mParam.magStdev*l_inv);
    389     return NO_ERROR;
    390 }
    391 
    392 void Fusion::checkState() {
    393     // P needs to stay positive semidefinite or the fusion diverges. When we
    394     // detect divergence, we reset the fusion.
    395     // TODO(braun): Instead, find the reason for the divergence and fix it.
    396 
    397     if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
    398         !isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
    399         ALOGW("Sensor fusion diverged; resetting state.");
    400         P = 0;
    401     }
    402 }
    403 
    404 vec4_t Fusion::getAttitude() const {
    405     return x0;
    406 }
    407 
    408 vec3_t Fusion::getBias() const {
    409     return x1;
    410 }
    411 
    412 mat33_t Fusion::getRotationMatrix() const {
    413     return quatToMatrix(x0);
    414 }
    415 
    416 mat34_t Fusion::getF(const vec4_t& q) {
    417     mat34_t F;
    418 
    419     // This is used to compute the derivative of q
    420     // F = | [q.xyz]x |
    421     //     |  -q.xyz  |
    422 
    423     F[0].x = q.w;   F[1].x =-q.z;   F[2].x = q.y;
    424     F[0].y = q.z;   F[1].y = q.w;   F[2].y =-q.x;
    425     F[0].z =-q.y;   F[1].z = q.x;   F[2].z = q.w;
    426     F[0].w =-q.x;   F[1].w =-q.y;   F[2].w =-q.z;
    427     return F;
    428 }
    429 
    430 void Fusion::predict(const vec3_t& w, float dT) {
    431     const vec4_t q  = x0;
    432     const vec3_t b  = x1;
    433     vec3_t we = w - b;
    434 
    435     if (length(we) < WVEC_EPS) {
    436         we = (we[0]>0.f)?WVEC_EPS:-WVEC_EPS;
    437     }
    438     // q(k+1) = O(we)*q(k)
    439     // --------------------
    440     //
    441     // O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x                   psi |
    442     //        | -psi'                              cos(0.5*||w||*dT) |
    443     //
    444     // psi = sin(0.5*||w||*dT)*w / ||w||
    445     //
    446     //
    447     // P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
    448     // ----------------------------------------
    449     //
    450     // G = | -I33    0 |
    451     //     |    0  I33 |
    452     //
    453     //  Phi = | Phi00 Phi10 |
    454     //        |   0     1   |
    455     //
    456     //  Phi00 =   I33
    457     //          - [w]x   * sin(||w||*dt)/||w||
    458     //          + [w]x^2 * (1-cos(||w||*dT))/||w||^2
    459     //
    460     //  Phi10 =   [w]x   * (1        - cos(||w||*dt))/||w||^2
    461     //          - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
    462     //          - I33*dT
    463 
    464     const mat33_t I33(1);
    465     const mat33_t I33dT(dT);
    466     const mat33_t wx(crossMatrix(we, 0));
    467     const mat33_t wx2(wx*wx);
    468     const float lwedT = length(we)*dT;
    469     const float hlwedT = 0.5f*lwedT;
    470     const float ilwe = 1.f/length(we);
    471     const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
    472     const float k1 = sinf(lwedT);
    473     const float k2 = cosf(hlwedT);
    474     const vec3_t psi(sinf(hlwedT)*ilwe*we);
    475     const mat33_t O33(crossMatrix(-psi, k2));
    476     mat44_t O;
    477     O[0].xyz = O33[0];  O[0].w = -psi.x;
    478     O[1].xyz = O33[1];  O[1].w = -psi.y;
    479     O[2].xyz = O33[2];  O[2].w = -psi.z;
    480     O[3].xyz = psi;     O[3].w = k2;
    481 
    482     Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
    483     Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
    484 
    485     x0 = O*q;
    486 
    487     if (x0.w < 0)
    488         x0 = -x0;
    489 
    490     P = Phi*P*transpose(Phi) + GQGt;
    491 
    492     checkState();
    493 }
    494 
    495 void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
    496     vec4_t q(x0);
    497     // measured vector in body space: h(p) = A(p)*Bi
    498     const mat33_t A(quatToMatrix(q));
    499     const vec3_t Bb(A*Bi);
    500 
    501     // Sensitivity matrix H = dh(p)/dp
    502     // H = [ L 0 ]
    503     const mat33_t L(crossMatrix(Bb, 0));
    504 
    505     // gain...
    506     // K = P*Ht / [H*P*Ht + R]
    507     vec<mat33_t, 2> K;
    508     const mat33_t R(sigma*sigma);
    509     const mat33_t S(scaleCovariance(L, P[0][0]) + R);
    510     const mat33_t Si(invert(S));
    511     const mat33_t LtSi(transpose(L)*Si);
    512     K[0] = P[0][0] * LtSi;
    513     K[1] = transpose(P[1][0])*LtSi;
    514 
    515     // update...
    516     // P = (I-K*H) * P
    517     // P -= K*H*P
    518     // | K0 | * | L 0 | * P = | K0*L  0 | * | P00  P10 | = | K0*L*P00  K0*L*P10 |
    519     // | K1 |                 | K1*L  0 |   | P01  P11 |   | K1*L*P00  K1*L*P10 |
    520     // Note: the Joseph form is numerically more stable and given by:
    521     //     P = (I-KH) * P * (I-KH)' + K*R*R'
    522     const mat33_t K0L(K[0] * L);
    523     const mat33_t K1L(K[1] * L);
    524     P[0][0] -= K0L*P[0][0];
    525     P[1][1] -= K1L*P[1][0];
    526     P[1][0] -= K0L*P[1][0];
    527     P[0][1] = transpose(P[1][0]);
    528 
    529     const vec3_t e(z - Bb);
    530     const vec3_t dq(K[0]*e);
    531 
    532     q += getF(q)*(0.5f*dq);
    533     x0 = normalize_quat(q);
    534 
    535     if (mMode != FUSION_NOMAG) {
    536         const vec3_t db(K[1]*e);
    537         x1 += db;
    538     }
    539 
    540     checkState();
    541 }
    542 
    543 vec3_t Fusion::getOrthogonal(const vec3_t &v) {
    544     vec3_t w;
    545     if (fabsf(v[0])<= fabsf(v[1]) && fabsf(v[0]) <= fabsf(v[2]))  {
    546         w[0]=0.f;
    547         w[1] = v[2];
    548         w[2] = -v[1];
    549     } else if (fabsf(v[1]) <= fabsf(v[2])) {
    550         w[0] = v[2];
    551         w[1] = 0.f;
    552         w[2] = -v[0];
    553     }else {
    554         w[0] = v[1];
    555         w[1] = -v[0];
    556         w[2] = 0.f;
    557     }
    558     return normalize(w);
    559 }
    560 
    561 
    562 // -----------------------------------------------------------------------
    563 
    564 }; // namespace android
    565 
    566