1 /* 2 * IO verification helpers 3 */ 4 #include <unistd.h> 5 #include <fcntl.h> 6 #include <string.h> 7 #include <assert.h> 8 #include <pthread.h> 9 #include <libgen.h> 10 11 #include "fio.h" 12 #include "verify.h" 13 #include "trim.h" 14 #include "lib/rand.h" 15 #include "lib/hweight.h" 16 #include "lib/pattern.h" 17 18 #include "crc/md5.h" 19 #include "crc/crc64.h" 20 #include "crc/crc32.h" 21 #include "crc/crc32c.h" 22 #include "crc/crc16.h" 23 #include "crc/crc7.h" 24 #include "crc/sha256.h" 25 #include "crc/sha512.h" 26 #include "crc/sha1.h" 27 #include "crc/xxhash.h" 28 #include "crc/sha3.h" 29 30 static void populate_hdr(struct thread_data *td, struct io_u *io_u, 31 struct verify_header *hdr, unsigned int header_num, 32 unsigned int header_len); 33 static void fill_hdr(struct thread_data *td, struct io_u *io_u, 34 struct verify_header *hdr, unsigned int header_num, 35 unsigned int header_len, uint64_t rand_seed); 36 static void __fill_hdr(struct thread_data *td, struct io_u *io_u, 37 struct verify_header *hdr, unsigned int header_num, 38 unsigned int header_len, uint64_t rand_seed); 39 40 void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len) 41 { 42 (void)cpy_pattern(td->o.buffer_pattern, td->o.buffer_pattern_bytes, p, len); 43 } 44 45 static void __fill_buffer(struct thread_options *o, unsigned long seed, void *p, 46 unsigned int len) 47 { 48 __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes); 49 } 50 51 static unsigned long fill_buffer(struct thread_data *td, void *p, 52 unsigned int len) 53 { 54 struct frand_state *fs = &td->verify_state; 55 struct thread_options *o = &td->o; 56 57 return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes); 58 } 59 60 void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len, 61 struct io_u *io_u, unsigned long seed, int use_seed) 62 { 63 struct thread_options *o = &td->o; 64 65 if (!o->verify_pattern_bytes) { 66 dprint(FD_VERIFY, "fill random bytes len=%u\n", len); 67 68 if (use_seed) 69 __fill_buffer(o, seed, p, len); 70 else 71 io_u->rand_seed = fill_buffer(td, p, len); 72 return; 73 } 74 75 /* Skip if we were here and we do not need to patch pattern 76 * with format */ 77 if (!td->o.verify_fmt_sz && io_u->buf_filled_len >= len) { 78 dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n", 79 o->verify_pattern_bytes, len); 80 return; 81 } 82 83 (void)paste_format(td->o.verify_pattern, td->o.verify_pattern_bytes, 84 td->o.verify_fmt, td->o.verify_fmt_sz, 85 p, len, io_u); 86 io_u->buf_filled_len = len; 87 } 88 89 static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u) 90 { 91 unsigned int hdr_inc; 92 93 hdr_inc = io_u->buflen; 94 if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen) 95 hdr_inc = td->o.verify_interval; 96 97 return hdr_inc; 98 } 99 100 static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u, 101 unsigned long seed, int use_seed) 102 { 103 unsigned int hdr_inc, header_num; 104 struct verify_header *hdr; 105 void *p = io_u->buf; 106 107 fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed); 108 109 hdr_inc = get_hdr_inc(td, io_u); 110 header_num = 0; 111 for (; p < io_u->buf + io_u->buflen; p += hdr_inc) { 112 hdr = p; 113 populate_hdr(td, io_u, hdr, header_num, hdr_inc); 114 header_num++; 115 } 116 } 117 118 static void memswp(void *buf1, void *buf2, unsigned int len) 119 { 120 char swap[200]; 121 122 assert(len <= sizeof(swap)); 123 124 memcpy(&swap, buf1, len); 125 memcpy(buf1, buf2, len); 126 memcpy(buf2, &swap, len); 127 } 128 129 static void hexdump(void *buffer, int len) 130 { 131 unsigned char *p = buffer; 132 int i; 133 134 for (i = 0; i < len; i++) 135 log_err("%02x", p[i]); 136 log_err("\n"); 137 } 138 139 /* 140 * Prepare for separation of verify_header and checksum header 141 */ 142 static inline unsigned int __hdr_size(int verify_type) 143 { 144 unsigned int len = 0; 145 146 switch (verify_type) { 147 case VERIFY_NONE: 148 case VERIFY_HDR_ONLY: 149 case VERIFY_NULL: 150 case VERIFY_PATTERN: 151 len = 0; 152 break; 153 case VERIFY_MD5: 154 len = sizeof(struct vhdr_md5); 155 break; 156 case VERIFY_CRC64: 157 len = sizeof(struct vhdr_crc64); 158 break; 159 case VERIFY_CRC32C: 160 case VERIFY_CRC32: 161 case VERIFY_CRC32C_INTEL: 162 len = sizeof(struct vhdr_crc32); 163 break; 164 case VERIFY_CRC16: 165 len = sizeof(struct vhdr_crc16); 166 break; 167 case VERIFY_CRC7: 168 len = sizeof(struct vhdr_crc7); 169 break; 170 case VERIFY_SHA256: 171 len = sizeof(struct vhdr_sha256); 172 break; 173 case VERIFY_SHA512: 174 len = sizeof(struct vhdr_sha512); 175 break; 176 case VERIFY_SHA3_224: 177 len = sizeof(struct vhdr_sha3_224); 178 break; 179 case VERIFY_SHA3_256: 180 len = sizeof(struct vhdr_sha3_256); 181 break; 182 case VERIFY_SHA3_384: 183 len = sizeof(struct vhdr_sha3_384); 184 break; 185 case VERIFY_SHA3_512: 186 len = sizeof(struct vhdr_sha3_512); 187 break; 188 case VERIFY_XXHASH: 189 len = sizeof(struct vhdr_xxhash); 190 break; 191 case VERIFY_SHA1: 192 len = sizeof(struct vhdr_sha1); 193 break; 194 case VERIFY_PATTERN_NO_HDR: 195 return 0; 196 default: 197 log_err("fio: unknown verify header!\n"); 198 assert(0); 199 } 200 201 return len + sizeof(struct verify_header); 202 } 203 204 static inline unsigned int hdr_size(struct thread_data *td, 205 struct verify_header *hdr) 206 { 207 if (td->o.verify == VERIFY_PATTERN_NO_HDR) 208 return 0; 209 210 return __hdr_size(hdr->verify_type); 211 } 212 213 static void *hdr_priv(struct verify_header *hdr) 214 { 215 void *priv = hdr; 216 217 return priv + sizeof(struct verify_header); 218 } 219 220 /* 221 * Verify container, pass info to verify handlers and allow them to 222 * pass info back in case of error 223 */ 224 struct vcont { 225 /* 226 * Input 227 */ 228 struct io_u *io_u; 229 unsigned int hdr_num; 230 struct thread_data *td; 231 232 /* 233 * Output, only valid in case of error 234 */ 235 const char *name; 236 void *good_crc; 237 void *bad_crc; 238 unsigned int crc_len; 239 }; 240 241 #define DUMP_BUF_SZ 255 242 static int dump_buf_warned; 243 244 static void dump_buf(char *buf, unsigned int len, unsigned long long offset, 245 const char *type, struct fio_file *f) 246 { 247 char *ptr, fname[DUMP_BUF_SZ]; 248 size_t buf_left = DUMP_BUF_SZ; 249 int ret, fd; 250 251 ptr = strdup(f->file_name); 252 253 memset(fname, 0, sizeof(fname)); 254 if (aux_path) 255 sprintf(fname, "%s%s", aux_path, FIO_OS_PATH_SEPARATOR); 256 257 strncpy(fname + strlen(fname), basename(ptr), buf_left - 1); 258 259 buf_left -= strlen(fname); 260 if (buf_left <= 0) { 261 if (!dump_buf_warned) { 262 log_err("fio: verify failure dump buffer too small\n"); 263 dump_buf_warned = 1; 264 } 265 free(ptr); 266 return; 267 } 268 269 snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type); 270 271 fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644); 272 if (fd < 0) { 273 perror("open verify buf file"); 274 return; 275 } 276 277 while (len) { 278 ret = write(fd, buf, len); 279 if (!ret) 280 break; 281 else if (ret < 0) { 282 perror("write verify buf file"); 283 break; 284 } 285 len -= ret; 286 buf += ret; 287 } 288 289 close(fd); 290 log_err(" %s data dumped as %s\n", type, fname); 291 free(ptr); 292 } 293 294 /* 295 * Dump the contents of the read block and re-generate the correct data 296 * and dump that too. 297 */ 298 static void __dump_verify_buffers(struct verify_header *hdr, struct vcont *vc) 299 { 300 struct thread_data *td = vc->td; 301 struct io_u *io_u = vc->io_u; 302 unsigned long hdr_offset; 303 struct io_u dummy; 304 void *buf; 305 306 if (!td->o.verify_dump) 307 return; 308 309 /* 310 * Dump the contents we just read off disk 311 */ 312 hdr_offset = vc->hdr_num * hdr->len; 313 314 dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset, 315 "received", vc->io_u->file); 316 317 /* 318 * Allocate a new buf and re-generate the original data 319 */ 320 buf = malloc(io_u->buflen); 321 dummy = *io_u; 322 dummy.buf = buf; 323 dummy.rand_seed = hdr->rand_seed; 324 dummy.buf_filled_len = 0; 325 dummy.buflen = io_u->buflen; 326 327 fill_pattern_headers(td, &dummy, hdr->rand_seed, 1); 328 329 dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset, 330 "expected", vc->io_u->file); 331 free(buf); 332 } 333 334 static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc) 335 { 336 struct thread_data *td = vc->td; 337 struct verify_header shdr; 338 339 if (td->o.verify == VERIFY_PATTERN_NO_HDR) { 340 __fill_hdr(td, vc->io_u, &shdr, 0, vc->io_u->buflen, 0); 341 hdr = &shdr; 342 } 343 344 __dump_verify_buffers(hdr, vc); 345 } 346 347 static void log_verify_failure(struct verify_header *hdr, struct vcont *vc) 348 { 349 unsigned long long offset; 350 351 offset = vc->io_u->offset; 352 offset += vc->hdr_num * hdr->len; 353 log_err("%.8s: verify failed at file %s offset %llu, length %u\n", 354 vc->name, vc->io_u->file->file_name, offset, hdr->len); 355 356 if (vc->good_crc && vc->bad_crc) { 357 log_err(" Expected CRC: "); 358 hexdump(vc->good_crc, vc->crc_len); 359 log_err(" Received CRC: "); 360 hexdump(vc->bad_crc, vc->crc_len); 361 } 362 363 dump_verify_buffers(hdr, vc); 364 } 365 366 /* 367 * Return data area 'header_num' 368 */ 369 static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc) 370 { 371 return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(vc->td, hdr); 372 } 373 374 static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc) 375 { 376 struct thread_data *td = vc->td; 377 struct io_u *io_u = vc->io_u; 378 char *buf, *pattern; 379 unsigned int header_size = __hdr_size(td->o.verify); 380 unsigned int len, mod, i, pattern_size; 381 int rc; 382 383 pattern = td->o.verify_pattern; 384 pattern_size = td->o.verify_pattern_bytes; 385 assert(pattern_size != 0); 386 387 (void)paste_format_inplace(pattern, pattern_size, 388 td->o.verify_fmt, td->o.verify_fmt_sz, io_u); 389 390 buf = (void *) hdr + header_size; 391 len = get_hdr_inc(td, io_u) - header_size; 392 mod = (get_hdr_inc(td, io_u) * vc->hdr_num + header_size) % pattern_size; 393 394 rc = cmp_pattern(pattern, pattern_size, mod, buf, len); 395 if (!rc) 396 return 0; 397 398 /* Slow path, compare each byte */ 399 for (i = 0; i < len; i++) { 400 if (buf[i] != pattern[mod]) { 401 unsigned int bits; 402 403 bits = hweight8(buf[i] ^ pattern[mod]); 404 log_err("fio: got pattern '%02x', wanted '%02x'. Bad bits %d\n", 405 (unsigned char)buf[i], 406 (unsigned char)pattern[mod], 407 bits); 408 log_err("fio: bad pattern block offset %u\n", i); 409 vc->name = "pattern"; 410 log_verify_failure(hdr, vc); 411 return EILSEQ; 412 } 413 mod++; 414 if (mod == td->o.verify_pattern_bytes) 415 mod = 0; 416 } 417 418 /* Unreachable line */ 419 assert(0); 420 return EILSEQ; 421 } 422 423 static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc) 424 { 425 void *p = io_u_verify_off(hdr, vc); 426 struct vhdr_xxhash *vh = hdr_priv(hdr); 427 uint32_t hash; 428 void *state; 429 430 dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len); 431 432 state = XXH32_init(1); 433 XXH32_update(state, p, hdr->len - hdr_size(vc->td, hdr)); 434 hash = XXH32_digest(state); 435 436 if (vh->hash == hash) 437 return 0; 438 439 vc->name = "xxhash"; 440 vc->good_crc = &vh->hash; 441 vc->bad_crc = &hash; 442 vc->crc_len = sizeof(hash); 443 log_verify_failure(hdr, vc); 444 return EILSEQ; 445 } 446 447 static int verify_io_u_sha3(struct verify_header *hdr, struct vcont *vc, 448 struct fio_sha3_ctx *sha3_ctx, uint8_t *sha, 449 unsigned int sha_size, const char *name) 450 { 451 void *p = io_u_verify_off(hdr, vc); 452 453 dprint(FD_VERIFY, "%s verify io_u %p, len %u\n", name, vc->io_u, hdr->len); 454 455 fio_sha3_update(sha3_ctx, p, hdr->len - hdr_size(vc->td, hdr)); 456 fio_sha3_final(sha3_ctx); 457 458 if (!memcmp(sha, sha3_ctx->sha, sha_size)) 459 return 0; 460 461 vc->name = name; 462 vc->good_crc = sha; 463 vc->bad_crc = sha3_ctx->sha; 464 vc->crc_len = sha_size; 465 log_verify_failure(hdr, vc); 466 return EILSEQ; 467 } 468 469 static int verify_io_u_sha3_224(struct verify_header *hdr, struct vcont *vc) 470 { 471 struct vhdr_sha3_224 *vh = hdr_priv(hdr); 472 uint8_t sha[SHA3_224_DIGEST_SIZE]; 473 struct fio_sha3_ctx sha3_ctx = { 474 .sha = sha, 475 }; 476 477 fio_sha3_224_init(&sha3_ctx); 478 479 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha, 480 SHA3_224_DIGEST_SIZE, "sha3-224"); 481 } 482 483 static int verify_io_u_sha3_256(struct verify_header *hdr, struct vcont *vc) 484 { 485 struct vhdr_sha3_256 *vh = hdr_priv(hdr); 486 uint8_t sha[SHA3_256_DIGEST_SIZE]; 487 struct fio_sha3_ctx sha3_ctx = { 488 .sha = sha, 489 }; 490 491 fio_sha3_256_init(&sha3_ctx); 492 493 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha, 494 SHA3_256_DIGEST_SIZE, "sha3-256"); 495 } 496 497 static int verify_io_u_sha3_384(struct verify_header *hdr, struct vcont *vc) 498 { 499 struct vhdr_sha3_384 *vh = hdr_priv(hdr); 500 uint8_t sha[SHA3_384_DIGEST_SIZE]; 501 struct fio_sha3_ctx sha3_ctx = { 502 .sha = sha, 503 }; 504 505 fio_sha3_384_init(&sha3_ctx); 506 507 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha, 508 SHA3_384_DIGEST_SIZE, "sha3-384"); 509 } 510 511 static int verify_io_u_sha3_512(struct verify_header *hdr, struct vcont *vc) 512 { 513 struct vhdr_sha3_512 *vh = hdr_priv(hdr); 514 uint8_t sha[SHA3_512_DIGEST_SIZE]; 515 struct fio_sha3_ctx sha3_ctx = { 516 .sha = sha, 517 }; 518 519 fio_sha3_512_init(&sha3_ctx); 520 521 return verify_io_u_sha3(hdr, vc, &sha3_ctx, vh->sha, 522 SHA3_512_DIGEST_SIZE, "sha3-512"); 523 } 524 525 static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc) 526 { 527 void *p = io_u_verify_off(hdr, vc); 528 struct vhdr_sha512 *vh = hdr_priv(hdr); 529 uint8_t sha512[128]; 530 struct fio_sha512_ctx sha512_ctx = { 531 .buf = sha512, 532 }; 533 534 dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len); 535 536 fio_sha512_init(&sha512_ctx); 537 fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(vc->td, hdr)); 538 539 if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512))) 540 return 0; 541 542 vc->name = "sha512"; 543 vc->good_crc = vh->sha512; 544 vc->bad_crc = sha512_ctx.buf; 545 vc->crc_len = sizeof(vh->sha512); 546 log_verify_failure(hdr, vc); 547 return EILSEQ; 548 } 549 550 static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc) 551 { 552 void *p = io_u_verify_off(hdr, vc); 553 struct vhdr_sha256 *vh = hdr_priv(hdr); 554 uint8_t sha256[64]; 555 struct fio_sha256_ctx sha256_ctx = { 556 .buf = sha256, 557 }; 558 559 dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len); 560 561 fio_sha256_init(&sha256_ctx); 562 fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(vc->td, hdr)); 563 fio_sha256_final(&sha256_ctx); 564 565 if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256))) 566 return 0; 567 568 vc->name = "sha256"; 569 vc->good_crc = vh->sha256; 570 vc->bad_crc = sha256_ctx.buf; 571 vc->crc_len = sizeof(vh->sha256); 572 log_verify_failure(hdr, vc); 573 return EILSEQ; 574 } 575 576 static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc) 577 { 578 void *p = io_u_verify_off(hdr, vc); 579 struct vhdr_sha1 *vh = hdr_priv(hdr); 580 uint32_t sha1[5]; 581 struct fio_sha1_ctx sha1_ctx = { 582 .H = sha1, 583 }; 584 585 dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len); 586 587 fio_sha1_init(&sha1_ctx); 588 fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(vc->td, hdr)); 589 fio_sha1_final(&sha1_ctx); 590 591 if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1))) 592 return 0; 593 594 vc->name = "sha1"; 595 vc->good_crc = vh->sha1; 596 vc->bad_crc = sha1_ctx.H; 597 vc->crc_len = sizeof(vh->sha1); 598 log_verify_failure(hdr, vc); 599 return EILSEQ; 600 } 601 602 static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc) 603 { 604 void *p = io_u_verify_off(hdr, vc); 605 struct vhdr_crc7 *vh = hdr_priv(hdr); 606 unsigned char c; 607 608 dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len); 609 610 c = fio_crc7(p, hdr->len - hdr_size(vc->td, hdr)); 611 612 if (c == vh->crc7) 613 return 0; 614 615 vc->name = "crc7"; 616 vc->good_crc = &vh->crc7; 617 vc->bad_crc = &c; 618 vc->crc_len = 1; 619 log_verify_failure(hdr, vc); 620 return EILSEQ; 621 } 622 623 static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc) 624 { 625 void *p = io_u_verify_off(hdr, vc); 626 struct vhdr_crc16 *vh = hdr_priv(hdr); 627 unsigned short c; 628 629 dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len); 630 631 c = fio_crc16(p, hdr->len - hdr_size(vc->td, hdr)); 632 633 if (c == vh->crc16) 634 return 0; 635 636 vc->name = "crc16"; 637 vc->good_crc = &vh->crc16; 638 vc->bad_crc = &c; 639 vc->crc_len = 2; 640 log_verify_failure(hdr, vc); 641 return EILSEQ; 642 } 643 644 static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc) 645 { 646 void *p = io_u_verify_off(hdr, vc); 647 struct vhdr_crc64 *vh = hdr_priv(hdr); 648 unsigned long long c; 649 650 dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len); 651 652 c = fio_crc64(p, hdr->len - hdr_size(vc->td, hdr)); 653 654 if (c == vh->crc64) 655 return 0; 656 657 vc->name = "crc64"; 658 vc->good_crc = &vh->crc64; 659 vc->bad_crc = &c; 660 vc->crc_len = 8; 661 log_verify_failure(hdr, vc); 662 return EILSEQ; 663 } 664 665 static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc) 666 { 667 void *p = io_u_verify_off(hdr, vc); 668 struct vhdr_crc32 *vh = hdr_priv(hdr); 669 uint32_t c; 670 671 dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len); 672 673 c = fio_crc32(p, hdr->len - hdr_size(vc->td, hdr)); 674 675 if (c == vh->crc32) 676 return 0; 677 678 vc->name = "crc32"; 679 vc->good_crc = &vh->crc32; 680 vc->bad_crc = &c; 681 vc->crc_len = 4; 682 log_verify_failure(hdr, vc); 683 return EILSEQ; 684 } 685 686 static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc) 687 { 688 void *p = io_u_verify_off(hdr, vc); 689 struct vhdr_crc32 *vh = hdr_priv(hdr); 690 uint32_t c; 691 692 dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len); 693 694 c = fio_crc32c(p, hdr->len - hdr_size(vc->td, hdr)); 695 696 if (c == vh->crc32) 697 return 0; 698 699 vc->name = "crc32c"; 700 vc->good_crc = &vh->crc32; 701 vc->bad_crc = &c; 702 vc->crc_len = 4; 703 log_verify_failure(hdr, vc); 704 return EILSEQ; 705 } 706 707 static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc) 708 { 709 void *p = io_u_verify_off(hdr, vc); 710 struct vhdr_md5 *vh = hdr_priv(hdr); 711 uint32_t hash[MD5_HASH_WORDS]; 712 struct fio_md5_ctx md5_ctx = { 713 .hash = hash, 714 }; 715 716 dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len); 717 718 fio_md5_init(&md5_ctx); 719 fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(vc->td, hdr)); 720 fio_md5_final(&md5_ctx); 721 722 if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash))) 723 return 0; 724 725 vc->name = "md5"; 726 vc->good_crc = vh->md5_digest; 727 vc->bad_crc = md5_ctx.hash; 728 vc->crc_len = sizeof(hash); 729 log_verify_failure(hdr, vc); 730 return EILSEQ; 731 } 732 733 /* 734 * Push IO verification to a separate thread 735 */ 736 int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr) 737 { 738 struct io_u *io_u = *io_u_ptr; 739 740 pthread_mutex_lock(&td->io_u_lock); 741 742 if (io_u->file) 743 put_file_log(td, io_u->file); 744 745 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) { 746 td->cur_depth--; 747 io_u_clear(td, io_u, IO_U_F_IN_CUR_DEPTH); 748 } 749 flist_add_tail(&io_u->verify_list, &td->verify_list); 750 *io_u_ptr = NULL; 751 pthread_mutex_unlock(&td->io_u_lock); 752 753 pthread_cond_signal(&td->verify_cond); 754 return 0; 755 } 756 757 /* 758 * Thanks Rusty, for spending the time so I don't have to. 759 * 760 * http://rusty.ozlabs.org/?p=560 761 */ 762 static int mem_is_zero(const void *data, size_t length) 763 { 764 const unsigned char *p = data; 765 size_t len; 766 767 /* Check first 16 bytes manually */ 768 for (len = 0; len < 16; len++) { 769 if (!length) 770 return 1; 771 if (*p) 772 return 0; 773 p++; 774 length--; 775 } 776 777 /* Now we know that's zero, memcmp with self. */ 778 return memcmp(data, p, length) == 0; 779 } 780 781 static int mem_is_zero_slow(const void *data, size_t length, size_t *offset) 782 { 783 const unsigned char *p = data; 784 785 *offset = 0; 786 while (length) { 787 if (*p) 788 break; 789 (*offset)++; 790 length--; 791 p++; 792 } 793 794 return !length; 795 } 796 797 static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u) 798 { 799 size_t offset; 800 801 if (!td->o.trim_zero) 802 return 0; 803 804 if (mem_is_zero(io_u->buf, io_u->buflen)) 805 return 0; 806 807 mem_is_zero_slow(io_u->buf, io_u->buflen, &offset); 808 809 log_err("trim: verify failed at file %s offset %llu, length %lu" 810 ", block offset %lu\n", 811 io_u->file->file_name, io_u->offset, io_u->buflen, 812 (unsigned long) offset); 813 return EILSEQ; 814 } 815 816 static int verify_header(struct io_u *io_u, struct thread_data *td, 817 struct verify_header *hdr, unsigned int hdr_num, 818 unsigned int hdr_len) 819 { 820 void *p = hdr; 821 uint32_t crc; 822 823 if (hdr->magic != FIO_HDR_MAGIC) { 824 log_err("verify: bad magic header %x, wanted %x", 825 hdr->magic, FIO_HDR_MAGIC); 826 goto err; 827 } 828 if (hdr->len != hdr_len) { 829 log_err("verify: bad header length %u, wanted %u", 830 hdr->len, hdr_len); 831 goto err; 832 } 833 if (hdr->rand_seed != io_u->rand_seed) { 834 log_err("verify: bad header rand_seed %"PRIu64 835 ", wanted %"PRIu64, 836 hdr->rand_seed, io_u->rand_seed); 837 goto err; 838 } 839 if (hdr->offset != io_u->offset + hdr_num * td->o.verify_interval) { 840 log_err("verify: bad header offset %"PRIu64 841 ", wanted %llu", 842 hdr->offset, io_u->offset); 843 goto err; 844 } 845 846 /* 847 * For read-only workloads, the program cannot be certain of the 848 * last numberio written to a block. Checking of numberio will be 849 * done only for workloads that write data. For verify_only, 850 * numberio will be checked in the last iteration when the correct 851 * state of numberio, that would have been written to each block 852 * in a previous run of fio, has been reached. 853 */ 854 if (td_write(td) && (td_min_bs(td) == td_max_bs(td)) && 855 !td->o.time_based) 856 if (!td->o.verify_only || td->o.loops == 0) 857 if (hdr->numberio != io_u->numberio) { 858 log_err("verify: bad header numberio %"PRIu16 859 ", wanted %"PRIu16, 860 hdr->numberio, io_u->numberio); 861 goto err; 862 } 863 864 crc = fio_crc32c(p, offsetof(struct verify_header, crc32)); 865 if (crc != hdr->crc32) { 866 log_err("verify: bad header crc %x, calculated %x", 867 hdr->crc32, crc); 868 goto err; 869 } 870 return 0; 871 872 err: 873 log_err(" at file %s offset %llu, length %u\n", 874 io_u->file->file_name, 875 io_u->offset + hdr_num * hdr_len, hdr_len); 876 877 if (td->o.verify_dump) 878 dump_buf(p, hdr_len, io_u->offset + hdr_num * hdr_len, 879 "hdr_fail", io_u->file); 880 881 return EILSEQ; 882 } 883 884 int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr) 885 { 886 struct verify_header *hdr; 887 struct io_u *io_u = *io_u_ptr; 888 unsigned int header_size, hdr_inc, hdr_num = 0; 889 void *p; 890 int ret; 891 892 if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ) 893 return 0; 894 /* 895 * If the IO engine is faking IO (like null), then just pretend 896 * we verified everything. 897 */ 898 if (td_ioengine_flagged(td, FIO_FAKEIO)) 899 return 0; 900 901 if (io_u->flags & IO_U_F_TRIMMED) { 902 ret = verify_trimmed_io_u(td, io_u); 903 goto done; 904 } 905 906 hdr_inc = get_hdr_inc(td, io_u); 907 908 ret = 0; 909 for (p = io_u->buf; p < io_u->buf + io_u->buflen; 910 p += hdr_inc, hdr_num++) { 911 struct vcont vc = { 912 .io_u = io_u, 913 .hdr_num = hdr_num, 914 .td = td, 915 }; 916 unsigned int verify_type; 917 918 if (ret && td->o.verify_fatal) 919 break; 920 921 header_size = __hdr_size(td->o.verify); 922 if (td->o.verify_offset) 923 memswp(p, p + td->o.verify_offset, header_size); 924 hdr = p; 925 926 /* 927 * Make rand_seed check pass when have verifysort or 928 * verify_backlog. 929 */ 930 if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG)) 931 io_u->rand_seed = hdr->rand_seed; 932 933 if (td->o.verify != VERIFY_PATTERN_NO_HDR) { 934 ret = verify_header(io_u, td, hdr, hdr_num, hdr_inc); 935 if (ret) 936 return ret; 937 } 938 939 if (td->o.verify != VERIFY_NONE) 940 verify_type = td->o.verify; 941 else 942 verify_type = hdr->verify_type; 943 944 switch (verify_type) { 945 case VERIFY_HDR_ONLY: 946 /* Header is always verified, check if pattern is left 947 * for verification. */ 948 if (td->o.verify_pattern_bytes) 949 ret = verify_io_u_pattern(hdr, &vc); 950 break; 951 case VERIFY_MD5: 952 ret = verify_io_u_md5(hdr, &vc); 953 break; 954 case VERIFY_CRC64: 955 ret = verify_io_u_crc64(hdr, &vc); 956 break; 957 case VERIFY_CRC32C: 958 case VERIFY_CRC32C_INTEL: 959 ret = verify_io_u_crc32c(hdr, &vc); 960 break; 961 case VERIFY_CRC32: 962 ret = verify_io_u_crc32(hdr, &vc); 963 break; 964 case VERIFY_CRC16: 965 ret = verify_io_u_crc16(hdr, &vc); 966 break; 967 case VERIFY_CRC7: 968 ret = verify_io_u_crc7(hdr, &vc); 969 break; 970 case VERIFY_SHA256: 971 ret = verify_io_u_sha256(hdr, &vc); 972 break; 973 case VERIFY_SHA512: 974 ret = verify_io_u_sha512(hdr, &vc); 975 break; 976 case VERIFY_SHA3_224: 977 ret = verify_io_u_sha3_224(hdr, &vc); 978 break; 979 case VERIFY_SHA3_256: 980 ret = verify_io_u_sha3_256(hdr, &vc); 981 break; 982 case VERIFY_SHA3_384: 983 ret = verify_io_u_sha3_384(hdr, &vc); 984 break; 985 case VERIFY_SHA3_512: 986 ret = verify_io_u_sha3_512(hdr, &vc); 987 break; 988 case VERIFY_XXHASH: 989 ret = verify_io_u_xxhash(hdr, &vc); 990 break; 991 case VERIFY_SHA1: 992 ret = verify_io_u_sha1(hdr, &vc); 993 break; 994 case VERIFY_PATTERN: 995 case VERIFY_PATTERN_NO_HDR: 996 ret = verify_io_u_pattern(hdr, &vc); 997 break; 998 default: 999 log_err("Bad verify type %u\n", hdr->verify_type); 1000 ret = EINVAL; 1001 } 1002 1003 if (ret && verify_type != hdr->verify_type) 1004 log_err("fio: verify type mismatch (%u media, %u given)\n", 1005 hdr->verify_type, verify_type); 1006 } 1007 1008 done: 1009 if (ret && td->o.verify_fatal) 1010 fio_mark_td_terminate(td); 1011 1012 return ret; 1013 } 1014 1015 static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len) 1016 { 1017 struct vhdr_xxhash *vh = hdr_priv(hdr); 1018 void *state; 1019 1020 state = XXH32_init(1); 1021 XXH32_update(state, p, len); 1022 vh->hash = XXH32_digest(state); 1023 } 1024 1025 static void fill_sha3(struct fio_sha3_ctx *sha3_ctx, void *p, unsigned int len) 1026 { 1027 fio_sha3_update(sha3_ctx, p, len); 1028 fio_sha3_final(sha3_ctx); 1029 } 1030 1031 static void fill_sha3_224(struct verify_header *hdr, void *p, unsigned int len) 1032 { 1033 struct vhdr_sha3_224 *vh = hdr_priv(hdr); 1034 struct fio_sha3_ctx sha3_ctx = { 1035 .sha = vh->sha, 1036 }; 1037 1038 fio_sha3_224_init(&sha3_ctx); 1039 fill_sha3(&sha3_ctx, p, len); 1040 } 1041 1042 static void fill_sha3_256(struct verify_header *hdr, void *p, unsigned int len) 1043 { 1044 struct vhdr_sha3_256 *vh = hdr_priv(hdr); 1045 struct fio_sha3_ctx sha3_ctx = { 1046 .sha = vh->sha, 1047 }; 1048 1049 fio_sha3_256_init(&sha3_ctx); 1050 fill_sha3(&sha3_ctx, p, len); 1051 } 1052 1053 static void fill_sha3_384(struct verify_header *hdr, void *p, unsigned int len) 1054 { 1055 struct vhdr_sha3_384 *vh = hdr_priv(hdr); 1056 struct fio_sha3_ctx sha3_ctx = { 1057 .sha = vh->sha, 1058 }; 1059 1060 fio_sha3_384_init(&sha3_ctx); 1061 fill_sha3(&sha3_ctx, p, len); 1062 } 1063 1064 static void fill_sha3_512(struct verify_header *hdr, void *p, unsigned int len) 1065 { 1066 struct vhdr_sha3_512 *vh = hdr_priv(hdr); 1067 struct fio_sha3_ctx sha3_ctx = { 1068 .sha = vh->sha, 1069 }; 1070 1071 fio_sha3_512_init(&sha3_ctx); 1072 fill_sha3(&sha3_ctx, p, len); 1073 } 1074 1075 static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len) 1076 { 1077 struct vhdr_sha512 *vh = hdr_priv(hdr); 1078 struct fio_sha512_ctx sha512_ctx = { 1079 .buf = vh->sha512, 1080 }; 1081 1082 fio_sha512_init(&sha512_ctx); 1083 fio_sha512_update(&sha512_ctx, p, len); 1084 } 1085 1086 static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len) 1087 { 1088 struct vhdr_sha256 *vh = hdr_priv(hdr); 1089 struct fio_sha256_ctx sha256_ctx = { 1090 .buf = vh->sha256, 1091 }; 1092 1093 fio_sha256_init(&sha256_ctx); 1094 fio_sha256_update(&sha256_ctx, p, len); 1095 fio_sha256_final(&sha256_ctx); 1096 } 1097 1098 static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len) 1099 { 1100 struct vhdr_sha1 *vh = hdr_priv(hdr); 1101 struct fio_sha1_ctx sha1_ctx = { 1102 .H = vh->sha1, 1103 }; 1104 1105 fio_sha1_init(&sha1_ctx); 1106 fio_sha1_update(&sha1_ctx, p, len); 1107 fio_sha1_final(&sha1_ctx); 1108 } 1109 1110 static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len) 1111 { 1112 struct vhdr_crc7 *vh = hdr_priv(hdr); 1113 1114 vh->crc7 = fio_crc7(p, len); 1115 } 1116 1117 static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len) 1118 { 1119 struct vhdr_crc16 *vh = hdr_priv(hdr); 1120 1121 vh->crc16 = fio_crc16(p, len); 1122 } 1123 1124 static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len) 1125 { 1126 struct vhdr_crc32 *vh = hdr_priv(hdr); 1127 1128 vh->crc32 = fio_crc32(p, len); 1129 } 1130 1131 static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len) 1132 { 1133 struct vhdr_crc32 *vh = hdr_priv(hdr); 1134 1135 vh->crc32 = fio_crc32c(p, len); 1136 } 1137 1138 static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len) 1139 { 1140 struct vhdr_crc64 *vh = hdr_priv(hdr); 1141 1142 vh->crc64 = fio_crc64(p, len); 1143 } 1144 1145 static void fill_md5(struct verify_header *hdr, void *p, unsigned int len) 1146 { 1147 struct vhdr_md5 *vh = hdr_priv(hdr); 1148 struct fio_md5_ctx md5_ctx = { 1149 .hash = (uint32_t *) vh->md5_digest, 1150 }; 1151 1152 fio_md5_init(&md5_ctx); 1153 fio_md5_update(&md5_ctx, p, len); 1154 fio_md5_final(&md5_ctx); 1155 } 1156 1157 static void __fill_hdr(struct thread_data *td, struct io_u *io_u, 1158 struct verify_header *hdr, unsigned int header_num, 1159 unsigned int header_len, uint64_t rand_seed) 1160 { 1161 void *p = hdr; 1162 1163 hdr->magic = FIO_HDR_MAGIC; 1164 hdr->verify_type = td->o.verify; 1165 hdr->len = header_len; 1166 hdr->rand_seed = rand_seed; 1167 hdr->offset = io_u->offset + header_num * td->o.verify_interval; 1168 hdr->time_sec = io_u->start_time.tv_sec; 1169 hdr->time_usec = io_u->start_time.tv_usec; 1170 hdr->thread = td->thread_number; 1171 hdr->numberio = io_u->numberio; 1172 hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32)); 1173 } 1174 1175 1176 static void fill_hdr(struct thread_data *td, struct io_u *io_u, 1177 struct verify_header *hdr, unsigned int header_num, 1178 unsigned int header_len, uint64_t rand_seed) 1179 { 1180 1181 if (td->o.verify != VERIFY_PATTERN_NO_HDR) 1182 __fill_hdr(td, io_u, hdr, header_num, header_len, rand_seed); 1183 } 1184 1185 static void populate_hdr(struct thread_data *td, struct io_u *io_u, 1186 struct verify_header *hdr, unsigned int header_num, 1187 unsigned int header_len) 1188 { 1189 unsigned int data_len; 1190 void *data, *p; 1191 1192 p = (void *) hdr; 1193 1194 fill_hdr(td, io_u, hdr, header_num, header_len, io_u->rand_seed); 1195 1196 data_len = header_len - hdr_size(td, hdr); 1197 1198 data = p + hdr_size(td, hdr); 1199 switch (td->o.verify) { 1200 case VERIFY_MD5: 1201 dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n", 1202 io_u, hdr->len); 1203 fill_md5(hdr, data, data_len); 1204 break; 1205 case VERIFY_CRC64: 1206 dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n", 1207 io_u, hdr->len); 1208 fill_crc64(hdr, data, data_len); 1209 break; 1210 case VERIFY_CRC32C: 1211 case VERIFY_CRC32C_INTEL: 1212 dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n", 1213 io_u, hdr->len); 1214 fill_crc32c(hdr, data, data_len); 1215 break; 1216 case VERIFY_CRC32: 1217 dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n", 1218 io_u, hdr->len); 1219 fill_crc32(hdr, data, data_len); 1220 break; 1221 case VERIFY_CRC16: 1222 dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n", 1223 io_u, hdr->len); 1224 fill_crc16(hdr, data, data_len); 1225 break; 1226 case VERIFY_CRC7: 1227 dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n", 1228 io_u, hdr->len); 1229 fill_crc7(hdr, data, data_len); 1230 break; 1231 case VERIFY_SHA256: 1232 dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n", 1233 io_u, hdr->len); 1234 fill_sha256(hdr, data, data_len); 1235 break; 1236 case VERIFY_SHA512: 1237 dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n", 1238 io_u, hdr->len); 1239 fill_sha512(hdr, data, data_len); 1240 break; 1241 case VERIFY_SHA3_224: 1242 dprint(FD_VERIFY, "fill sha3-224 io_u %p, len %u\n", 1243 io_u, hdr->len); 1244 fill_sha3_224(hdr, data, data_len); 1245 break; 1246 case VERIFY_SHA3_256: 1247 dprint(FD_VERIFY, "fill sha3-256 io_u %p, len %u\n", 1248 io_u, hdr->len); 1249 fill_sha3_256(hdr, data, data_len); 1250 break; 1251 case VERIFY_SHA3_384: 1252 dprint(FD_VERIFY, "fill sha3-384 io_u %p, len %u\n", 1253 io_u, hdr->len); 1254 fill_sha3_384(hdr, data, data_len); 1255 break; 1256 case VERIFY_SHA3_512: 1257 dprint(FD_VERIFY, "fill sha3-512 io_u %p, len %u\n", 1258 io_u, hdr->len); 1259 fill_sha3_512(hdr, data, data_len); 1260 break; 1261 case VERIFY_XXHASH: 1262 dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n", 1263 io_u, hdr->len); 1264 fill_xxhash(hdr, data, data_len); 1265 break; 1266 case VERIFY_SHA1: 1267 dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n", 1268 io_u, hdr->len); 1269 fill_sha1(hdr, data, data_len); 1270 break; 1271 case VERIFY_HDR_ONLY: 1272 case VERIFY_PATTERN: 1273 case VERIFY_PATTERN_NO_HDR: 1274 /* nothing to do here */ 1275 break; 1276 default: 1277 log_err("fio: bad verify type: %d\n", td->o.verify); 1278 assert(0); 1279 } 1280 1281 if (td->o.verify_offset && hdr_size(td, hdr)) 1282 memswp(p, p + td->o.verify_offset, hdr_size(td, hdr)); 1283 } 1284 1285 /* 1286 * fill body of io_u->buf with random data and add a header with the 1287 * checksum of choice 1288 */ 1289 void populate_verify_io_u(struct thread_data *td, struct io_u *io_u) 1290 { 1291 if (td->o.verify == VERIFY_NULL) 1292 return; 1293 1294 io_u->numberio = td->io_issues[io_u->ddir]; 1295 1296 fill_pattern_headers(td, io_u, 0, 0); 1297 } 1298 1299 int get_next_verify(struct thread_data *td, struct io_u *io_u) 1300 { 1301 struct io_piece *ipo = NULL; 1302 1303 /* 1304 * this io_u is from a requeue, we already filled the offsets 1305 */ 1306 if (io_u->file) 1307 return 0; 1308 1309 if (!RB_EMPTY_ROOT(&td->io_hist_tree)) { 1310 struct rb_node *n = rb_first(&td->io_hist_tree); 1311 1312 ipo = rb_entry(n, struct io_piece, rb_node); 1313 1314 /* 1315 * Ensure that the associated IO has completed 1316 */ 1317 read_barrier(); 1318 if (ipo->flags & IP_F_IN_FLIGHT) 1319 goto nothing; 1320 1321 rb_erase(n, &td->io_hist_tree); 1322 assert(ipo->flags & IP_F_ONRB); 1323 ipo->flags &= ~IP_F_ONRB; 1324 } else if (!flist_empty(&td->io_hist_list)) { 1325 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list); 1326 1327 /* 1328 * Ensure that the associated IO has completed 1329 */ 1330 read_barrier(); 1331 if (ipo->flags & IP_F_IN_FLIGHT) 1332 goto nothing; 1333 1334 flist_del(&ipo->list); 1335 assert(ipo->flags & IP_F_ONLIST); 1336 ipo->flags &= ~IP_F_ONLIST; 1337 } 1338 1339 if (ipo) { 1340 td->io_hist_len--; 1341 1342 io_u->offset = ipo->offset; 1343 io_u->buflen = ipo->len; 1344 io_u->numberio = ipo->numberio; 1345 io_u->file = ipo->file; 1346 io_u_set(td, io_u, IO_U_F_VER_LIST); 1347 1348 if (ipo->flags & IP_F_TRIMMED) 1349 io_u_set(td, io_u, IO_U_F_TRIMMED); 1350 1351 if (!fio_file_open(io_u->file)) { 1352 int r = td_io_open_file(td, io_u->file); 1353 1354 if (r) { 1355 dprint(FD_VERIFY, "failed file %s open\n", 1356 io_u->file->file_name); 1357 return 1; 1358 } 1359 } 1360 1361 get_file(ipo->file); 1362 assert(fio_file_open(io_u->file)); 1363 io_u->ddir = DDIR_READ; 1364 io_u->xfer_buf = io_u->buf; 1365 io_u->xfer_buflen = io_u->buflen; 1366 1367 remove_trim_entry(td, ipo); 1368 free(ipo); 1369 dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u); 1370 1371 if (!td->o.verify_pattern_bytes) { 1372 io_u->rand_seed = __rand(&td->verify_state); 1373 if (sizeof(int) != sizeof(long *)) 1374 io_u->rand_seed *= __rand(&td->verify_state); 1375 } 1376 return 0; 1377 } 1378 1379 nothing: 1380 dprint(FD_VERIFY, "get_next_verify: empty\n"); 1381 return 1; 1382 } 1383 1384 void fio_verify_init(struct thread_data *td) 1385 { 1386 if (td->o.verify == VERIFY_CRC32C_INTEL || 1387 td->o.verify == VERIFY_CRC32C) { 1388 crc32c_arm64_probe(); 1389 crc32c_intel_probe(); 1390 } 1391 } 1392 1393 static void *verify_async_thread(void *data) 1394 { 1395 struct thread_data *td = data; 1396 struct io_u *io_u; 1397 int ret = 0; 1398 1399 if (fio_option_is_set(&td->o, verify_cpumask) && 1400 fio_setaffinity(td->pid, td->o.verify_cpumask)) { 1401 log_err("fio: failed setting verify thread affinity\n"); 1402 goto done; 1403 } 1404 1405 do { 1406 FLIST_HEAD(list); 1407 1408 read_barrier(); 1409 if (td->verify_thread_exit) 1410 break; 1411 1412 pthread_mutex_lock(&td->io_u_lock); 1413 1414 while (flist_empty(&td->verify_list) && 1415 !td->verify_thread_exit) { 1416 ret = pthread_cond_wait(&td->verify_cond, 1417 &td->io_u_lock); 1418 if (ret) { 1419 pthread_mutex_unlock(&td->io_u_lock); 1420 break; 1421 } 1422 } 1423 1424 flist_splice_init(&td->verify_list, &list); 1425 pthread_mutex_unlock(&td->io_u_lock); 1426 1427 if (flist_empty(&list)) 1428 continue; 1429 1430 while (!flist_empty(&list)) { 1431 io_u = flist_first_entry(&list, struct io_u, verify_list); 1432 flist_del_init(&io_u->verify_list); 1433 1434 io_u_set(td, io_u, IO_U_F_NO_FILE_PUT); 1435 ret = verify_io_u(td, &io_u); 1436 1437 put_io_u(td, io_u); 1438 if (!ret) 1439 continue; 1440 if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) { 1441 update_error_count(td, ret); 1442 td_clear_error(td); 1443 ret = 0; 1444 } 1445 } 1446 } while (!ret); 1447 1448 if (ret) { 1449 td_verror(td, ret, "async_verify"); 1450 if (td->o.verify_fatal) 1451 fio_mark_td_terminate(td); 1452 } 1453 1454 done: 1455 pthread_mutex_lock(&td->io_u_lock); 1456 td->nr_verify_threads--; 1457 pthread_mutex_unlock(&td->io_u_lock); 1458 1459 pthread_cond_signal(&td->free_cond); 1460 return NULL; 1461 } 1462 1463 int verify_async_init(struct thread_data *td) 1464 { 1465 int i, ret; 1466 pthread_attr_t attr; 1467 1468 pthread_attr_init(&attr); 1469 pthread_attr_setstacksize(&attr, 2 * PTHREAD_STACK_MIN); 1470 1471 td->verify_thread_exit = 0; 1472 1473 td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async); 1474 for (i = 0; i < td->o.verify_async; i++) { 1475 ret = pthread_create(&td->verify_threads[i], &attr, 1476 verify_async_thread, td); 1477 if (ret) { 1478 log_err("fio: async verify creation failed: %s\n", 1479 strerror(ret)); 1480 break; 1481 } 1482 ret = pthread_detach(td->verify_threads[i]); 1483 if (ret) { 1484 log_err("fio: async verify thread detach failed: %s\n", 1485 strerror(ret)); 1486 break; 1487 } 1488 td->nr_verify_threads++; 1489 } 1490 1491 pthread_attr_destroy(&attr); 1492 1493 if (i != td->o.verify_async) { 1494 log_err("fio: only %d verify threads started, exiting\n", i); 1495 td->verify_thread_exit = 1; 1496 write_barrier(); 1497 pthread_cond_broadcast(&td->verify_cond); 1498 return 1; 1499 } 1500 1501 return 0; 1502 } 1503 1504 void verify_async_exit(struct thread_data *td) 1505 { 1506 td->verify_thread_exit = 1; 1507 write_barrier(); 1508 pthread_cond_broadcast(&td->verify_cond); 1509 1510 pthread_mutex_lock(&td->io_u_lock); 1511 1512 while (td->nr_verify_threads) 1513 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1514 1515 pthread_mutex_unlock(&td->io_u_lock); 1516 free(td->verify_threads); 1517 td->verify_threads = NULL; 1518 } 1519 1520 int paste_blockoff(char *buf, unsigned int len, void *priv) 1521 { 1522 struct io_u *io = priv; 1523 unsigned long long off; 1524 1525 typecheck(typeof(off), io->offset); 1526 off = cpu_to_le64((uint64_t)io->offset); 1527 len = min(len, (unsigned int)sizeof(off)); 1528 memcpy(buf, &off, len); 1529 return 0; 1530 } 1531 1532 static int __fill_file_completions(struct thread_data *td, 1533 struct thread_io_list *s, 1534 struct fio_file *f, unsigned int *index) 1535 { 1536 unsigned int comps; 1537 int i, j; 1538 1539 if (!f->last_write_comp) 1540 return 0; 1541 1542 if (td->io_blocks[DDIR_WRITE] < td->o.iodepth) 1543 comps = td->io_blocks[DDIR_WRITE]; 1544 else 1545 comps = td->o.iodepth; 1546 1547 j = f->last_write_idx - 1; 1548 for (i = 0; i < comps; i++) { 1549 if (j == -1) 1550 j = td->o.iodepth - 1; 1551 s->comps[*index].fileno = __cpu_to_le64(f->fileno); 1552 s->comps[*index].offset = cpu_to_le64(f->last_write_comp[j]); 1553 (*index)++; 1554 j--; 1555 } 1556 1557 return comps; 1558 } 1559 1560 static int fill_file_completions(struct thread_data *td, 1561 struct thread_io_list *s, unsigned int *index) 1562 { 1563 struct fio_file *f; 1564 unsigned int i; 1565 int comps = 0; 1566 1567 for_each_file(td, f, i) 1568 comps += __fill_file_completions(td, s, f, index); 1569 1570 return comps; 1571 } 1572 1573 struct all_io_list *get_all_io_list(int save_mask, size_t *sz) 1574 { 1575 struct all_io_list *rep; 1576 struct thread_data *td; 1577 size_t depth; 1578 void *next; 1579 int i, nr; 1580 1581 compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list"); 1582 1583 /* 1584 * Calculate reply space needed. We need one 'io_state' per thread, 1585 * and the size will vary depending on depth. 1586 */ 1587 depth = 0; 1588 nr = 0; 1589 for_each_td(td, i) { 1590 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask) 1591 continue; 1592 td->stop_io = 1; 1593 td->flags |= TD_F_VSTATE_SAVED; 1594 depth += (td->o.iodepth * td->o.nr_files); 1595 nr++; 1596 } 1597 1598 if (!nr) 1599 return NULL; 1600 1601 *sz = sizeof(*rep); 1602 *sz += nr * sizeof(struct thread_io_list); 1603 *sz += depth * sizeof(struct file_comp); 1604 rep = malloc(*sz); 1605 memset(rep, 0, *sz); 1606 1607 rep->threads = cpu_to_le64((uint64_t) nr); 1608 1609 next = &rep->state[0]; 1610 for_each_td(td, i) { 1611 struct thread_io_list *s = next; 1612 unsigned int comps, index = 0; 1613 1614 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask) 1615 continue; 1616 1617 comps = fill_file_completions(td, s, &index); 1618 1619 s->no_comps = cpu_to_le64((uint64_t) comps); 1620 s->depth = cpu_to_le64((uint64_t) td->o.iodepth); 1621 s->nofiles = cpu_to_le64((uint64_t) td->o.nr_files); 1622 s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]); 1623 s->index = cpu_to_le64((uint64_t) i); 1624 if (td->random_state.use64) { 1625 s->rand.state64.s[0] = cpu_to_le64(td->random_state.state64.s1); 1626 s->rand.state64.s[1] = cpu_to_le64(td->random_state.state64.s2); 1627 s->rand.state64.s[2] = cpu_to_le64(td->random_state.state64.s3); 1628 s->rand.state64.s[3] = cpu_to_le64(td->random_state.state64.s4); 1629 s->rand.state64.s[4] = cpu_to_le64(td->random_state.state64.s5); 1630 s->rand.state64.s[5] = 0; 1631 s->rand.use64 = cpu_to_le64((uint64_t)1); 1632 } else { 1633 s->rand.state32.s[0] = cpu_to_le32(td->random_state.state32.s1); 1634 s->rand.state32.s[1] = cpu_to_le32(td->random_state.state32.s2); 1635 s->rand.state32.s[2] = cpu_to_le32(td->random_state.state32.s3); 1636 s->rand.state32.s[3] = 0; 1637 s->rand.use64 = 0; 1638 } 1639 s->name[sizeof(s->name) - 1] = '\0'; 1640 strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1); 1641 next = io_list_next(s); 1642 } 1643 1644 return rep; 1645 } 1646 1647 static int open_state_file(const char *name, const char *prefix, int num, 1648 int for_write) 1649 { 1650 char out[PATH_MAX]; 1651 int flags; 1652 int fd; 1653 1654 if (for_write) 1655 flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC; 1656 else 1657 flags = O_RDONLY; 1658 1659 verify_state_gen_name(out, sizeof(out), name, prefix, num); 1660 1661 fd = open(out, flags, 0644); 1662 if (fd == -1) { 1663 perror("fio: open state file"); 1664 log_err("fio: state file: %s (for_write=%d)\n", out, for_write); 1665 return -1; 1666 } 1667 1668 return fd; 1669 } 1670 1671 static int write_thread_list_state(struct thread_io_list *s, 1672 const char *prefix) 1673 { 1674 struct verify_state_hdr hdr; 1675 uint64_t crc; 1676 ssize_t ret; 1677 int fd; 1678 1679 fd = open_state_file((const char *) s->name, prefix, s->index, 1); 1680 if (fd == -1) 1681 return 1; 1682 1683 crc = fio_crc32c((void *)s, thread_io_list_sz(s)); 1684 1685 hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION); 1686 hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s)); 1687 hdr.crc = cpu_to_le64(crc); 1688 ret = write(fd, &hdr, sizeof(hdr)); 1689 if (ret != sizeof(hdr)) 1690 goto write_fail; 1691 1692 ret = write(fd, s, thread_io_list_sz(s)); 1693 if (ret != thread_io_list_sz(s)) { 1694 write_fail: 1695 if (ret < 0) 1696 perror("fio: write state file"); 1697 log_err("fio: failed to write state file\n"); 1698 ret = 1; 1699 } else 1700 ret = 0; 1701 1702 close(fd); 1703 return ret; 1704 } 1705 1706 void __verify_save_state(struct all_io_list *state, const char *prefix) 1707 { 1708 struct thread_io_list *s = &state->state[0]; 1709 unsigned int i; 1710 1711 for (i = 0; i < le64_to_cpu(state->threads); i++) { 1712 write_thread_list_state(s, prefix); 1713 s = io_list_next(s); 1714 } 1715 } 1716 1717 void verify_save_state(int mask) 1718 { 1719 struct all_io_list *state; 1720 size_t sz; 1721 1722 state = get_all_io_list(mask, &sz); 1723 if (state) { 1724 char prefix[PATH_MAX]; 1725 1726 if (aux_path) 1727 sprintf(prefix, "%s%slocal", aux_path, FIO_OS_PATH_SEPARATOR); 1728 else 1729 strcpy(prefix, "local"); 1730 1731 __verify_save_state(state, prefix); 1732 free(state); 1733 } 1734 } 1735 1736 void verify_free_state(struct thread_data *td) 1737 { 1738 if (td->vstate) 1739 free(td->vstate); 1740 } 1741 1742 void verify_assign_state(struct thread_data *td, void *p) 1743 { 1744 struct thread_io_list *s = p; 1745 int i; 1746 1747 s->no_comps = le64_to_cpu(s->no_comps); 1748 s->depth = le32_to_cpu(s->depth); 1749 s->nofiles = le32_to_cpu(s->nofiles); 1750 s->numberio = le64_to_cpu(s->numberio); 1751 s->rand.use64 = le64_to_cpu(s->rand.use64); 1752 1753 if (s->rand.use64) { 1754 for (i = 0; i < 6; i++) 1755 s->rand.state64.s[i] = le64_to_cpu(s->rand.state64.s[i]); 1756 } else { 1757 for (i = 0; i < 4; i++) 1758 s->rand.state32.s[i] = le32_to_cpu(s->rand.state32.s[i]); 1759 } 1760 1761 for (i = 0; i < s->no_comps; i++) { 1762 s->comps[i].fileno = le64_to_cpu(s->comps[i].fileno); 1763 s->comps[i].offset = le64_to_cpu(s->comps[i].offset); 1764 } 1765 1766 td->vstate = p; 1767 } 1768 1769 int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s) 1770 { 1771 uint64_t crc; 1772 1773 hdr->version = le64_to_cpu(hdr->version); 1774 hdr->size = le64_to_cpu(hdr->size); 1775 hdr->crc = le64_to_cpu(hdr->crc); 1776 1777 if (hdr->version != VSTATE_HDR_VERSION) 1778 return 1; 1779 1780 crc = fio_crc32c((void *)s, hdr->size); 1781 if (crc != hdr->crc) 1782 return 1; 1783 1784 return 0; 1785 } 1786 1787 int verify_load_state(struct thread_data *td, const char *prefix) 1788 { 1789 struct verify_state_hdr hdr; 1790 void *s = NULL; 1791 uint64_t crc; 1792 ssize_t ret; 1793 int fd; 1794 1795 if (!td->o.verify_state) 1796 return 0; 1797 1798 fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0); 1799 if (fd == -1) 1800 return 1; 1801 1802 ret = read(fd, &hdr, sizeof(hdr)); 1803 if (ret != sizeof(hdr)) { 1804 if (ret < 0) 1805 td_verror(td, errno, "read verify state hdr"); 1806 log_err("fio: failed reading verify state header\n"); 1807 goto err; 1808 } 1809 1810 hdr.version = le64_to_cpu(hdr.version); 1811 hdr.size = le64_to_cpu(hdr.size); 1812 hdr.crc = le64_to_cpu(hdr.crc); 1813 1814 if (hdr.version != VSTATE_HDR_VERSION) { 1815 log_err("fio: unsupported (%d) version in verify state header\n", 1816 (unsigned int) hdr.version); 1817 goto err; 1818 } 1819 1820 s = malloc(hdr.size); 1821 ret = read(fd, s, hdr.size); 1822 if (ret != hdr.size) { 1823 if (ret < 0) 1824 td_verror(td, errno, "read verify state"); 1825 log_err("fio: failed reading verity state\n"); 1826 goto err; 1827 } 1828 1829 crc = fio_crc32c(s, hdr.size); 1830 if (crc != hdr.crc) { 1831 log_err("fio: verify state is corrupt\n"); 1832 goto err; 1833 } 1834 1835 close(fd); 1836 1837 verify_assign_state(td, s); 1838 return 0; 1839 err: 1840 if (s) 1841 free(s); 1842 close(fd); 1843 return 1; 1844 } 1845 1846 /* 1847 * Use the loaded verify state to know when to stop doing verification 1848 */ 1849 int verify_state_should_stop(struct thread_data *td, struct io_u *io_u) 1850 { 1851 struct thread_io_list *s = td->vstate; 1852 struct fio_file *f = io_u->file; 1853 int i; 1854 1855 if (!s || !f) 1856 return 0; 1857 1858 /* 1859 * If we're not into the window of issues - depth yet, continue. If 1860 * issue is shorter than depth, do check. 1861 */ 1862 if ((td->io_blocks[DDIR_READ] < s->depth || 1863 s->numberio - td->io_blocks[DDIR_READ] > s->depth) && 1864 s->numberio > s->depth) 1865 return 0; 1866 1867 /* 1868 * We're in the window of having to check if this io was 1869 * completed or not. If the IO was seen as completed, then 1870 * lets verify it. 1871 */ 1872 for (i = 0; i < s->no_comps; i++) { 1873 if (s->comps[i].fileno != f->fileno) 1874 continue; 1875 if (io_u->offset == s->comps[i].offset) 1876 return 0; 1877 } 1878 1879 /* 1880 * Not found, we have to stop 1881 */ 1882 return 1; 1883 } 1884