Home | History | Annotate | Download | only in ir3
      1 /*
      2  * Copyright (c) 2013 Rob Clark <robdclark (at) gmail.com>
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21  * SOFTWARE.
     22  */
     23 
     24 #ifndef IR3_H_
     25 #define IR3_H_
     26 
     27 #include <stdint.h>
     28 #include <stdbool.h>
     29 
     30 #include "util/u_debug.h"
     31 #include "util/list.h"
     32 
     33 #include "instr-a3xx.h"
     34 #include "disasm.h"  /* TODO move 'enum shader_t' somewhere else.. */
     35 
     36 /* low level intermediate representation of an adreno shader program */
     37 
     38 struct ir3_compiler;
     39 struct ir3;
     40 struct ir3_instruction;
     41 struct ir3_block;
     42 
     43 struct ir3_info {
     44 	uint32_t gpu_id;
     45 	uint16_t sizedwords;
     46 	uint16_t instrs_count;   /* expanded to account for rpt's */
     47 	/* NOTE: max_reg, etc, does not include registers not touched
     48 	 * by the shader (ie. vertex fetched via VFD_DECODE but not
     49 	 * touched by shader)
     50 	 */
     51 	int8_t   max_reg;   /* highest GPR # used by shader */
     52 	int8_t   max_half_reg;
     53 	int16_t  max_const;
     54 };
     55 
     56 struct ir3_register {
     57 	enum {
     58 		IR3_REG_CONST  = 0x001,
     59 		IR3_REG_IMMED  = 0x002,
     60 		IR3_REG_HALF   = 0x004,
     61 		IR3_REG_RELATIV= 0x008,
     62 		IR3_REG_R      = 0x010,
     63 		/* Most instructions, it seems, can do float abs/neg but not
     64 		 * integer.  The CP pass needs to know what is intended (int or
     65 		 * float) in order to do the right thing.  For this reason the
     66 		 * abs/neg flags are split out into float and int variants.  In
     67 		 * addition, .b (bitwise) operations, the negate is actually a
     68 		 * bitwise not, so split that out into a new flag to make it
     69 		 * more clear.
     70 		 */
     71 		IR3_REG_FNEG   = 0x020,
     72 		IR3_REG_FABS   = 0x040,
     73 		IR3_REG_SNEG   = 0x080,
     74 		IR3_REG_SABS   = 0x100,
     75 		IR3_REG_BNOT   = 0x200,
     76 		IR3_REG_EVEN   = 0x400,
     77 		IR3_REG_POS_INF= 0x800,
     78 		/* (ei) flag, end-input?  Set on last bary, presumably to signal
     79 		 * that the shader needs no more input:
     80 		 */
     81 		IR3_REG_EI     = 0x1000,
     82 		/* meta-flags, for intermediate stages of IR, ie.
     83 		 * before register assignment is done:
     84 		 */
     85 		IR3_REG_SSA    = 0x2000,   /* 'instr' is ptr to assigning instr */
     86 		IR3_REG_ARRAY  = 0x4000,
     87 		IR3_REG_PHI_SRC= 0x8000,   /* phi src, regs[0]->instr points to phi */
     88 
     89 	} flags;
     90 	union {
     91 		/* normal registers:
     92 		 * the component is in the low two bits of the reg #, so
     93 		 * rN.x becomes: (N << 2) | x
     94 		 */
     95 		int   num;
     96 		/* immediate: */
     97 		int32_t  iim_val;
     98 		uint32_t uim_val;
     99 		float    fim_val;
    100 		/* relative: */
    101 		struct {
    102 			uint16_t id;
    103 			int16_t offset;
    104 		} array;
    105 	};
    106 
    107 	/* For IR3_REG_SSA, src registers contain ptr back to assigning
    108 	 * instruction.
    109 	 *
    110 	 * For IR3_REG_ARRAY, the pointer is back to the last dependent
    111 	 * array access (although the net effect is the same, it points
    112 	 * back to a previous instruction that we depend on).
    113 	 */
    114 	struct ir3_instruction *instr;
    115 
    116 	union {
    117 		/* used for cat5 instructions, but also for internal/IR level
    118 		 * tracking of what registers are read/written by an instruction.
    119 		 * wrmask may be a bad name since it is used to represent both
    120 		 * src and dst that touch multiple adjacent registers.
    121 		 */
    122 		unsigned wrmask;
    123 		/* for relative addressing, 32bits for array size is too small,
    124 		 * but otoh we don't need to deal with disjoint sets, so instead
    125 		 * use a simple size field (number of scalar components).
    126 		 */
    127 		unsigned size;
    128 	};
    129 };
    130 
    131 struct ir3_instruction {
    132 	struct ir3_block *block;
    133 	opc_t opc;
    134 	enum {
    135 		/* (sy) flag is set on first instruction, and after sample
    136 		 * instructions (probably just on RAW hazard).
    137 		 */
    138 		IR3_INSTR_SY    = 0x001,
    139 		/* (ss) flag is set on first instruction, and first instruction
    140 		 * to depend on the result of "long" instructions (RAW hazard):
    141 		 *
    142 		 *   rcp, rsq, log2, exp2, sin, cos, sqrt
    143 		 *
    144 		 * It seems to synchronize until all in-flight instructions are
    145 		 * completed, for example:
    146 		 *
    147 		 *   rsq hr1.w, hr1.w
    148 		 *   add.f hr2.z, (neg)hr2.z, hc0.y
    149 		 *   mul.f hr2.w, (neg)hr2.y, (neg)hr2.y
    150 		 *   rsq hr2.x, hr2.x
    151 		 *   (rpt1)nop
    152 		 *   mad.f16 hr2.w, hr2.z, hr2.z, hr2.w
    153 		 *   nop
    154 		 *   mad.f16 hr2.w, (neg)hr0.w, (neg)hr0.w, hr2.w
    155 		 *   (ss)(rpt2)mul.f hr1.x, (r)hr1.x, hr1.w
    156 		 *   (rpt2)mul.f hr0.x, (neg)(r)hr0.x, hr2.x
    157 		 *
    158 		 * The last mul.f does not have (ss) set, presumably because the
    159 		 * (ss) on the previous instruction does the job.
    160 		 *
    161 		 * The blob driver also seems to set it on WAR hazards, although
    162 		 * not really clear if this is needed or just blob compiler being
    163 		 * sloppy.  So far I haven't found a case where removing the (ss)
    164 		 * causes problems for WAR hazard, but I could just be getting
    165 		 * lucky:
    166 		 *
    167 		 *   rcp r1.y, r3.y
    168 		 *   (ss)(rpt2)mad.f32 r3.y, (r)c9.x, r1.x, (r)r3.z
    169 		 *
    170 		 */
    171 		IR3_INSTR_SS    = 0x002,
    172 		/* (jp) flag is set on jump targets:
    173 		 */
    174 		IR3_INSTR_JP    = 0x004,
    175 		IR3_INSTR_UL    = 0x008,
    176 		IR3_INSTR_3D    = 0x010,
    177 		IR3_INSTR_A     = 0x020,
    178 		IR3_INSTR_O     = 0x040,
    179 		IR3_INSTR_P     = 0x080,
    180 		IR3_INSTR_S     = 0x100,
    181 		IR3_INSTR_S2EN  = 0x200,
    182 		IR3_INSTR_G     = 0x400,
    183 		/* meta-flags, for intermediate stages of IR, ie.
    184 		 * before register assignment is done:
    185 		 */
    186 		IR3_INSTR_MARK  = 0x1000,
    187 		IR3_INSTR_UNUSED= 0x2000,
    188 	} flags;
    189 	int repeat;
    190 #ifdef DEBUG
    191 	unsigned regs_max;
    192 #endif
    193 	unsigned regs_count;
    194 	struct ir3_register **regs;
    195 	union {
    196 		struct {
    197 			char inv;
    198 			char comp;
    199 			int  immed;
    200 			struct ir3_block *target;
    201 		} cat0;
    202 		struct {
    203 			type_t src_type, dst_type;
    204 		} cat1;
    205 		struct {
    206 			enum {
    207 				IR3_COND_LT = 0,
    208 				IR3_COND_LE = 1,
    209 				IR3_COND_GT = 2,
    210 				IR3_COND_GE = 3,
    211 				IR3_COND_EQ = 4,
    212 				IR3_COND_NE = 5,
    213 			} condition;
    214 		} cat2;
    215 		struct {
    216 			unsigned samp, tex;
    217 			type_t type;
    218 		} cat5;
    219 		struct {
    220 			type_t type;
    221 			int src_offset;
    222 			int dst_offset;
    223 			int iim_val;
    224 		} cat6;
    225 		/* for meta-instructions, just used to hold extra data
    226 		 * before instruction scheduling, etc
    227 		 */
    228 		struct {
    229 			int off;              /* component/offset */
    230 		} fo;
    231 		struct {
    232 			/* used to temporarily hold reference to nir_phi_instr
    233 			 * until we resolve the phi srcs
    234 			 */
    235 			void *nphi;
    236 		} phi;
    237 		struct {
    238 			struct ir3_block *block;
    239 		} inout;
    240 	};
    241 
    242 	/* transient values used during various algorithms: */
    243 	union {
    244 		/* The instruction depth is the max dependency distance to output.
    245 		 *
    246 		 * You can also think of it as the "cost", if we did any sort of
    247 		 * optimization for register footprint.  Ie. a value that is  just
    248 		 * result of moving a const to a reg would have a low cost,  so to
    249 		 * it could make sense to duplicate the instruction at various
    250 		 * points where the result is needed to reduce register footprint.
    251 		 */
    252 		unsigned depth;
    253 		/* When we get to the RA stage, we no longer need depth, but
    254 		 * we do need instruction's position/name:
    255 		 */
    256 		struct {
    257 			uint16_t ip;
    258 			uint16_t name;
    259 		};
    260 	};
    261 
    262 	/* used for per-pass extra instruction data.
    263 	 */
    264 	void *data;
    265 
    266 	/* Used during CP and RA stages.  For fanin and shader inputs/
    267 	 * outputs where we need a sequence of consecutive registers,
    268 	 * keep track of each src instructions left (ie 'n-1') and right
    269 	 * (ie 'n+1') neighbor.  The front-end must insert enough mov's
    270 	 * to ensure that each instruction has at most one left and at
    271 	 * most one right neighbor.  During the copy-propagation pass,
    272 	 * we only remove mov's when we can preserve this constraint.
    273 	 * And during the RA stage, we use the neighbor information to
    274 	 * allocate a block of registers in one shot.
    275 	 *
    276 	 * TODO: maybe just add something like:
    277 	 *   struct ir3_instruction_ref {
    278 	 *       struct ir3_instruction *instr;
    279 	 *       unsigned cnt;
    280 	 *   }
    281 	 *
    282 	 * Or can we get away without the refcnt stuff?  It seems like
    283 	 * it should be overkill..  the problem is if, potentially after
    284 	 * already eliminating some mov's, if you have a single mov that
    285 	 * needs to be grouped with it's neighbors in two different
    286 	 * places (ex. shader output and a fanin).
    287 	 */
    288 	struct {
    289 		struct ir3_instruction *left, *right;
    290 		uint16_t left_cnt, right_cnt;
    291 	} cp;
    292 
    293 	/* an instruction can reference at most one address register amongst
    294 	 * it's src/dst registers.  Beyond that, you need to insert mov's.
    295 	 *
    296 	 * NOTE: do not write this directly, use ir3_instr_set_address()
    297 	 */
    298 	struct ir3_instruction *address;
    299 
    300 	/* Entry in ir3_block's instruction list: */
    301 	struct list_head node;
    302 
    303 #ifdef DEBUG
    304 	uint32_t serialno;
    305 #endif
    306 };
    307 
    308 static inline struct ir3_instruction *
    309 ir3_neighbor_first(struct ir3_instruction *instr)
    310 {
    311 	int cnt = 0;
    312 	while (instr->cp.left) {
    313 		instr = instr->cp.left;
    314 		if (++cnt > 0xffff) {
    315 			debug_assert(0);
    316 			break;
    317 		}
    318 	}
    319 	return instr;
    320 }
    321 
    322 static inline int ir3_neighbor_count(struct ir3_instruction *instr)
    323 {
    324 	int num = 1;
    325 
    326 	debug_assert(!instr->cp.left);
    327 
    328 	while (instr->cp.right) {
    329 		num++;
    330 		instr = instr->cp.right;
    331 		if (num > 0xffff) {
    332 			debug_assert(0);
    333 			break;
    334 		}
    335 	}
    336 
    337 	return num;
    338 }
    339 
    340 struct ir3 {
    341 	struct ir3_compiler *compiler;
    342 
    343 	unsigned ninputs, noutputs;
    344 	struct ir3_instruction **inputs;
    345 	struct ir3_instruction **outputs;
    346 
    347 	/* Track bary.f (and ldlv) instructions.. this is needed in
    348 	 * scheduling to ensure that all varying fetches happen before
    349 	 * any potential kill instructions.  The hw gets grumpy if all
    350 	 * threads in a group are killed before the last bary.f gets
    351 	 * a chance to signal end of input (ei).
    352 	 */
    353 	unsigned baryfs_count, baryfs_sz;
    354 	struct ir3_instruction **baryfs;
    355 
    356 	/* Track all indirect instructions (read and write).  To avoid
    357 	 * deadlock scenario where an address register gets scheduled,
    358 	 * but other dependent src instructions cannot be scheduled due
    359 	 * to dependency on a *different* address register value, the
    360 	 * scheduler needs to ensure that all dependencies other than
    361 	 * the instruction other than the address register are scheduled
    362 	 * before the one that writes the address register.  Having a
    363 	 * convenient list of instructions that reference some address
    364 	 * register simplifies this.
    365 	 */
    366 	unsigned indirects_count, indirects_sz;
    367 	struct ir3_instruction **indirects;
    368 	/* and same for instructions that consume predicate register: */
    369 	unsigned predicates_count, predicates_sz;
    370 	struct ir3_instruction **predicates;
    371 
    372 	/* Track instructions which do not write a register but other-
    373 	 * wise must not be discarded (such as kill, stg, etc)
    374 	 */
    375 	unsigned keeps_count, keeps_sz;
    376 	struct ir3_instruction **keeps;
    377 
    378 	/* Track texture sample instructions which need texture state
    379 	 * patched in (for astc-srgb workaround):
    380 	 */
    381 	unsigned astc_srgb_count, astc_srgb_sz;
    382 	struct ir3_instruction **astc_srgb;
    383 
    384 	/* List of blocks: */
    385 	struct list_head block_list;
    386 
    387 	/* List of ir3_array's: */
    388 	struct list_head array_list;
    389 };
    390 
    391 typedef struct nir_variable nir_variable;
    392 
    393 struct ir3_array {
    394 	struct list_head node;
    395 	unsigned length;
    396 	unsigned id;
    397 
    398 	nir_variable *var;
    399 
    400 	/* We track the last write and last access (read or write) to
    401 	 * setup dependencies on instructions that read or write the
    402 	 * array.  Reads can be re-ordered wrt. other reads, but should
    403 	 * not be re-ordered wrt. to writes.  Writes cannot be reordered
    404 	 * wrt. any other access to the array.
    405 	 *
    406 	 * So array reads depend on last write, and array writes depend
    407 	 * on the last access.
    408 	 */
    409 	struct ir3_instruction *last_write, *last_access;
    410 
    411 	/* extra stuff used in RA pass: */
    412 	unsigned base;      /* base vreg name */
    413 	unsigned reg;       /* base physical reg */
    414 	uint16_t start_ip, end_ip;
    415 };
    416 
    417 struct ir3_array * ir3_lookup_array(struct ir3 *ir, unsigned id);
    418 
    419 typedef struct nir_block nir_block;
    420 
    421 struct ir3_block {
    422 	struct list_head node;
    423 	struct ir3 *shader;
    424 
    425 	nir_block *nblock;
    426 
    427 	struct list_head instr_list;  /* list of ir3_instruction */
    428 
    429 	/* each block has either one or two successors.. in case of
    430 	 * two successors, 'condition' decides which one to follow.
    431 	 * A block preceding an if/else has two successors.
    432 	 */
    433 	struct ir3_instruction *condition;
    434 	struct ir3_block *successors[2];
    435 
    436 	uint16_t start_ip, end_ip;
    437 
    438 	/* used for per-pass extra block data.  Mainly used right
    439 	 * now in RA step to track livein/liveout.
    440 	 */
    441 	void *data;
    442 
    443 #ifdef DEBUG
    444 	uint32_t serialno;
    445 #endif
    446 };
    447 
    448 static inline uint32_t
    449 block_id(struct ir3_block *block)
    450 {
    451 #ifdef DEBUG
    452 	return block->serialno;
    453 #else
    454 	return (uint32_t)(unsigned long)block;
    455 #endif
    456 }
    457 
    458 struct ir3 * ir3_create(struct ir3_compiler *compiler,
    459 		unsigned nin, unsigned nout);
    460 void ir3_destroy(struct ir3 *shader);
    461 void * ir3_assemble(struct ir3 *shader,
    462 		struct ir3_info *info, uint32_t gpu_id);
    463 void * ir3_alloc(struct ir3 *shader, int sz);
    464 
    465 struct ir3_block * ir3_block_create(struct ir3 *shader);
    466 
    467 struct ir3_instruction * ir3_instr_create(struct ir3_block *block, opc_t opc);
    468 struct ir3_instruction * ir3_instr_create2(struct ir3_block *block,
    469 		opc_t opc, int nreg);
    470 struct ir3_instruction * ir3_instr_clone(struct ir3_instruction *instr);
    471 const char *ir3_instr_name(struct ir3_instruction *instr);
    472 
    473 struct ir3_register * ir3_reg_create(struct ir3_instruction *instr,
    474 		int num, int flags);
    475 struct ir3_register * ir3_reg_clone(struct ir3 *shader,
    476 		struct ir3_register *reg);
    477 
    478 void ir3_instr_set_address(struct ir3_instruction *instr,
    479 		struct ir3_instruction *addr);
    480 
    481 static inline bool ir3_instr_check_mark(struct ir3_instruction *instr)
    482 {
    483 	if (instr->flags & IR3_INSTR_MARK)
    484 		return true;  /* already visited */
    485 	instr->flags |= IR3_INSTR_MARK;
    486 	return false;
    487 }
    488 
    489 void ir3_block_clear_mark(struct ir3_block *block);
    490 void ir3_clear_mark(struct ir3 *shader);
    491 
    492 unsigned ir3_count_instructions(struct ir3 *ir);
    493 
    494 static inline int ir3_instr_regno(struct ir3_instruction *instr,
    495 		struct ir3_register *reg)
    496 {
    497 	unsigned i;
    498 	for (i = 0; i < instr->regs_count; i++)
    499 		if (reg == instr->regs[i])
    500 			return i;
    501 	return -1;
    502 }
    503 
    504 
    505 #define MAX_ARRAYS 16
    506 
    507 /* comp:
    508  *   0 - x
    509  *   1 - y
    510  *   2 - z
    511  *   3 - w
    512  */
    513 static inline uint32_t regid(int num, int comp)
    514 {
    515 	return (num << 2) | (comp & 0x3);
    516 }
    517 
    518 static inline uint32_t reg_num(struct ir3_register *reg)
    519 {
    520 	return reg->num >> 2;
    521 }
    522 
    523 static inline uint32_t reg_comp(struct ir3_register *reg)
    524 {
    525 	return reg->num & 0x3;
    526 }
    527 
    528 static inline bool is_flow(struct ir3_instruction *instr)
    529 {
    530 	return (opc_cat(instr->opc) == 0);
    531 }
    532 
    533 static inline bool is_kill(struct ir3_instruction *instr)
    534 {
    535 	return instr->opc == OPC_KILL;
    536 }
    537 
    538 static inline bool is_nop(struct ir3_instruction *instr)
    539 {
    540 	return instr->opc == OPC_NOP;
    541 }
    542 
    543 /* Is it a non-transformative (ie. not type changing) mov?  This can
    544  * also include absneg.s/absneg.f, which for the most part can be
    545  * treated as a mov (single src argument).
    546  */
    547 static inline bool is_same_type_mov(struct ir3_instruction *instr)
    548 {
    549 	struct ir3_register *dst = instr->regs[0];
    550 
    551 	/* mov's that write to a0.x or p0.x are special: */
    552 	if (dst->num == regid(REG_P0, 0))
    553 		return false;
    554 	if (dst->num == regid(REG_A0, 0))
    555 		return false;
    556 
    557 	if (dst->flags & (IR3_REG_RELATIV | IR3_REG_ARRAY))
    558 		return false;
    559 
    560 	switch (instr->opc) {
    561 	case OPC_MOV:
    562 		return instr->cat1.src_type == instr->cat1.dst_type;
    563 	case OPC_ABSNEG_F:
    564 	case OPC_ABSNEG_S:
    565 		return true;
    566 	default:
    567 		return false;
    568 	}
    569 }
    570 
    571 static inline bool is_alu(struct ir3_instruction *instr)
    572 {
    573 	return (1 <= opc_cat(instr->opc)) && (opc_cat(instr->opc) <= 3);
    574 }
    575 
    576 static inline bool is_sfu(struct ir3_instruction *instr)
    577 {
    578 	return (opc_cat(instr->opc) == 4);
    579 }
    580 
    581 static inline bool is_tex(struct ir3_instruction *instr)
    582 {
    583 	return (opc_cat(instr->opc) == 5);
    584 }
    585 
    586 static inline bool is_mem(struct ir3_instruction *instr)
    587 {
    588 	return (opc_cat(instr->opc) == 6);
    589 }
    590 
    591 static inline bool
    592 is_store(struct ir3_instruction *instr)
    593 {
    594 	/* these instructions, the "destination" register is
    595 	 * actually a source, the address to store to.
    596 	 */
    597 	switch (instr->opc) {
    598 	case OPC_STG:
    599 	case OPC_STP:
    600 	case OPC_STL:
    601 	case OPC_STLW:
    602 	case OPC_L2G:
    603 	case OPC_G2L:
    604 		return true;
    605 	default:
    606 		return false;
    607 	}
    608 }
    609 
    610 static inline bool is_load(struct ir3_instruction *instr)
    611 {
    612 	switch (instr->opc) {
    613 	case OPC_LDG:
    614 	case OPC_LDL:
    615 	case OPC_LDP:
    616 	case OPC_L2G:
    617 	case OPC_LDLW:
    618 	case OPC_LDC_4:
    619 	case OPC_LDLV:
    620 		/* probably some others too.. */
    621 		return true;
    622 	default:
    623 		return false;
    624 	}
    625 }
    626 
    627 static inline bool is_input(struct ir3_instruction *instr)
    628 {
    629 	/* in some cases, ldlv is used to fetch varying without
    630 	 * interpolation.. fortunately inloc is the first src
    631 	 * register in either case
    632 	 */
    633 	switch (instr->opc) {
    634 	case OPC_LDLV:
    635 	case OPC_BARY_F:
    636 		return true;
    637 	default:
    638 		return false;
    639 	}
    640 }
    641 
    642 static inline bool is_bool(struct ir3_instruction *instr)
    643 {
    644 	switch (instr->opc) {
    645 	case OPC_CMPS_F:
    646 	case OPC_CMPS_S:
    647 	case OPC_CMPS_U:
    648 		return true;
    649 	default:
    650 		return false;
    651 	}
    652 }
    653 
    654 static inline bool is_meta(struct ir3_instruction *instr)
    655 {
    656 	/* TODO how should we count PHI (and maybe fan-in/out) which
    657 	 * might actually contribute some instructions to the final
    658 	 * result?
    659 	 */
    660 	return (opc_cat(instr->opc) == -1);
    661 }
    662 
    663 static inline bool writes_addr(struct ir3_instruction *instr)
    664 {
    665 	if (instr->regs_count > 0) {
    666 		struct ir3_register *dst = instr->regs[0];
    667 		return reg_num(dst) == REG_A0;
    668 	}
    669 	return false;
    670 }
    671 
    672 static inline bool writes_pred(struct ir3_instruction *instr)
    673 {
    674 	if (instr->regs_count > 0) {
    675 		struct ir3_register *dst = instr->regs[0];
    676 		return reg_num(dst) == REG_P0;
    677 	}
    678 	return false;
    679 }
    680 
    681 /* returns defining instruction for reg */
    682 /* TODO better name */
    683 static inline struct ir3_instruction *ssa(struct ir3_register *reg)
    684 {
    685 	if (reg->flags & (IR3_REG_SSA | IR3_REG_ARRAY)) {
    686 		debug_assert(!(reg->instr && (reg->instr->flags & IR3_INSTR_UNUSED)));
    687 		return reg->instr;
    688 	}
    689 	return NULL;
    690 }
    691 
    692 static inline bool conflicts(struct ir3_instruction *a,
    693 		struct ir3_instruction *b)
    694 {
    695 	return (a && b) && (a != b);
    696 }
    697 
    698 static inline bool reg_gpr(struct ir3_register *r)
    699 {
    700 	if (r->flags & (IR3_REG_CONST | IR3_REG_IMMED))
    701 		return false;
    702 	if ((reg_num(r) == REG_A0) || (reg_num(r) == REG_P0))
    703 		return false;
    704 	return true;
    705 }
    706 
    707 static inline type_t half_type(type_t type)
    708 {
    709 	switch (type) {
    710 	case TYPE_F32: return TYPE_F16;
    711 	case TYPE_U32: return TYPE_U16;
    712 	case TYPE_S32: return TYPE_S16;
    713 	case TYPE_F16:
    714 	case TYPE_U16:
    715 	case TYPE_S16:
    716 		return type;
    717 	default:
    718 		assert(0);
    719 		return ~0;
    720 	}
    721 }
    722 
    723 /* some cat2 instructions (ie. those which are not float) can embed an
    724  * immediate:
    725  */
    726 static inline bool ir3_cat2_int(opc_t opc)
    727 {
    728 	switch (opc) {
    729 	case OPC_ADD_U:
    730 	case OPC_ADD_S:
    731 	case OPC_SUB_U:
    732 	case OPC_SUB_S:
    733 	case OPC_CMPS_U:
    734 	case OPC_CMPS_S:
    735 	case OPC_MIN_U:
    736 	case OPC_MIN_S:
    737 	case OPC_MAX_U:
    738 	case OPC_MAX_S:
    739 	case OPC_CMPV_U:
    740 	case OPC_CMPV_S:
    741 	case OPC_MUL_U:
    742 	case OPC_MUL_S:
    743 	case OPC_MULL_U:
    744 	case OPC_CLZ_S:
    745 	case OPC_ABSNEG_S:
    746 	case OPC_AND_B:
    747 	case OPC_OR_B:
    748 	case OPC_NOT_B:
    749 	case OPC_XOR_B:
    750 	case OPC_BFREV_B:
    751 	case OPC_CLZ_B:
    752 	case OPC_SHL_B:
    753 	case OPC_SHR_B:
    754 	case OPC_ASHR_B:
    755 	case OPC_MGEN_B:
    756 	case OPC_GETBIT_B:
    757 	case OPC_CBITS_B:
    758 	case OPC_BARY_F:
    759 		return true;
    760 
    761 	default:
    762 		return false;
    763 	}
    764 }
    765 
    766 
    767 /* map cat2 instruction to valid abs/neg flags: */
    768 static inline unsigned ir3_cat2_absneg(opc_t opc)
    769 {
    770 	switch (opc) {
    771 	case OPC_ADD_F:
    772 	case OPC_MIN_F:
    773 	case OPC_MAX_F:
    774 	case OPC_MUL_F:
    775 	case OPC_SIGN_F:
    776 	case OPC_CMPS_F:
    777 	case OPC_ABSNEG_F:
    778 	case OPC_CMPV_F:
    779 	case OPC_FLOOR_F:
    780 	case OPC_CEIL_F:
    781 	case OPC_RNDNE_F:
    782 	case OPC_RNDAZ_F:
    783 	case OPC_TRUNC_F:
    784 	case OPC_BARY_F:
    785 		return IR3_REG_FABS | IR3_REG_FNEG;
    786 
    787 	case OPC_ADD_U:
    788 	case OPC_ADD_S:
    789 	case OPC_SUB_U:
    790 	case OPC_SUB_S:
    791 	case OPC_CMPS_U:
    792 	case OPC_CMPS_S:
    793 	case OPC_MIN_U:
    794 	case OPC_MIN_S:
    795 	case OPC_MAX_U:
    796 	case OPC_MAX_S:
    797 	case OPC_CMPV_U:
    798 	case OPC_CMPV_S:
    799 	case OPC_MUL_U:
    800 	case OPC_MUL_S:
    801 	case OPC_MULL_U:
    802 	case OPC_CLZ_S:
    803 		return 0;
    804 
    805 	case OPC_ABSNEG_S:
    806 		return IR3_REG_SABS | IR3_REG_SNEG;
    807 
    808 	case OPC_AND_B:
    809 	case OPC_OR_B:
    810 	case OPC_NOT_B:
    811 	case OPC_XOR_B:
    812 	case OPC_BFREV_B:
    813 	case OPC_CLZ_B:
    814 	case OPC_SHL_B:
    815 	case OPC_SHR_B:
    816 	case OPC_ASHR_B:
    817 	case OPC_MGEN_B:
    818 	case OPC_GETBIT_B:
    819 	case OPC_CBITS_B:
    820 		return IR3_REG_BNOT;
    821 
    822 	default:
    823 		return 0;
    824 	}
    825 }
    826 
    827 /* map cat3 instructions to valid abs/neg flags: */
    828 static inline unsigned ir3_cat3_absneg(opc_t opc)
    829 {
    830 	switch (opc) {
    831 	case OPC_MAD_F16:
    832 	case OPC_MAD_F32:
    833 	case OPC_SEL_F16:
    834 	case OPC_SEL_F32:
    835 		return IR3_REG_FNEG;
    836 
    837 	case OPC_MAD_U16:
    838 	case OPC_MADSH_U16:
    839 	case OPC_MAD_S16:
    840 	case OPC_MADSH_M16:
    841 	case OPC_MAD_U24:
    842 	case OPC_MAD_S24:
    843 	case OPC_SEL_S16:
    844 	case OPC_SEL_S32:
    845 	case OPC_SAD_S16:
    846 	case OPC_SAD_S32:
    847 		/* neg *may* work on 3rd src.. */
    848 
    849 	case OPC_SEL_B16:
    850 	case OPC_SEL_B32:
    851 
    852 	default:
    853 		return 0;
    854 	}
    855 }
    856 
    857 #define array_insert(arr, val) do { \
    858 		if (arr ## _count == arr ## _sz) { \
    859 			arr ## _sz = MAX2(2 * arr ## _sz, 16); \
    860 			arr = realloc(arr, arr ## _sz * sizeof(arr[0])); \
    861 		} \
    862 		arr[arr ##_count++] = val; \
    863 	} while (0)
    864 
    865 /* iterator for an instructions's sources (reg), also returns src #: */
    866 #define foreach_src_n(__srcreg, __n, __instr) \
    867 	if ((__instr)->regs_count) \
    868 		for (unsigned __cnt = (__instr)->regs_count - 1, __n = 0; __n < __cnt; __n++) \
    869 			if ((__srcreg = (__instr)->regs[__n + 1]))
    870 
    871 /* iterator for an instructions's sources (reg): */
    872 #define foreach_src(__srcreg, __instr) \
    873 	foreach_src_n(__srcreg, __i, __instr)
    874 
    875 static inline unsigned __ssa_src_cnt(struct ir3_instruction *instr)
    876 {
    877 	if (instr->address)
    878 		return instr->regs_count + 1;
    879 	return instr->regs_count;
    880 }
    881 
    882 static inline struct ir3_instruction * __ssa_src_n(struct ir3_instruction *instr, unsigned n)
    883 {
    884 	if (n == (instr->regs_count + 0))
    885 		return instr->address;
    886 	return ssa(instr->regs[n]);
    887 }
    888 
    889 #define __src_cnt(__instr) ((__instr)->address ? (__instr)->regs_count : (__instr)->regs_count - 1)
    890 
    891 /* iterator for an instruction's SSA sources (instr), also returns src #: */
    892 #define foreach_ssa_src_n(__srcinst, __n, __instr) \
    893 	if ((__instr)->regs_count) \
    894 		for (unsigned __cnt = __ssa_src_cnt(__instr), __n = 0; __n < __cnt; __n++) \
    895 			if ((__srcinst = __ssa_src_n(__instr, __n)))
    896 
    897 /* iterator for an instruction's SSA sources (instr): */
    898 #define foreach_ssa_src(__srcinst, __instr) \
    899 	foreach_ssa_src_n(__srcinst, __i, __instr)
    900 
    901 
    902 /* dump: */
    903 void ir3_print(struct ir3 *ir);
    904 void ir3_print_instr(struct ir3_instruction *instr);
    905 
    906 /* depth calculation: */
    907 int ir3_delayslots(struct ir3_instruction *assigner,
    908 		struct ir3_instruction *consumer, unsigned n);
    909 void ir3_insert_by_depth(struct ir3_instruction *instr, struct list_head *list);
    910 void ir3_depth(struct ir3 *ir);
    911 
    912 /* copy-propagate: */
    913 struct ir3_shader_variant;
    914 void ir3_cp(struct ir3 *ir, struct ir3_shader_variant *so);
    915 
    916 /* group neighbors and insert mov's to resolve conflicts: */
    917 void ir3_group(struct ir3 *ir);
    918 
    919 /* scheduling: */
    920 int ir3_sched(struct ir3 *ir);
    921 
    922 /* register assignment: */
    923 struct ir3_ra_reg_set * ir3_ra_alloc_reg_set(void *memctx);
    924 int ir3_ra(struct ir3 *ir3, enum shader_t type,
    925 		bool frag_coord, bool frag_face);
    926 
    927 /* legalize: */
    928 void ir3_legalize(struct ir3 *ir, bool *has_samp, int *max_bary);
    929 
    930 /* ************************************************************************* */
    931 /* instruction helpers */
    932 
    933 static inline struct ir3_instruction *
    934 ir3_MOV(struct ir3_block *block, struct ir3_instruction *src, type_t type)
    935 {
    936 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
    937 	ir3_reg_create(instr, 0, 0);   /* dst */
    938 	if (src->regs[0]->flags & IR3_REG_ARRAY) {
    939 		struct ir3_register *src_reg =
    940 			ir3_reg_create(instr, 0, IR3_REG_ARRAY);
    941 		src_reg->array = src->regs[0]->array;
    942 		src_reg->instr = src;
    943 	} else {
    944 		ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
    945 	}
    946 	debug_assert(!(src->regs[0]->flags & IR3_REG_RELATIV));
    947 	instr->cat1.src_type = type;
    948 	instr->cat1.dst_type = type;
    949 	return instr;
    950 }
    951 
    952 static inline struct ir3_instruction *
    953 ir3_COV(struct ir3_block *block, struct ir3_instruction *src,
    954 		type_t src_type, type_t dst_type)
    955 {
    956 	struct ir3_instruction *instr = ir3_instr_create(block, OPC_MOV);
    957 	ir3_reg_create(instr, 0, 0);   /* dst */
    958 	ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
    959 	instr->cat1.src_type = src_type;
    960 	instr->cat1.dst_type = dst_type;
    961 	debug_assert(!(src->regs[0]->flags & IR3_REG_ARRAY));
    962 	return instr;
    963 }
    964 
    965 static inline struct ir3_instruction *
    966 ir3_NOP(struct ir3_block *block)
    967 {
    968 	return ir3_instr_create(block, OPC_NOP);
    969 }
    970 
    971 #define INSTR0(name)                                                     \
    972 static inline struct ir3_instruction *                                   \
    973 ir3_##name(struct ir3_block *block)                                      \
    974 {                                                                        \
    975 	struct ir3_instruction *instr =                                      \
    976 		ir3_instr_create(block, OPC_##name);                             \
    977 	return instr;                                                        \
    978 }
    979 
    980 #define INSTR1(name)                                                     \
    981 static inline struct ir3_instruction *                                   \
    982 ir3_##name(struct ir3_block *block,                                      \
    983 		struct ir3_instruction *a, unsigned aflags)                      \
    984 {                                                                        \
    985 	struct ir3_instruction *instr =                                      \
    986 		ir3_instr_create(block, OPC_##name);                             \
    987 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
    988 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
    989 	return instr;                                                        \
    990 }
    991 
    992 #define INSTR2(name)                                                     \
    993 static inline struct ir3_instruction *                                   \
    994 ir3_##name(struct ir3_block *block,                                      \
    995 		struct ir3_instruction *a, unsigned aflags,                      \
    996 		struct ir3_instruction *b, unsigned bflags)                      \
    997 {                                                                        \
    998 	struct ir3_instruction *instr =                                      \
    999 		ir3_instr_create(block, OPC_##name);                             \
   1000 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
   1001 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
   1002 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
   1003 	return instr;                                                        \
   1004 }
   1005 
   1006 #define INSTR3(name)                                                     \
   1007 static inline struct ir3_instruction *                                   \
   1008 ir3_##name(struct ir3_block *block,                                      \
   1009 		struct ir3_instruction *a, unsigned aflags,                      \
   1010 		struct ir3_instruction *b, unsigned bflags,                      \
   1011 		struct ir3_instruction *c, unsigned cflags)                      \
   1012 {                                                                        \
   1013 	struct ir3_instruction *instr =                                      \
   1014 		ir3_instr_create(block, OPC_##name);                             \
   1015 	ir3_reg_create(instr, 0, 0);   /* dst */                             \
   1016 	ir3_reg_create(instr, 0, IR3_REG_SSA | aflags)->instr = a;           \
   1017 	ir3_reg_create(instr, 0, IR3_REG_SSA | bflags)->instr = b;           \
   1018 	ir3_reg_create(instr, 0, IR3_REG_SSA | cflags)->instr = c;           \
   1019 	return instr;                                                        \
   1020 }
   1021 
   1022 /* cat0 instructions: */
   1023 INSTR0(BR);
   1024 INSTR0(JUMP);
   1025 INSTR1(KILL);
   1026 INSTR0(END);
   1027 
   1028 /* cat2 instructions, most 2 src but some 1 src: */
   1029 INSTR2(ADD_F)
   1030 INSTR2(MIN_F)
   1031 INSTR2(MAX_F)
   1032 INSTR2(MUL_F)
   1033 INSTR1(SIGN_F)
   1034 INSTR2(CMPS_F)
   1035 INSTR1(ABSNEG_F)
   1036 INSTR2(CMPV_F)
   1037 INSTR1(FLOOR_F)
   1038 INSTR1(CEIL_F)
   1039 INSTR1(RNDNE_F)
   1040 INSTR1(RNDAZ_F)
   1041 INSTR1(TRUNC_F)
   1042 INSTR2(ADD_U)
   1043 INSTR2(ADD_S)
   1044 INSTR2(SUB_U)
   1045 INSTR2(SUB_S)
   1046 INSTR2(CMPS_U)
   1047 INSTR2(CMPS_S)
   1048 INSTR2(MIN_U)
   1049 INSTR2(MIN_S)
   1050 INSTR2(MAX_U)
   1051 INSTR2(MAX_S)
   1052 INSTR1(ABSNEG_S)
   1053 INSTR2(AND_B)
   1054 INSTR2(OR_B)
   1055 INSTR1(NOT_B)
   1056 INSTR2(XOR_B)
   1057 INSTR2(CMPV_U)
   1058 INSTR2(CMPV_S)
   1059 INSTR2(MUL_U)
   1060 INSTR2(MUL_S)
   1061 INSTR2(MULL_U)
   1062 INSTR1(BFREV_B)
   1063 INSTR1(CLZ_S)
   1064 INSTR1(CLZ_B)
   1065 INSTR2(SHL_B)
   1066 INSTR2(SHR_B)
   1067 INSTR2(ASHR_B)
   1068 INSTR2(BARY_F)
   1069 INSTR2(MGEN_B)
   1070 INSTR2(GETBIT_B)
   1071 INSTR1(SETRM)
   1072 INSTR1(CBITS_B)
   1073 INSTR2(SHB)
   1074 INSTR2(MSAD)
   1075 
   1076 /* cat3 instructions: */
   1077 INSTR3(MAD_U16)
   1078 INSTR3(MADSH_U16)
   1079 INSTR3(MAD_S16)
   1080 INSTR3(MADSH_M16)
   1081 INSTR3(MAD_U24)
   1082 INSTR3(MAD_S24)
   1083 INSTR3(MAD_F16)
   1084 INSTR3(MAD_F32)
   1085 INSTR3(SEL_B16)
   1086 INSTR3(SEL_B32)
   1087 INSTR3(SEL_S16)
   1088 INSTR3(SEL_S32)
   1089 INSTR3(SEL_F16)
   1090 INSTR3(SEL_F32)
   1091 INSTR3(SAD_S16)
   1092 INSTR3(SAD_S32)
   1093 
   1094 /* cat4 instructions: */
   1095 INSTR1(RCP)
   1096 INSTR1(RSQ)
   1097 INSTR1(LOG2)
   1098 INSTR1(EXP2)
   1099 INSTR1(SIN)
   1100 INSTR1(COS)
   1101 INSTR1(SQRT)
   1102 
   1103 /* cat5 instructions: */
   1104 INSTR1(DSX)
   1105 INSTR1(DSY)
   1106 
   1107 static inline struct ir3_instruction *
   1108 ir3_SAM(struct ir3_block *block, opc_t opc, type_t type,
   1109 		unsigned wrmask, unsigned flags, unsigned samp, unsigned tex,
   1110 		struct ir3_instruction *src0, struct ir3_instruction *src1)
   1111 {
   1112 	struct ir3_instruction *sam;
   1113 	struct ir3_register *reg;
   1114 
   1115 	sam = ir3_instr_create(block, opc);
   1116 	sam->flags |= flags;
   1117 	ir3_reg_create(sam, 0, 0)->wrmask = wrmask;
   1118 	if (src0) {
   1119 		reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
   1120 		reg->wrmask = (1 << (src0->regs_count - 1)) - 1;
   1121 		reg->instr = src0;
   1122 	}
   1123 	if (src1) {
   1124 		reg = ir3_reg_create(sam, 0, IR3_REG_SSA);
   1125 		reg->instr = src1;
   1126 		reg->wrmask = (1 << (src1->regs_count - 1)) - 1;
   1127 	}
   1128 	sam->cat5.samp = samp;
   1129 	sam->cat5.tex  = tex;
   1130 	sam->cat5.type  = type;
   1131 
   1132 	return sam;
   1133 }
   1134 
   1135 /* cat6 instructions: */
   1136 INSTR2(LDLV)
   1137 INSTR2(LDG)
   1138 INSTR3(STG)
   1139 
   1140 /* ************************************************************************* */
   1141 /* split this out or find some helper to use.. like main/bitset.h.. */
   1142 
   1143 #include <string.h>
   1144 
   1145 #define MAX_REG 256
   1146 
   1147 typedef uint8_t regmask_t[2 * MAX_REG / 8];
   1148 
   1149 static inline unsigned regmask_idx(struct ir3_register *reg)
   1150 {
   1151 	unsigned num = (reg->flags & IR3_REG_RELATIV) ? reg->array.offset : reg->num;
   1152 	debug_assert(num < MAX_REG);
   1153 	if (reg->flags & IR3_REG_HALF)
   1154 		num += MAX_REG;
   1155 	return num;
   1156 }
   1157 
   1158 static inline void regmask_init(regmask_t *regmask)
   1159 {
   1160 	memset(regmask, 0, sizeof(*regmask));
   1161 }
   1162 
   1163 static inline void regmask_set(regmask_t *regmask, struct ir3_register *reg)
   1164 {
   1165 	unsigned idx = regmask_idx(reg);
   1166 	if (reg->flags & IR3_REG_RELATIV) {
   1167 		unsigned i;
   1168 		for (i = 0; i < reg->size; i++, idx++)
   1169 			(*regmask)[idx / 8] |= 1 << (idx % 8);
   1170 	} else {
   1171 		unsigned mask;
   1172 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
   1173 			if (mask & 1)
   1174 				(*regmask)[idx / 8] |= 1 << (idx % 8);
   1175 	}
   1176 }
   1177 
   1178 static inline void regmask_or(regmask_t *dst, regmask_t *a, regmask_t *b)
   1179 {
   1180 	unsigned i;
   1181 	for (i = 0; i < ARRAY_SIZE(*dst); i++)
   1182 		(*dst)[i] = (*a)[i] | (*b)[i];
   1183 }
   1184 
   1185 /* set bits in a if not set in b, conceptually:
   1186  *   a |= (reg & ~b)
   1187  */
   1188 static inline void regmask_set_if_not(regmask_t *a,
   1189 		struct ir3_register *reg, regmask_t *b)
   1190 {
   1191 	unsigned idx = regmask_idx(reg);
   1192 	if (reg->flags & IR3_REG_RELATIV) {
   1193 		unsigned i;
   1194 		for (i = 0; i < reg->size; i++, idx++)
   1195 			if (!((*b)[idx / 8] & (1 << (idx % 8))))
   1196 				(*a)[idx / 8] |= 1 << (idx % 8);
   1197 	} else {
   1198 		unsigned mask;
   1199 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
   1200 			if (mask & 1)
   1201 				if (!((*b)[idx / 8] & (1 << (idx % 8))))
   1202 					(*a)[idx / 8] |= 1 << (idx % 8);
   1203 	}
   1204 }
   1205 
   1206 static inline bool regmask_get(regmask_t *regmask,
   1207 		struct ir3_register *reg)
   1208 {
   1209 	unsigned idx = regmask_idx(reg);
   1210 	if (reg->flags & IR3_REG_RELATIV) {
   1211 		unsigned i;
   1212 		for (i = 0; i < reg->size; i++, idx++)
   1213 			if ((*regmask)[idx / 8] & (1 << (idx % 8)))
   1214 				return true;
   1215 	} else {
   1216 		unsigned mask;
   1217 		for (mask = reg->wrmask; mask; mask >>= 1, idx++)
   1218 			if (mask & 1)
   1219 				if ((*regmask)[idx / 8] & (1 << (idx % 8)))
   1220 					return true;
   1221 	}
   1222 	return false;
   1223 }
   1224 
   1225 /* ************************************************************************* */
   1226 
   1227 #endif /* IR3_H_ */
   1228