Home | History | Annotate | Download | only in gas
      1 /* itbl-ops.c
      2    Copyright (C) 1997-2016 Free Software Foundation, Inc.
      3 
      4    This file is part of GAS, the GNU Assembler.
      5 
      6    GAS is free software; you can redistribute it and/or modify
      7    it under the terms of the GNU General Public License as published by
      8    the Free Software Foundation; either version 3, or (at your option)
      9    any later version.
     10 
     11    GAS is distributed in the hope that it will be useful,
     12    but WITHOUT ANY WARRANTY; without even the implied warranty of
     13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     14    GNU General Public License for more details.
     15 
     16    You should have received a copy of the GNU General Public License
     17    along with GAS; see the file COPYING.  If not, write to the Free
     18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
     19    02110-1301, USA.  */
     20 
     21 /*======================================================================*/
     22 /*
     23  * Herein lies the support for dynamic specification of processor
     24  * instructions and registers.  Mnemonics, values, and formats for each
     25  * instruction and register are specified in an ascii file consisting of
     26  * table entries.  The grammar for the table is defined in the document
     27  * "Processor instruction table specification".
     28  *
     29  * Instructions use the gnu assembler syntax, with the addition of
     30  * allowing mnemonics for register.
     31  * Eg. "func $2,reg3,0x100,symbol ; comment"
     32  * 	func - opcode name
     33  * 	$n - register n
     34  * 	reg3 - mnemonic for processor's register defined in table
     35  * 	0xddd..d - immediate value
     36  * 	symbol - address of label or external symbol
     37  *
     38  * First, itbl_parse reads in the table of register and instruction
     39  * names and formats, and builds a list of entries for each
     40  * processor/type combination.  lex and yacc are used to parse
     41  * the entries in the table and call functions defined here to
     42  * add each entry to our list.
     43  *
     44  * Then, when assembling or disassembling, these functions are called to
     45  * 1) get information on a processor's registers and
     46  * 2) assemble/disassemble an instruction.
     47  * To assemble(disassemble) an instruction, the function
     48  * itbl_assemble(itbl_disassemble) is called to search the list of
     49  * instruction entries, and if a match is found, uses the format
     50  * described in the instruction entry structure to complete the action.
     51  *
     52  * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
     53  * and we want to define function "pig" which takes two operands.
     54  *
     55  * Given the table entries:
     56  * 	"p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
     57  * 	"p3 dreg d2 0x2"
     58  * and that the instruction encoding for coprocessor pz has encoding:
     59  * 	#define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
     60  * 	#define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
     61  *
     62  * a structure to describe the instruction might look something like:
     63  *      struct itbl_entry = {
     64  *      e_processor processor = e_p3
     65  *      e_type type = e_insn
     66  *      char *name = "pig"
     67  *      uint value = 0x1
     68  *      uint flags = 0
     69  *      struct itbl_range range = 24-21
     70  *      struct itbl_field *field = {
     71  *              e_type type = e_dreg
     72  *              struct itbl_range range = 20-16
     73  *              struct itbl_field *next = {
     74  *                      e_type type = e_immed
     75  *                      struct itbl_range range = 15-0
     76  *                      struct itbl_field *next = 0
     77  *                      };
     78  *              };
     79  *      struct itbl_entry *next = 0
     80  *      };
     81  *
     82  * And the assembler instructions:
     83  * 	"pig d2,0x100"
     84  * 	"pig $2,0x100"
     85  *
     86  * would both assemble to the hex value:
     87  * 	"0x4e220100"
     88  *
     89  */
     90 
     91 #include "as.h"
     92 #include "itbl-ops.h"
     93 #include <itbl-parse.h>
     94 
     95 /* #define DEBUG */
     96 
     97 #ifdef DEBUG
     98 #include <assert.h>
     99 #define ASSERT(x) gas_assert (x)
    100 #define DBG(x) printf x
    101 #else
    102 #define ASSERT(x)
    103 #define DBG(x)
    104 #endif
    105 
    106 #ifndef min
    107 #define min(a,b) (a<b?a:b)
    108 #endif
    109 
    110 int itbl_have_entries = 0;
    111 
    112 /*======================================================================*/
    113 /* structures for keeping itbl format entries */
    114 
    115 struct itbl_range {
    116   int sbit;			/* mask starting bit position */
    117   int ebit;			/* mask ending bit position */
    118 };
    119 
    120 struct itbl_field {
    121   e_type type;			/* dreg/creg/greg/immed/symb */
    122   struct itbl_range range;	/* field's bitfield range within instruction */
    123   unsigned long flags;		/* field flags */
    124   struct itbl_field *next;	/* next field in list */
    125 };
    126 
    127 /* These structures define the instructions and registers for a processor.
    128  * If the type is an instruction, the structure defines the format of an
    129  * instruction where the fields are the list of operands.
    130  * The flags field below uses the same values as those defined in the
    131  * gnu assembler and are machine specific.  */
    132 struct itbl_entry {
    133   e_processor processor;	/* processor number */
    134   e_type type;			/* dreg/creg/greg/insn */
    135   char *name;			/* mnemionic name for insn/register */
    136   unsigned long value;		/* opcode/instruction mask/register number */
    137   unsigned long flags;		/* effects of the instruction */
    138   struct itbl_range range;	/* bit range within instruction for value */
    139   struct itbl_field *fields;	/* list of operand definitions (if any) */
    140   struct itbl_entry *next;	/* next entry */
    141 };
    142 
    143 /* local data and structures */
    144 
    145 static int itbl_num_opcodes = 0;
    146 /* Array of entries for each processor and entry type */
    147 static struct itbl_entry *entries[e_nprocs][e_ntypes];
    148 
    149 /* local prototypes */
    150 static unsigned long build_opcode (struct itbl_entry *e);
    151 static e_type get_type (int yytype);
    152 static e_processor get_processor (int yyproc);
    153 static struct itbl_entry **get_entries (e_processor processor,
    154 					e_type type);
    155 static struct itbl_entry *find_entry_byname (e_processor processor,
    156 					e_type type, char *name);
    157 static struct itbl_entry *find_entry_byval (e_processor processor,
    158 			e_type type, unsigned long val, struct itbl_range *r);
    159 static struct itbl_entry *alloc_entry (e_processor processor,
    160 		e_type type, char *name, unsigned long value);
    161 static unsigned long apply_range (unsigned long value, struct itbl_range r);
    162 static unsigned long extract_range (unsigned long value, struct itbl_range r);
    163 static struct itbl_field *alloc_field (e_type type, int sbit,
    164 					int ebit, unsigned long flags);
    165 
    166 /*======================================================================*/
    167 /* Interfaces to the parser */
    168 
    169 /* Open the table and use lex and yacc to parse the entries.
    170  * Return 1 for failure; 0 for success.  */
    171 
    172 int
    173 itbl_parse (char *insntbl)
    174 {
    175   extern FILE *yyin;
    176   extern int yyparse (void);
    177 
    178   yyin = fopen (insntbl, FOPEN_RT);
    179   if (yyin == 0)
    180     {
    181       printf ("Can't open processor instruction specification file \"%s\"\n",
    182 	      insntbl);
    183       return 1;
    184     }
    185 
    186   while (yyparse ())
    187     ;
    188 
    189   fclose (yyin);
    190   itbl_have_entries = 1;
    191   return 0;
    192 }
    193 
    194 /* Add a register entry */
    195 
    196 struct itbl_entry *
    197 itbl_add_reg (int yyprocessor, int yytype, char *regname,
    198 	      int regnum)
    199 {
    200   return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
    201 		      (unsigned long) regnum);
    202 }
    203 
    204 /* Add an instruction entry */
    205 
    206 struct itbl_entry *
    207 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
    208 	       int sbit, int ebit, unsigned long flags)
    209 {
    210   struct itbl_entry *e;
    211   e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
    212   if (e)
    213     {
    214       e->range.sbit = sbit;
    215       e->range.ebit = ebit;
    216       e->flags = flags;
    217       itbl_num_opcodes++;
    218     }
    219   return e;
    220 }
    221 
    222 /* Add an operand to an instruction entry */
    223 
    224 struct itbl_field *
    225 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
    226 		  int ebit, unsigned long flags)
    227 {
    228   struct itbl_field *f, **last_f;
    229   if (!e)
    230     return 0;
    231   /* Add to end of fields' list.  */
    232   f = alloc_field (get_type (yytype), sbit, ebit, flags);
    233   if (f)
    234     {
    235       last_f = &e->fields;
    236       while (*last_f)
    237 	last_f = &(*last_f)->next;
    238       *last_f = f;
    239       f->next = 0;
    240     }
    241   return f;
    242 }
    243 
    244 /*======================================================================*/
    245 /* Interfaces for assembler and disassembler */
    246 
    247 #ifndef STAND_ALONE
    248 static void append_insns_as_macros (void);
    249 
    250 /* Initialize for gas.  */
    251 
    252 void
    253 itbl_init (void)
    254 {
    255   struct itbl_entry *e, **es;
    256   e_processor procn;
    257   e_type type;
    258 
    259   if (!itbl_have_entries)
    260     return;
    261 
    262   /* Since register names don't have a prefix, put them in the symbol table so
    263      they can't be used as symbols.  This simplifies argument parsing as
    264      we can let gas parse registers for us.  */
    265   /* Use symbol_create instead of symbol_new so we don't try to
    266      output registers into the object file's symbol table.  */
    267 
    268   for (type = e_regtype0; type < e_nregtypes; type++)
    269     for (procn = e_p0; procn < e_nprocs; procn++)
    270       {
    271 	es = get_entries (procn, type);
    272 	for (e = *es; e; e = e->next)
    273 	  {
    274 	    symbol_table_insert (symbol_create (e->name, reg_section,
    275 						e->value, &zero_address_frag));
    276 	  }
    277       }
    278   append_insns_as_macros ();
    279 }
    280 
    281 /* Append insns to opcodes table and increase number of opcodes
    282  * Structure of opcodes table:
    283  * struct itbl_opcode
    284  * {
    285  *   const char *name;
    286  *   const char *args; 		- string describing the arguments.
    287  *   unsigned long match; 	- opcode, or ISA level if pinfo=INSN_MACRO
    288  *   unsigned long mask; 	- opcode mask, or macro id if pinfo=INSN_MACRO
    289  *   unsigned long pinfo; 	- insn flags, or INSN_MACRO
    290  * };
    291  * examples:
    292  *	{"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
    293  *	{"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
    294  */
    295 
    296 static char *form_args (struct itbl_entry *e);
    297 static void
    298 append_insns_as_macros (void)
    299 {
    300   struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
    301   struct itbl_entry *e, **es;
    302   int n, size, new_num_opcodes;
    303 #ifdef USE_MACROS
    304   int id;
    305 #endif
    306 
    307   if (!itbl_have_entries)
    308     return;
    309 
    310   if (!itbl_num_opcodes)	/* no new instructions to add! */
    311     {
    312       return;
    313     }
    314   DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
    315 
    316   new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
    317   ASSERT (new_num_opcodes >= itbl_num_opcodes);
    318 
    319   size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
    320   ASSERT (size >= 0);
    321   DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
    322 
    323   /* FIXME since ITBL_OPCODES culd be a static table,
    324 		we can't realloc or delete the old memory.  */
    325   new_opcodes = XNEWVEC (struct ITBL_OPCODE_STRUCT, new_num_opcodes);
    326   if (!new_opcodes)
    327     {
    328       printf (_("Unable to allocate memory for new instructions\n"));
    329       return;
    330     }
    331   if (size)			/* copy preexisting opcodes table */
    332     memcpy (new_opcodes, ITBL_OPCODES, size);
    333 
    334   /* FIXME! some NUMOPCODES are calculated expressions.
    335 		These need to be changed before itbls can be supported.  */
    336 
    337 #ifdef USE_MACROS
    338   id = ITBL_NUM_MACROS;		/* begin the next macro id after the last */
    339 #endif
    340   o = &new_opcodes[ITBL_NUM_OPCODES];	/* append macro to opcodes list */
    341   for (n = e_p0; n < e_nprocs; n++)
    342     {
    343       es = get_entries (n, e_insn);
    344       for (e = *es; e; e = e->next)
    345 	{
    346 	  /* name,    args,   mask,       match,  pinfo
    347 		 * {"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
    348 		 * {"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
    349 		 * Construct args from itbl_fields.
    350 		*/
    351 	  o->name = e->name;
    352 	  o->args = strdup (form_args (e));
    353 	  o->mask = apply_range (e->value, e->range);
    354 	  /* FIXME how to catch during assembly? */
    355 	  /* mask to identify this insn */
    356 	  o->match = apply_range (e->value, e->range);
    357 	  o->pinfo = 0;
    358 
    359 #ifdef USE_MACROS
    360 	  o->mask = id++;	/* FIXME how to catch during assembly? */
    361 	  o->match = 0;		/* for macros, the insn_isa number */
    362 	  o->pinfo = INSN_MACRO;
    363 #endif
    364 
    365 	  /* Don't add instructions which caused an error */
    366 	  if (o->args)
    367 	    o++;
    368 	  else
    369 	    new_num_opcodes--;
    370 	}
    371     }
    372   ITBL_OPCODES = new_opcodes;
    373   ITBL_NUM_OPCODES = new_num_opcodes;
    374 
    375   /* FIXME
    376 		At this point, we can free the entries, as they should have
    377 		been added to the assembler's tables.
    378 		Don't free name though, since name is being used by the new
    379 		opcodes table.
    380 
    381 		Eventually, we should also free the new opcodes table itself
    382 		on exit.
    383 	*/
    384 }
    385 
    386 static char *
    387 form_args (struct itbl_entry *e)
    388 {
    389   static char s[31];
    390   char c = 0, *p = s;
    391   struct itbl_field *f;
    392 
    393   ASSERT (e);
    394   for (f = e->fields; f; f = f->next)
    395     {
    396       switch (f->type)
    397 	{
    398 	case e_dreg:
    399 	  c = 'd';
    400 	  break;
    401 	case e_creg:
    402 	  c = 't';
    403 	  break;
    404 	case e_greg:
    405 	  c = 's';
    406 	  break;
    407 	case e_immed:
    408 	  c = 'i';
    409 	  break;
    410 	case e_addr:
    411 	  c = 'a';
    412 	  break;
    413 	default:
    414 	  c = 0;		/* ignore; unknown field type */
    415 	}
    416       if (c)
    417 	{
    418 	  if (p != s)
    419 	    *p++ = ',';
    420 	  *p++ = c;
    421 	}
    422     }
    423   *p = 0;
    424   return s;
    425 }
    426 #endif /* !STAND_ALONE */
    427 
    428 /* Get processor's register name from val */
    429 
    430 int
    431 itbl_get_reg_val (char *name, unsigned long *pval)
    432 {
    433   e_type t;
    434   e_processor p;
    435 
    436   for (p = e_p0; p < e_nprocs; p++)
    437     {
    438       for (t = e_regtype0; t < e_nregtypes; t++)
    439 	{
    440 	  if (itbl_get_val (p, t, name, pval))
    441 	    return 1;
    442 	}
    443     }
    444   return 0;
    445 }
    446 
    447 char *
    448 itbl_get_name (e_processor processor, e_type type, unsigned long val)
    449 {
    450   struct itbl_entry *r;
    451   /* type depends on instruction passed */
    452   r = find_entry_byval (processor, type, val, 0);
    453   if (r)
    454     return r->name;
    455   else
    456     return 0;			/* error; invalid operand */
    457 }
    458 
    459 /* Get processor's register value from name */
    460 
    461 int
    462 itbl_get_val (e_processor processor, e_type type, char *name,
    463 	      unsigned long *pval)
    464 {
    465   struct itbl_entry *r;
    466   /* type depends on instruction passed */
    467   r = find_entry_byname (processor, type, name);
    468   if (r == NULL)
    469     return 0;
    470   *pval = r->value;
    471   return 1;
    472 }
    473 
    474 /* Assemble instruction "name" with operands "s".
    475  * name - name of instruction
    476  * s - operands
    477  * returns - long word for assembled instruction */
    478 
    479 unsigned long
    480 itbl_assemble (char *name, char *s)
    481 {
    482   unsigned long opcode;
    483   struct itbl_entry *e = NULL;
    484   struct itbl_field *f;
    485   char *n;
    486   int processor;
    487 
    488   if (!name || !*name)
    489     return 0;			/* error!  must have an opcode name/expr */
    490 
    491   /* find entry in list of instructions for all processors */
    492   for (processor = 0; processor < e_nprocs; processor++)
    493     {
    494       e = find_entry_byname (processor, e_insn, name);
    495       if (e)
    496 	break;
    497     }
    498   if (!e)
    499     return 0;			/* opcode not in table; invalid instruction */
    500   opcode = build_opcode (e);
    501 
    502   /* parse opcode's args (if any) */
    503   for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
    504     {
    505       struct itbl_entry *r;
    506       unsigned long value;
    507       if (!s || !*s)
    508 	return 0;		/* error - not enough operands */
    509       n = itbl_get_field (&s);
    510       /* n should be in form $n or 0xhhh (are symbol names valid?? */
    511       switch (f->type)
    512 	{
    513 	case e_dreg:
    514 	case e_creg:
    515 	case e_greg:
    516 	  /* Accept either a string name
    517 			 * or '$' followed by the register number */
    518 	  if (*n == '$')
    519 	    {
    520 	      n++;
    521 	      value = strtol (n, 0, 10);
    522 	      /* FIXME! could have "0l"... then what?? */
    523 	      if (value == 0 && *n != '0')
    524 		return 0;	/* error; invalid operand */
    525 	    }
    526 	  else
    527 	    {
    528 	      r = find_entry_byname (e->processor, f->type, n);
    529 	      if (r)
    530 		value = r->value;
    531 	      else
    532 		return 0;	/* error; invalid operand */
    533 	    }
    534 	  break;
    535 	case e_addr:
    536 	  /* use assembler's symbol table to find symbol */
    537 	  /* FIXME!! Do we need this?
    538 				if so, what about relocs??
    539 				my_getExpression (&imm_expr, s);
    540 				return 0;	/-* error; invalid operand *-/
    541 				break;
    542 			*/
    543 	  /* If not a symbol, fall thru to IMMED */
    544 	case e_immed:
    545 	  if (*n == '0' && *(n + 1) == 'x')	/* hex begins 0x...  */
    546 	    {
    547 	      n += 2;
    548 	      value = strtol (n, 0, 16);
    549 	      /* FIXME! could have "0xl"... then what?? */
    550 	    }
    551 	  else
    552 	    {
    553 	      value = strtol (n, 0, 10);
    554 	      /* FIXME! could have "0l"... then what?? */
    555 	      if (value == 0 && *n != '0')
    556 		return 0;	/* error; invalid operand */
    557 	    }
    558 	  break;
    559 	default:
    560 	  return 0;		/* error; invalid field spec */
    561 	}
    562       opcode |= apply_range (value, f->range);
    563     }
    564   if (s && *s)
    565     return 0;			/* error - too many operands */
    566   return opcode;		/* done! */
    567 }
    568 
    569 /* Disassemble instruction "insn".
    570  * insn - instruction
    571  * s - buffer to hold disassembled instruction
    572  * returns - 1 if succeeded; 0 if failed
    573  */
    574 
    575 int
    576 itbl_disassemble (char *s, unsigned long insn)
    577 {
    578   e_processor processor;
    579   struct itbl_entry *e;
    580   struct itbl_field *f;
    581 
    582   if (!ITBL_IS_INSN (insn))
    583     return 0;			/* error */
    584   processor = get_processor (ITBL_DECODE_PNUM (insn));
    585 
    586   /* find entry in list */
    587   e = find_entry_byval (processor, e_insn, insn, 0);
    588   if (!e)
    589     return 0;			/* opcode not in table; invalid instruction */
    590   strcpy (s, e->name);
    591 
    592   /* Parse insn's args (if any).  */
    593   for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
    594     {
    595       struct itbl_entry *r;
    596       unsigned long value;
    597       char s_value[20];
    598 
    599       if (f == e->fields)	/* First operand is preceded by tab.  */
    600 	strcat (s, "\t");
    601       else			/* ','s separate following operands.  */
    602 	strcat (s, ",");
    603       value = extract_range (insn, f->range);
    604       /* n should be in form $n or 0xhhh (are symbol names valid?? */
    605       switch (f->type)
    606 	{
    607 	case e_dreg:
    608 	case e_creg:
    609 	case e_greg:
    610 	  /* Accept either a string name
    611 	     or '$' followed by the register number.  */
    612 	  r = find_entry_byval (e->processor, f->type, value, &f->range);
    613 	  if (r)
    614 	    strcat (s, r->name);
    615 	  else
    616 	    {
    617 	      sprintf (s_value, "$%lu", value);
    618 	      strcat (s, s_value);
    619 	    }
    620 	  break;
    621 	case e_addr:
    622 	  /* Use assembler's symbol table to find symbol.  */
    623 	  /* FIXME!! Do we need this?  If so, what about relocs??  */
    624 	  /* If not a symbol, fall through to IMMED.  */
    625 	case e_immed:
    626 	  sprintf (s_value, "0x%lx", value);
    627 	  strcat (s, s_value);
    628 	  break;
    629 	default:
    630 	  return 0;		/* error; invalid field spec */
    631 	}
    632     }
    633   return 1;			/* Done!  */
    634 }
    635 
    636 /*======================================================================*/
    637 /*
    638  * Local functions for manipulating private structures containing
    639  * the names and format for the new instructions and registers
    640  * for each processor.
    641  */
    642 
    643 /* Calculate instruction's opcode and function values from entry */
    644 
    645 static unsigned long
    646 build_opcode (struct itbl_entry *e)
    647 {
    648   unsigned long opcode;
    649 
    650   opcode = apply_range (e->value, e->range);
    651   opcode |= ITBL_ENCODE_PNUM (e->processor);
    652   return opcode;
    653 }
    654 
    655 /* Calculate absolute value given the relative value and bit position range
    656  * within the instruction.
    657  * The range is inclusive where 0 is least significant bit.
    658  * A range of { 24, 20 } will have a mask of
    659  * bit   3           2            1
    660  * pos: 1098 7654 3210 9876 5432 1098 7654 3210
    661  * bin: 0000 0001 1111 0000 0000 0000 0000 0000
    662  * hex:    0    1    f    0    0    0    0    0
    663  * mask: 0x01f00000.
    664  */
    665 
    666 static unsigned long
    667 apply_range (unsigned long rval, struct itbl_range r)
    668 {
    669   unsigned long mask;
    670   unsigned long aval;
    671   int len = MAX_BITPOS - r.sbit;
    672 
    673   ASSERT (r.sbit >= r.ebit);
    674   ASSERT (MAX_BITPOS >= r.sbit);
    675   ASSERT (r.ebit >= 0);
    676 
    677   /* create mask by truncating 1s by shifting */
    678   mask = 0xffffffff << len;
    679   mask = mask >> len;
    680   mask = mask >> r.ebit;
    681   mask = mask << r.ebit;
    682 
    683   aval = (rval << r.ebit) & mask;
    684   return aval;
    685 }
    686 
    687 /* Calculate relative value given the absolute value and bit position range
    688  * within the instruction.  */
    689 
    690 static unsigned long
    691 extract_range (unsigned long aval, struct itbl_range r)
    692 {
    693   unsigned long mask;
    694   unsigned long rval;
    695   int len = MAX_BITPOS - r.sbit;
    696 
    697   /* create mask by truncating 1s by shifting */
    698   mask = 0xffffffff << len;
    699   mask = mask >> len;
    700   mask = mask >> r.ebit;
    701   mask = mask << r.ebit;
    702 
    703   rval = (aval & mask) >> r.ebit;
    704   return rval;
    705 }
    706 
    707 /* Extract processor's assembly instruction field name from s;
    708  * forms are "n args" "n,args" or "n" */
    709 /* Return next argument from string pointer "s" and advance s.
    710  * delimiters are " ,()" */
    711 
    712 char *
    713 itbl_get_field (char **S)
    714 {
    715   static char n[128];
    716   char *s;
    717   int len;
    718 
    719   s = *S;
    720   if (!s || !*s)
    721     return 0;
    722   /* FIXME: This is a weird set of delimiters.  */
    723   len = strcspn (s, " \t,()");
    724   ASSERT (128 > len + 1);
    725   strncpy (n, s, len);
    726   n[len] = 0;
    727   if (s[len] == '\0')
    728     s = 0;			/* no more args */
    729   else
    730     s += len + 1;		/* advance to next arg */
    731 
    732   *S = s;
    733   return n;
    734 }
    735 
    736 /* Search entries for a given processor and type
    737  * to find one matching the name "n".
    738  * Return a pointer to the entry */
    739 
    740 static struct itbl_entry *
    741 find_entry_byname (e_processor processor,
    742 		   e_type type, char *n)
    743 {
    744   struct itbl_entry *e, **es;
    745 
    746   es = get_entries (processor, type);
    747   for (e = *es; e; e = e->next)	/* for each entry, ...  */
    748     {
    749       if (!strcmp (e->name, n))
    750 	return e;
    751     }
    752   return 0;
    753 }
    754 
    755 /* Search entries for a given processor and type
    756  * to find one matching the value "val" for the range "r".
    757  * Return a pointer to the entry.
    758  * This function is used for disassembling fields of an instruction.
    759  */
    760 
    761 static struct itbl_entry *
    762 find_entry_byval (e_processor processor, e_type type,
    763 		  unsigned long val, struct itbl_range *r)
    764 {
    765   struct itbl_entry *e, **es;
    766   unsigned long eval;
    767 
    768   es = get_entries (processor, type);
    769   for (e = *es; e; e = e->next)	/* for each entry, ...  */
    770     {
    771       if (processor != e->processor)
    772 	continue;
    773       /* For insns, we might not know the range of the opcode,
    774 	 * so a range of 0 will allow this routine to match against
    775 	 * the range of the entry to be compared with.
    776 	 * This could cause ambiguities.
    777 	 * For operands, we get an extracted value and a range.
    778 	 */
    779       /* if range is 0, mask val against the range of the compared entry.  */
    780       if (r == 0)		/* if no range passed, must be whole 32-bits
    781 			 * so create 32-bit value from entry's range */
    782 	{
    783 	  eval = apply_range (e->value, e->range);
    784 	  val &= apply_range (0xffffffff, e->range);
    785 	}
    786       else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
    787 	       || (e->range.sbit == 0 && e->range.ebit == 0))
    788 	{
    789 	  eval = apply_range (e->value, *r);
    790 	  val = apply_range (val, *r);
    791 	}
    792       else
    793 	continue;
    794       if (val == eval)
    795 	return e;
    796     }
    797   return 0;
    798 }
    799 
    800 /* Return a pointer to the list of entries for a given processor and type.  */
    801 
    802 static struct itbl_entry **
    803 get_entries (e_processor processor, e_type type)
    804 {
    805   return &entries[processor][type];
    806 }
    807 
    808 /* Return an integral value for the processor passed from yyparse.  */
    809 
    810 static e_processor
    811 get_processor (int yyproc)
    812 {
    813   /* translate from yacc's processor to enum */
    814   if (yyproc >= e_p0 && yyproc < e_nprocs)
    815     return (e_processor) yyproc;
    816   return e_invproc;		/* error; invalid processor */
    817 }
    818 
    819 /* Return an integral value for the entry type passed from yyparse.  */
    820 
    821 static e_type
    822 get_type (int yytype)
    823 {
    824   switch (yytype)
    825     {
    826       /* translate from yacc's type to enum */
    827     case INSN:
    828       return e_insn;
    829     case DREG:
    830       return e_dreg;
    831     case CREG:
    832       return e_creg;
    833     case GREG:
    834       return e_greg;
    835     case ADDR:
    836       return e_addr;
    837     case IMMED:
    838       return e_immed;
    839     default:
    840       return e_invtype;		/* error; invalid type */
    841     }
    842 }
    843 
    844 /* Allocate and initialize an entry */
    845 
    846 static struct itbl_entry *
    847 alloc_entry (e_processor processor, e_type type,
    848 	     char *name, unsigned long value)
    849 {
    850   struct itbl_entry *e, **es;
    851   if (!name)
    852     return 0;
    853   e = XNEW (struct itbl_entry);
    854   if (e)
    855     {
    856       memset (e, 0, sizeof (struct itbl_entry));
    857       e->name = xstrdup (name);
    858       e->processor = processor;
    859       e->type = type;
    860       e->value = value;
    861       es = get_entries (e->processor, e->type);
    862       e->next = *es;
    863       *es = e;
    864     }
    865   return e;
    866 }
    867 
    868 /* Allocate and initialize an entry's field */
    869 
    870 static struct itbl_field *
    871 alloc_field (e_type type, int sbit, int ebit,
    872 	     unsigned long flags)
    873 {
    874   struct itbl_field *f;
    875   f = XNEW (struct itbl_field);
    876   if (f)
    877     {
    878       memset (f, 0, sizeof (struct itbl_field));
    879       f->type = type;
    880       f->range.sbit = sbit;
    881       f->range.ebit = ebit;
    882       f->flags = flags;
    883     }
    884   return f;
    885 }
    886