Home | History | Annotate | Download | only in Analysis
      1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements a demanded bits analysis. A demanded bit is one that
     11 // contributes to a result; bits that are not demanded can be either zero or
     12 // one without affecting control or data flow. For example in this sequence:
     13 //
     14 //   %1 = add i32 %x, %y
     15 //   %2 = trunc i32 %1 to i16
     16 //
     17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
     18 // trunc.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 
     22 #include "llvm/Analysis/DemandedBits.h"
     23 #include "llvm/ADT/DepthFirstIterator.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/Analysis/AssumptionCache.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/IR/BasicBlock.h"
     30 #include "llvm/IR/CFG.h"
     31 #include "llvm/IR/DataLayout.h"
     32 #include "llvm/IR/Dominators.h"
     33 #include "llvm/IR/InstIterator.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/Module.h"
     37 #include "llvm/IR/Operator.h"
     38 #include "llvm/Pass.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "demanded-bits"
     44 
     45 char DemandedBitsWrapperPass::ID = 0;
     46 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
     47                       "Demanded bits analysis", false, false)
     48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
     49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     50 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
     51                     "Demanded bits analysis", false, false)
     52 
     53 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
     54   initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
     55 }
     56 
     57 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
     58   AU.setPreservesCFG();
     59   AU.addRequired<AssumptionCacheTracker>();
     60   AU.addRequired<DominatorTreeWrapperPass>();
     61   AU.setPreservesAll();
     62 }
     63 
     64 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
     65   DB->print(OS);
     66 }
     67 
     68 static bool isAlwaysLive(Instruction *I) {
     69   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
     70       I->isEHPad() || I->mayHaveSideEffects();
     71 }
     72 
     73 void DemandedBits::determineLiveOperandBits(
     74     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
     75     const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
     76     APInt &KnownZero2, APInt &KnownOne2) {
     77   unsigned BitWidth = AB.getBitWidth();
     78 
     79   // We're called once per operand, but for some instructions, we need to
     80   // compute known bits of both operands in order to determine the live bits of
     81   // either (when both operands are instructions themselves). We don't,
     82   // however, want to do this twice, so we cache the result in APInts that live
     83   // in the caller. For the two-relevant-operands case, both operand values are
     84   // provided here.
     85   auto ComputeKnownBits =
     86       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
     87         const DataLayout &DL = I->getModule()->getDataLayout();
     88         KnownZero = APInt(BitWidth, 0);
     89         KnownOne = APInt(BitWidth, 0);
     90         computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
     91                          &AC, UserI, &DT);
     92 
     93         if (V2) {
     94           KnownZero2 = APInt(BitWidth, 0);
     95           KnownOne2 = APInt(BitWidth, 0);
     96           computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
     97                            0, &AC, UserI, &DT);
     98         }
     99       };
    100 
    101   switch (UserI->getOpcode()) {
    102   default: break;
    103   case Instruction::Call:
    104   case Instruction::Invoke:
    105     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
    106       switch (II->getIntrinsicID()) {
    107       default: break;
    108       case Intrinsic::bswap:
    109         // The alive bits of the input are the swapped alive bits of
    110         // the output.
    111         AB = AOut.byteSwap();
    112         break;
    113       case Intrinsic::ctlz:
    114         if (OperandNo == 0) {
    115           // We need some output bits, so we need all bits of the
    116           // input to the left of, and including, the leftmost bit
    117           // known to be one.
    118           ComputeKnownBits(BitWidth, I, nullptr);
    119           AB = APInt::getHighBitsSet(BitWidth,
    120                  std::min(BitWidth, KnownOne.countLeadingZeros()+1));
    121         }
    122         break;
    123       case Intrinsic::cttz:
    124         if (OperandNo == 0) {
    125           // We need some output bits, so we need all bits of the
    126           // input to the right of, and including, the rightmost bit
    127           // known to be one.
    128           ComputeKnownBits(BitWidth, I, nullptr);
    129           AB = APInt::getLowBitsSet(BitWidth,
    130                  std::min(BitWidth, KnownOne.countTrailingZeros()+1));
    131         }
    132         break;
    133       }
    134     break;
    135   case Instruction::Add:
    136   case Instruction::Sub:
    137   case Instruction::Mul:
    138     // Find the highest live output bit. We don't need any more input
    139     // bits than that (adds, and thus subtracts, ripple only to the
    140     // left).
    141     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
    142     break;
    143   case Instruction::Shl:
    144     if (OperandNo == 0)
    145       if (ConstantInt *CI =
    146             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    147         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    148         AB = AOut.lshr(ShiftAmt);
    149 
    150         // If the shift is nuw/nsw, then the high bits are not dead
    151         // (because we've promised that they *must* be zero).
    152         const ShlOperator *S = cast<ShlOperator>(UserI);
    153         if (S->hasNoSignedWrap())
    154           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
    155         else if (S->hasNoUnsignedWrap())
    156           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
    157       }
    158     break;
    159   case Instruction::LShr:
    160     if (OperandNo == 0)
    161       if (ConstantInt *CI =
    162             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    163         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    164         AB = AOut.shl(ShiftAmt);
    165 
    166         // If the shift is exact, then the low bits are not dead
    167         // (they must be zero).
    168         if (cast<LShrOperator>(UserI)->isExact())
    169           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    170       }
    171     break;
    172   case Instruction::AShr:
    173     if (OperandNo == 0)
    174       if (ConstantInt *CI =
    175             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
    176         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
    177         AB = AOut.shl(ShiftAmt);
    178         // Because the high input bit is replicated into the
    179         // high-order bits of the result, if we need any of those
    180         // bits, then we must keep the highest input bit.
    181         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
    182             .getBoolValue())
    183           AB.setBit(BitWidth-1);
    184 
    185         // If the shift is exact, then the low bits are not dead
    186         // (they must be zero).
    187         if (cast<AShrOperator>(UserI)->isExact())
    188           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    189       }
    190     break;
    191   case Instruction::And:
    192     AB = AOut;
    193 
    194     // For bits that are known zero, the corresponding bits in the
    195     // other operand are dead (unless they're both zero, in which
    196     // case they can't both be dead, so just mark the LHS bits as
    197     // dead).
    198     if (OperandNo == 0) {
    199       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    200       AB &= ~KnownZero2;
    201     } else {
    202       if (!isa<Instruction>(UserI->getOperand(0)))
    203         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    204       AB &= ~(KnownZero & ~KnownZero2);
    205     }
    206     break;
    207   case Instruction::Or:
    208     AB = AOut;
    209 
    210     // For bits that are known one, the corresponding bits in the
    211     // other operand are dead (unless they're both one, in which
    212     // case they can't both be dead, so just mark the LHS bits as
    213     // dead).
    214     if (OperandNo == 0) {
    215       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
    216       AB &= ~KnownOne2;
    217     } else {
    218       if (!isa<Instruction>(UserI->getOperand(0)))
    219         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
    220       AB &= ~(KnownOne & ~KnownOne2);
    221     }
    222     break;
    223   case Instruction::Xor:
    224   case Instruction::PHI:
    225     AB = AOut;
    226     break;
    227   case Instruction::Trunc:
    228     AB = AOut.zext(BitWidth);
    229     break;
    230   case Instruction::ZExt:
    231     AB = AOut.trunc(BitWidth);
    232     break;
    233   case Instruction::SExt:
    234     AB = AOut.trunc(BitWidth);
    235     // Because the high input bit is replicated into the
    236     // high-order bits of the result, if we need any of those
    237     // bits, then we must keep the highest input bit.
    238     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
    239                                       AOut.getBitWidth() - BitWidth))
    240         .getBoolValue())
    241       AB.setBit(BitWidth-1);
    242     break;
    243   case Instruction::Select:
    244     if (OperandNo != 0)
    245       AB = AOut;
    246     break;
    247   }
    248 }
    249 
    250 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
    251   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    252   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    253   DB.emplace(F, AC, DT);
    254   return false;
    255 }
    256 
    257 void DemandedBitsWrapperPass::releaseMemory() {
    258   DB.reset();
    259 }
    260 
    261 void DemandedBits::performAnalysis() {
    262   if (Analyzed)
    263     // Analysis already completed for this function.
    264     return;
    265   Analyzed = true;
    266 
    267   Visited.clear();
    268   AliveBits.clear();
    269 
    270   SmallVector<Instruction*, 128> Worklist;
    271 
    272   // Collect the set of "root" instructions that are known live.
    273   for (Instruction &I : instructions(F)) {
    274     if (!isAlwaysLive(&I))
    275       continue;
    276 
    277     DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
    278     // For integer-valued instructions, set up an initial empty set of alive
    279     // bits and add the instruction to the work list. For other instructions
    280     // add their operands to the work list (for integer values operands, mark
    281     // all bits as live).
    282     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    283       if (!AliveBits.count(&I)) {
    284         AliveBits[&I] = APInt(IT->getBitWidth(), 0);
    285         Worklist.push_back(&I);
    286       }
    287 
    288       continue;
    289     }
    290 
    291     // Non-integer-typed instructions...
    292     for (Use &OI : I.operands()) {
    293       if (Instruction *J = dyn_cast<Instruction>(OI)) {
    294         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
    295           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
    296         Worklist.push_back(J);
    297       }
    298     }
    299     // To save memory, we don't add I to the Visited set here. Instead, we
    300     // check isAlwaysLive on every instruction when searching for dead
    301     // instructions later (we need to check isAlwaysLive for the
    302     // integer-typed instructions anyway).
    303   }
    304 
    305   // Propagate liveness backwards to operands.
    306   while (!Worklist.empty()) {
    307     Instruction *UserI = Worklist.pop_back_val();
    308 
    309     DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
    310     APInt AOut;
    311     if (UserI->getType()->isIntegerTy()) {
    312       AOut = AliveBits[UserI];
    313       DEBUG(dbgs() << " Alive Out: " << AOut);
    314     }
    315     DEBUG(dbgs() << "\n");
    316 
    317     if (!UserI->getType()->isIntegerTy())
    318       Visited.insert(UserI);
    319 
    320     APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
    321     // Compute the set of alive bits for each operand. These are anded into the
    322     // existing set, if any, and if that changes the set of alive bits, the
    323     // operand is added to the work-list.
    324     for (Use &OI : UserI->operands()) {
    325       if (Instruction *I = dyn_cast<Instruction>(OI)) {
    326         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
    327           unsigned BitWidth = IT->getBitWidth();
    328           APInt AB = APInt::getAllOnesValue(BitWidth);
    329           if (UserI->getType()->isIntegerTy() && !AOut &&
    330               !isAlwaysLive(UserI)) {
    331             AB = APInt(BitWidth, 0);
    332           } else {
    333             // If all bits of the output are dead, then all bits of the input
    334             // Bits of each operand that are used to compute alive bits of the
    335             // output are alive, all others are dead.
    336             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
    337                                      KnownZero, KnownOne,
    338                                      KnownZero2, KnownOne2);
    339           }
    340 
    341           // If we've added to the set of alive bits (or the operand has not
    342           // been previously visited), then re-queue the operand to be visited
    343           // again.
    344           APInt ABPrev(BitWidth, 0);
    345           auto ABI = AliveBits.find(I);
    346           if (ABI != AliveBits.end())
    347             ABPrev = ABI->second;
    348 
    349           APInt ABNew = AB | ABPrev;
    350           if (ABNew != ABPrev || ABI == AliveBits.end()) {
    351             AliveBits[I] = std::move(ABNew);
    352             Worklist.push_back(I);
    353           }
    354         } else if (!Visited.count(I)) {
    355           Worklist.push_back(I);
    356         }
    357       }
    358     }
    359   }
    360 }
    361 
    362 APInt DemandedBits::getDemandedBits(Instruction *I) {
    363   performAnalysis();
    364 
    365   const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
    366   if (AliveBits.count(I))
    367     return AliveBits[I];
    368   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
    369 }
    370 
    371 bool DemandedBits::isInstructionDead(Instruction *I) {
    372   performAnalysis();
    373 
    374   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
    375     !isAlwaysLive(I);
    376 }
    377 
    378 void DemandedBits::print(raw_ostream &OS) {
    379   performAnalysis();
    380   for (auto &KV : AliveBits) {
    381     OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
    382        << *KV.first << "\n";
    383   }
    384 }
    385 
    386 FunctionPass *llvm::createDemandedBitsWrapperPass() {
    387   return new DemandedBitsWrapperPass();
    388 }
    389 
    390 char DemandedBitsAnalysis::PassID;
    391 
    392 DemandedBits DemandedBitsAnalysis::run(Function &F,
    393                                              AnalysisManager<Function> &AM) {
    394   auto &AC = AM.getResult<AssumptionAnalysis>(F);
    395   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    396   return DemandedBits(F, AC, DT);
    397 }
    398 
    399 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
    400                                                FunctionAnalysisManager &AM) {
    401   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
    402   return PreservedAnalyses::all();
    403 }
    404