Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jdarith.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Developed 1997-2015 by Guido Vollbeding.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015-2016, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains portable arithmetic entropy decoding routines for JPEG
     12  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     13  *
     14  * Both sequential and progressive modes are supported in this single module.
     15  *
     16  * Suspension is not currently supported in this module.
     17  */
     18 
     19 #define JPEG_INTERNALS
     20 #include "jinclude.h"
     21 #include "jpeglib.h"
     22 
     23 
     24 #define NEG_1 ((unsigned int)-1)
     25 
     26 
     27 /* Expanded entropy decoder object for arithmetic decoding. */
     28 
     29 typedef struct {
     30   struct jpeg_entropy_decoder pub; /* public fields */
     31 
     32   JLONG c;       /* C register, base of coding interval + input bit buffer */
     33   JLONG a;               /* A register, normalized size of coding interval */
     34   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
     35                                                          /* init: ct = -16 */
     36                                                          /* run: ct = 0..7 */
     37                                                          /* error: ct = -1 */
     38   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     39   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     40 
     41   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
     42 
     43   /* Pointers to statistics areas (these workspaces have image lifespan) */
     44   unsigned char *dc_stats[NUM_ARITH_TBLS];
     45   unsigned char *ac_stats[NUM_ARITH_TBLS];
     46 
     47   /* Statistics bin for coding with fixed probability 0.5 */
     48   unsigned char fixed_bin[4];
     49 } arith_entropy_decoder;
     50 
     51 typedef arith_entropy_decoder *arith_entropy_ptr;
     52 
     53 /* The following two definitions specify the allocation chunk size
     54  * for the statistics area.
     55  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     56  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     57  *
     58  * We use a compact representation with 1 byte per statistics bin,
     59  * thus the numbers directly represent byte sizes.
     60  * This 1 byte per statistics bin contains the meaning of the MPS
     61  * (more probable symbol) in the highest bit (mask 0x80), and the
     62  * index into the probability estimation state machine table
     63  * in the lower bits (mask 0x7F).
     64  */
     65 
     66 #define DC_STAT_BINS 64
     67 #define AC_STAT_BINS 256
     68 
     69 
     70 LOCAL(int)
     71 get_byte (j_decompress_ptr cinfo)
     72 /* Read next input byte; we do not support suspension in this module. */
     73 {
     74   struct jpeg_source_mgr *src = cinfo->src;
     75 
     76   if (src->bytes_in_buffer == 0)
     77     if (! (*src->fill_input_buffer) (cinfo))
     78       ERREXIT(cinfo, JERR_CANT_SUSPEND);
     79   src->bytes_in_buffer--;
     80   return GETJOCTET(*src->next_input_byte++);
     81 }
     82 
     83 
     84 /*
     85  * The core arithmetic decoding routine (common in JPEG and JBIG).
     86  * This needs to go as fast as possible.
     87  * Machine-dependent optimization facilities
     88  * are not utilized in this portable implementation.
     89  * However, this code should be fairly efficient and
     90  * may be a good base for further optimizations anyway.
     91  *
     92  * Return value is 0 or 1 (binary decision).
     93  *
     94  * Note: I've changed the handling of the code base & bit
     95  * buffer register C compared to other implementations
     96  * based on the standards layout & procedures.
     97  * While it also contains both the actual base of the
     98  * coding interval (16 bits) and the next-bits buffer,
     99  * the cut-point between these two parts is floating
    100  * (instead of fixed) with the bit shift counter CT.
    101  * Thus, we also need only one (variable instead of
    102  * fixed size) shift for the LPS/MPS decision, and
    103  * we can do away with any renormalization update
    104  * of C (except for new data insertion, of course).
    105  *
    106  * I've also introduced a new scheme for accessing
    107  * the probability estimation state machine table,
    108  * derived from Markus Kuhn's JBIG implementation.
    109  */
    110 
    111 LOCAL(int)
    112 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
    113 {
    114   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    115   register unsigned char nl, nm;
    116   register JLONG qe, temp;
    117   register int sv, data;
    118 
    119   /* Renormalization & data input per section D.2.6 */
    120   while (e->a < 0x8000L) {
    121     if (--e->ct < 0) {
    122       /* Need to fetch next data byte */
    123       if (cinfo->unread_marker)
    124         data = 0;               /* stuff zero data */
    125       else {
    126         data = get_byte(cinfo); /* read next input byte */
    127         if (data == 0xFF) {     /* zero stuff or marker code */
    128           do data = get_byte(cinfo);
    129           while (data == 0xFF); /* swallow extra 0xFF bytes */
    130           if (data == 0)
    131             data = 0xFF;        /* discard stuffed zero byte */
    132           else {
    133             /* Note: Different from the Huffman decoder, hitting
    134              * a marker while processing the compressed data
    135              * segment is legal in arithmetic coding.
    136              * The convention is to supply zero data
    137              * then until decoding is complete.
    138              */
    139             cinfo->unread_marker = data;
    140             data = 0;
    141           }
    142         }
    143       }
    144       e->c = (e->c << 8) | data; /* insert data into C register */
    145       if ((e->ct += 8) < 0)      /* update bit shift counter */
    146         /* Need more initial bytes */
    147         if (++e->ct == 0)
    148           /* Got 2 initial bytes -> re-init A and exit loop */
    149           e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
    150     }
    151     e->a <<= 1;
    152   }
    153 
    154   /* Fetch values from our compact representation of Table D.2:
    155    * Qe values and probability estimation state machine
    156    */
    157   sv = *st;
    158   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
    159   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
    160   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
    161 
    162   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
    163   temp = e->a - qe;
    164   e->a = temp;
    165   temp <<= e->ct;
    166   if (e->c >= temp) {
    167     e->c -= temp;
    168     /* Conditional LPS (less probable symbol) exchange */
    169     if (e->a < qe) {
    170       e->a = qe;
    171       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    172     } else {
    173       e->a = qe;
    174       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
    175       sv ^= 0x80;               /* Exchange LPS/MPS */
    176     }
    177   } else if (e->a < 0x8000L) {
    178     /* Conditional MPS (more probable symbol) exchange */
    179     if (e->a < qe) {
    180       *st = (sv & 0x80) ^ nl;   /* Estimate_after_LPS */
    181       sv ^= 0x80;               /* Exchange LPS/MPS */
    182     } else {
    183       *st = (sv & 0x80) ^ nm;   /* Estimate_after_MPS */
    184     }
    185   }
    186 
    187   return sv >> 7;
    188 }
    189 
    190 
    191 /*
    192  * Check for a restart marker & resynchronize decoder.
    193  */
    194 
    195 LOCAL(void)
    196 process_restart (j_decompress_ptr cinfo)
    197 {
    198   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    199   int ci;
    200   jpeg_component_info *compptr;
    201 
    202   /* Advance past the RSTn marker */
    203   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    204     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    205 
    206   /* Re-initialize statistics areas */
    207   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    208     compptr = cinfo->cur_comp_info[ci];
    209     if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    210       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    211       /* Reset DC predictions to 0 */
    212       entropy->last_dc_val[ci] = 0;
    213       entropy->dc_context[ci] = 0;
    214     }
    215     if (!cinfo->progressive_mode || cinfo->Ss) {
    216       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    217     }
    218   }
    219 
    220   /* Reset arithmetic decoding variables */
    221   entropy->c = 0;
    222   entropy->a = 0;
    223   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
    224 
    225   /* Reset restart counter */
    226   entropy->restarts_to_go = cinfo->restart_interval;
    227 }
    228 
    229 
    230 /*
    231  * Arithmetic MCU decoding.
    232  * Each of these routines decodes and returns one MCU's worth of
    233  * arithmetic-compressed coefficients.
    234  * The coefficients are reordered from zigzag order into natural array order,
    235  * but are not dequantized.
    236  *
    237  * The i'th block of the MCU is stored into the block pointed to by
    238  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
    239  */
    240 
    241 /*
    242  * MCU decoding for DC initial scan (either spectral selection,
    243  * or first pass of successive approximation).
    244  */
    245 
    246 METHODDEF(boolean)
    247 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    248 {
    249   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    250   JBLOCKROW block;
    251   unsigned char *st;
    252   int blkn, ci, tbl, sign;
    253   int v, m;
    254 
    255   /* Process restart marker if needed */
    256   if (cinfo->restart_interval) {
    257     if (entropy->restarts_to_go == 0)
    258       process_restart(cinfo);
    259     entropy->restarts_to_go--;
    260   }
    261 
    262   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    263 
    264   /* Outer loop handles each block in the MCU */
    265 
    266   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    267     block = MCU_data[blkn];
    268     ci = cinfo->MCU_membership[blkn];
    269     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    270 
    271     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    272 
    273     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    274     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    275 
    276     /* Figure F.19: Decode_DC_DIFF */
    277     if (arith_decode(cinfo, st) == 0)
    278       entropy->dc_context[ci] = 0;
    279     else {
    280       /* Figure F.21: Decoding nonzero value v */
    281       /* Figure F.22: Decoding the sign of v */
    282       sign = arith_decode(cinfo, st + 1);
    283       st += 2; st += sign;
    284       /* Figure F.23: Decoding the magnitude category of v */
    285       if ((m = arith_decode(cinfo, st)) != 0) {
    286         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
    287         while (arith_decode(cinfo, st)) {
    288           if ((m <<= 1) == 0x8000) {
    289             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    290             entropy->ct = -1;                   /* magnitude overflow */
    291             return TRUE;
    292           }
    293           st += 1;
    294         }
    295       }
    296       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    297       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    298         entropy->dc_context[ci] = 0;               /* zero diff category */
    299       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    300         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    301       else
    302         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    303       v = m;
    304       /* Figure F.24: Decoding the magnitude bit pattern of v */
    305       st += 14;
    306       while (m >>= 1)
    307         if (arith_decode(cinfo, st)) v |= m;
    308       v += 1; if (sign) v = -v;
    309       entropy->last_dc_val[ci] += v;
    310     }
    311 
    312     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
    313     (*block)[0] = (JCOEF) LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al);
    314   }
    315 
    316   return TRUE;
    317 }
    318 
    319 
    320 /*
    321  * MCU decoding for AC initial scan (either spectral selection,
    322  * or first pass of successive approximation).
    323  */
    324 
    325 METHODDEF(boolean)
    326 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    327 {
    328   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    329   JBLOCKROW block;
    330   unsigned char *st;
    331   int tbl, sign, k;
    332   int v, m;
    333 
    334   /* Process restart marker if needed */
    335   if (cinfo->restart_interval) {
    336     if (entropy->restarts_to_go == 0)
    337       process_restart(cinfo);
    338     entropy->restarts_to_go--;
    339   }
    340 
    341   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    342 
    343   /* There is always only one block per MCU */
    344   block = MCU_data[0];
    345   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    346 
    347   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    348 
    349   /* Figure F.20: Decode_AC_coefficients */
    350   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    351     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    352     if (arith_decode(cinfo, st)) break;         /* EOB flag */
    353     while (arith_decode(cinfo, st + 1) == 0) {
    354       st += 3; k++;
    355       if (k > cinfo->Se) {
    356         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    357         entropy->ct = -1;                       /* spectral overflow */
    358         return TRUE;
    359       }
    360     }
    361     /* Figure F.21: Decoding nonzero value v */
    362     /* Figure F.22: Decoding the sign of v */
    363     sign = arith_decode(cinfo, entropy->fixed_bin);
    364     st += 2;
    365     /* Figure F.23: Decoding the magnitude category of v */
    366     if ((m = arith_decode(cinfo, st)) != 0) {
    367       if (arith_decode(cinfo, st)) {
    368         m <<= 1;
    369         st = entropy->ac_stats[tbl] +
    370              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    371         while (arith_decode(cinfo, st)) {
    372           if ((m <<= 1) == 0x8000) {
    373             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    374             entropy->ct = -1;                   /* magnitude overflow */
    375             return TRUE;
    376           }
    377           st += 1;
    378         }
    379       }
    380     }
    381     v = m;
    382     /* Figure F.24: Decoding the magnitude bit pattern of v */
    383     st += 14;
    384     while (m >>= 1)
    385       if (arith_decode(cinfo, st)) v |= m;
    386     v += 1; if (sign) v = -v;
    387     /* Scale and output coefficient in natural (dezigzagged) order */
    388     (*block)[jpeg_natural_order[k]] = (JCOEF) ((unsigned)v << cinfo->Al);
    389   }
    390 
    391   return TRUE;
    392 }
    393 
    394 
    395 /*
    396  * MCU decoding for DC successive approximation refinement scan.
    397  */
    398 
    399 METHODDEF(boolean)
    400 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    401 {
    402   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    403   unsigned char *st;
    404   int p1, blkn;
    405 
    406   /* Process restart marker if needed */
    407   if (cinfo->restart_interval) {
    408     if (entropy->restarts_to_go == 0)
    409       process_restart(cinfo);
    410     entropy->restarts_to_go--;
    411   }
    412 
    413   st = entropy->fixed_bin;      /* use fixed probability estimation */
    414   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
    415 
    416   /* Outer loop handles each block in the MCU */
    417 
    418   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    419     /* Encoded data is simply the next bit of the two's-complement DC value */
    420     if (arith_decode(cinfo, st))
    421       MCU_data[blkn][0][0] |= p1;
    422   }
    423 
    424   return TRUE;
    425 }
    426 
    427 
    428 /*
    429  * MCU decoding for AC successive approximation refinement scan.
    430  */
    431 
    432 METHODDEF(boolean)
    433 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    434 {
    435   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    436   JBLOCKROW block;
    437   JCOEFPTR thiscoef;
    438   unsigned char *st;
    439   int tbl, k, kex;
    440   int p1, m1;
    441 
    442   /* Process restart marker if needed */
    443   if (cinfo->restart_interval) {
    444     if (entropy->restarts_to_go == 0)
    445       process_restart(cinfo);
    446     entropy->restarts_to_go--;
    447   }
    448 
    449   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    450 
    451   /* There is always only one block per MCU */
    452   block = MCU_data[0];
    453   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    454 
    455   p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
    456   m1 = (NEG_1) << cinfo->Al;    /* -1 in the bit position being coded */
    457 
    458   /* Establish EOBx (previous stage end-of-block) index */
    459   for (kex = cinfo->Se; kex > 0; kex--)
    460     if ((*block)[jpeg_natural_order[kex]]) break;
    461 
    462   for (k = cinfo->Ss; k <= cinfo->Se; k++) {
    463     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    464     if (k > kex)
    465       if (arith_decode(cinfo, st)) break;       /* EOB flag */
    466     for (;;) {
    467       thiscoef = *block + jpeg_natural_order[k];
    468       if (*thiscoef) {                          /* previously nonzero coef */
    469         if (arith_decode(cinfo, st + 2)) {
    470           if (*thiscoef < 0)
    471             *thiscoef += m1;
    472           else
    473             *thiscoef += p1;
    474         }
    475         break;
    476       }
    477       if (arith_decode(cinfo, st + 1)) {        /* newly nonzero coef */
    478         if (arith_decode(cinfo, entropy->fixed_bin))
    479           *thiscoef = m1;
    480         else
    481           *thiscoef = p1;
    482         break;
    483       }
    484       st += 3; k++;
    485       if (k > cinfo->Se) {
    486         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    487         entropy->ct = -1;                       /* spectral overflow */
    488         return TRUE;
    489       }
    490     }
    491   }
    492 
    493   return TRUE;
    494 }
    495 
    496 
    497 /*
    498  * Decode one MCU's worth of arithmetic-compressed coefficients.
    499  */
    500 
    501 METHODDEF(boolean)
    502 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    503 {
    504   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    505   jpeg_component_info *compptr;
    506   JBLOCKROW block;
    507   unsigned char *st;
    508   int blkn, ci, tbl, sign, k;
    509   int v, m;
    510 
    511   /* Process restart marker if needed */
    512   if (cinfo->restart_interval) {
    513     if (entropy->restarts_to_go == 0)
    514       process_restart(cinfo);
    515     entropy->restarts_to_go--;
    516   }
    517 
    518   if (entropy->ct == -1) return TRUE;   /* if error do nothing */
    519 
    520   /* Outer loop handles each block in the MCU */
    521 
    522   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    523     block = MCU_data ? MCU_data[blkn] : NULL;
    524     ci = cinfo->MCU_membership[blkn];
    525     compptr = cinfo->cur_comp_info[ci];
    526 
    527     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
    528 
    529     tbl = compptr->dc_tbl_no;
    530 
    531     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    532     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    533 
    534     /* Figure F.19: Decode_DC_DIFF */
    535     if (arith_decode(cinfo, st) == 0)
    536       entropy->dc_context[ci] = 0;
    537     else {
    538       /* Figure F.21: Decoding nonzero value v */
    539       /* Figure F.22: Decoding the sign of v */
    540       sign = arith_decode(cinfo, st + 1);
    541       st += 2; st += sign;
    542       /* Figure F.23: Decoding the magnitude category of v */
    543       if ((m = arith_decode(cinfo, st)) != 0) {
    544         st = entropy->dc_stats[tbl] + 20;       /* Table F.4: X1 = 20 */
    545         while (arith_decode(cinfo, st)) {
    546           if ((m <<= 1) == 0x8000) {
    547             WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    548             entropy->ct = -1;                   /* magnitude overflow */
    549             return TRUE;
    550           }
    551           st += 1;
    552         }
    553       }
    554       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    555       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    556         entropy->dc_context[ci] = 0;               /* zero diff category */
    557       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    558         entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
    559       else
    560         entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
    561       v = m;
    562       /* Figure F.24: Decoding the magnitude bit pattern of v */
    563       st += 14;
    564       while (m >>= 1)
    565         if (arith_decode(cinfo, st)) v |= m;
    566       v += 1; if (sign) v = -v;
    567       entropy->last_dc_val[ci] += v;
    568     }
    569 
    570     if (block)
    571       (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
    572 
    573     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
    574 
    575     tbl = compptr->ac_tbl_no;
    576 
    577     /* Figure F.20: Decode_AC_coefficients */
    578     for (k = 1; k <= DCTSIZE2 - 1; k++) {
    579       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    580       if (arith_decode(cinfo, st)) break;       /* EOB flag */
    581       while (arith_decode(cinfo, st + 1) == 0) {
    582         st += 3; k++;
    583         if (k > DCTSIZE2 - 1) {
    584           WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    585           entropy->ct = -1;                     /* spectral overflow */
    586           return TRUE;
    587         }
    588       }
    589       /* Figure F.21: Decoding nonzero value v */
    590       /* Figure F.22: Decoding the sign of v */
    591       sign = arith_decode(cinfo, entropy->fixed_bin);
    592       st += 2;
    593       /* Figure F.23: Decoding the magnitude category of v */
    594       if ((m = arith_decode(cinfo, st)) != 0) {
    595         if (arith_decode(cinfo, st)) {
    596           m <<= 1;
    597           st = entropy->ac_stats[tbl] +
    598                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    599           while (arith_decode(cinfo, st)) {
    600             if ((m <<= 1) == 0x8000) {
    601               WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
    602               entropy->ct = -1;                 /* magnitude overflow */
    603               return TRUE;
    604             }
    605             st += 1;
    606           }
    607         }
    608       }
    609       v = m;
    610       /* Figure F.24: Decoding the magnitude bit pattern of v */
    611       st += 14;
    612       while (m >>= 1)
    613         if (arith_decode(cinfo, st)) v |= m;
    614       v += 1; if (sign) v = -v;
    615       if (block)
    616         (*block)[jpeg_natural_order[k]] = (JCOEF) v;
    617     }
    618   }
    619 
    620   return TRUE;
    621 }
    622 
    623 
    624 /*
    625  * Initialize for an arithmetic-compressed scan.
    626  */
    627 
    628 METHODDEF(void)
    629 start_pass (j_decompress_ptr cinfo)
    630 {
    631   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    632   int ci, tbl;
    633   jpeg_component_info *compptr;
    634 
    635   if (cinfo->progressive_mode) {
    636     /* Validate progressive scan parameters */
    637     if (cinfo->Ss == 0) {
    638       if (cinfo->Se != 0)
    639         goto bad;
    640     } else {
    641       /* need not check Ss/Se < 0 since they came from unsigned bytes */
    642       if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1)
    643         goto bad;
    644       /* AC scans may have only one component */
    645       if (cinfo->comps_in_scan != 1)
    646         goto bad;
    647     }
    648     if (cinfo->Ah != 0) {
    649       /* Successive approximation refinement scan: must have Al = Ah-1. */
    650       if (cinfo->Ah-1 != cinfo->Al)
    651         goto bad;
    652     }
    653     if (cinfo->Al > 13) {       /* need not check for < 0 */
    654       bad:
    655       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
    656                cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
    657     }
    658     /* Update progression status, and verify that scan order is legal.
    659      * Note that inter-scan inconsistencies are treated as warnings
    660      * not fatal errors ... not clear if this is right way to behave.
    661      */
    662     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    663       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
    664       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
    665       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
    666         WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
    667       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
    668         int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
    669         if (cinfo->Ah != expected)
    670           WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
    671         coef_bit_ptr[coefi] = cinfo->Al;
    672       }
    673     }
    674     /* Select MCU decoding routine */
    675     if (cinfo->Ah == 0) {
    676       if (cinfo->Ss == 0)
    677         entropy->pub.decode_mcu = decode_mcu_DC_first;
    678       else
    679         entropy->pub.decode_mcu = decode_mcu_AC_first;
    680     } else {
    681       if (cinfo->Ss == 0)
    682         entropy->pub.decode_mcu = decode_mcu_DC_refine;
    683       else
    684         entropy->pub.decode_mcu = decode_mcu_AC_refine;
    685     }
    686   } else {
    687     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
    688      * This ought to be an error condition, but we make it a warning.
    689      */
    690     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
    691         (cinfo->Se < DCTSIZE2 && cinfo->Se != DCTSIZE2 - 1))
    692       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    693     /* Select MCU decoding routine */
    694     entropy->pub.decode_mcu = decode_mcu;
    695   }
    696 
    697   /* Allocate & initialize requested statistics areas */
    698   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    699     compptr = cinfo->cur_comp_info[ci];
    700     if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    701       tbl = compptr->dc_tbl_no;
    702       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    703         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    704       if (entropy->dc_stats[tbl] == NULL)
    705         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    706           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    707       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    708       /* Initialize DC predictions to 0 */
    709       entropy->last_dc_val[ci] = 0;
    710       entropy->dc_context[ci] = 0;
    711     }
    712     if (!cinfo->progressive_mode || cinfo->Ss) {
    713       tbl = compptr->ac_tbl_no;
    714       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    715         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    716       if (entropy->ac_stats[tbl] == NULL)
    717         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    718           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    719       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    720     }
    721   }
    722 
    723   /* Initialize arithmetic decoding variables */
    724   entropy->c = 0;
    725   entropy->a = 0;
    726   entropy->ct = -16;    /* force reading 2 initial bytes to fill C */
    727 
    728   /* Initialize restart counter */
    729   entropy->restarts_to_go = cinfo->restart_interval;
    730 }
    731 
    732 
    733 /*
    734  * Module initialization routine for arithmetic entropy decoding.
    735  */
    736 
    737 GLOBAL(void)
    738 jinit_arith_decoder (j_decompress_ptr cinfo)
    739 {
    740   arith_entropy_ptr entropy;
    741   int i;
    742 
    743   entropy = (arith_entropy_ptr)
    744     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    745                                 sizeof(arith_entropy_decoder));
    746   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    747   entropy->pub.start_pass = start_pass;
    748 
    749   /* Mark tables unallocated */
    750   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    751     entropy->dc_stats[i] = NULL;
    752     entropy->ac_stats[i] = NULL;
    753   }
    754 
    755   /* Initialize index for fixed probability estimation */
    756   entropy->fixed_bin[0] = 113;
    757 
    758   if (cinfo->progressive_mode) {
    759     /* Create progression status table */
    760     int *coef_bit_ptr, ci;
    761     cinfo->coef_bits = (int (*)[DCTSIZE2])
    762       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    763                                   cinfo->num_components*DCTSIZE2*sizeof(int));
    764     coef_bit_ptr = & cinfo->coef_bits[0][0];
    765     for (ci = 0; ci < cinfo->num_components; ci++)
    766       for (i = 0; i < DCTSIZE2; i++)
    767         *coef_bit_ptr++ = -1;
    768   }
    769 }
    770