Home | History | Annotate | Download | only in i18n
      1 //  2016 and later: Unicode, Inc. and others.
      2 // License & terms of use: http://www.unicode.org/copyright.html
      3 /*
      4  **********************************************************************
      5  * Copyright (c) 2003-2008, International Business Machines
      6  * Corporation and others.  All Rights Reserved.
      7  **********************************************************************
      8  * Author: Alan Liu
      9  * Created: September 2 2003
     10  * Since: ICU 2.8
     11  **********************************************************************
     12  */
     13 
     14 #ifndef GREGOIMP_H
     15 #define GREGOIMP_H
     16 #include "unicode/utypes.h"
     17 #if !UCONFIG_NO_FORMATTING
     18 
     19 #include "unicode/ures.h"
     20 #include "unicode/locid.h"
     21 #include "putilimp.h"
     22 
     23 U_NAMESPACE_BEGIN
     24 
     25 /**
     26  * A utility class providing mathematical functions used by time zone
     27  * and calendar code.  Do not instantiate.  Formerly just named 'Math'.
     28  * @internal
     29  */
     30 class ClockMath {
     31  public:
     32     /**
     33      * Divide two integers, returning the floor of the quotient.
     34      * Unlike the built-in division, this is mathematically
     35      * well-behaved.  E.g., <code>-1/4</code> => 0 but
     36      * <code>floorDivide(-1,4)</code> => -1.
     37      * @param numerator the numerator
     38      * @param denominator a divisor which must be != 0
     39      * @return the floor of the quotient
     40      */
     41     static int32_t floorDivide(int32_t numerator, int32_t denominator);
     42 
     43     /**
     44      * Divide two integers, returning the floor of the quotient.
     45      * Unlike the built-in division, this is mathematically
     46      * well-behaved.  E.g., <code>-1/4</code> => 0 but
     47      * <code>floorDivide(-1,4)</code> => -1.
     48      * @param numerator the numerator
     49      * @param denominator a divisor which must be != 0
     50      * @return the floor of the quotient
     51      */
     52     static int64_t floorDivide(int64_t numerator, int64_t denominator);
     53 
     54     /**
     55      * Divide two numbers, returning the floor of the quotient.
     56      * Unlike the built-in division, this is mathematically
     57      * well-behaved.  E.g., <code>-1/4</code> => 0 but
     58      * <code>floorDivide(-1,4)</code> => -1.
     59      * @param numerator the numerator
     60      * @param denominator a divisor which must be != 0
     61      * @return the floor of the quotient
     62      */
     63     static inline double floorDivide(double numerator, double denominator);
     64 
     65     /**
     66      * Divide two numbers, returning the floor of the quotient and
     67      * the modulus remainder.  Unlike the built-in division, this is
     68      * mathematically well-behaved.  E.g., <code>-1/4</code> => 0 and
     69      * <code>-1%4</code> => -1, but <code>floorDivide(-1,4)</code> =>
     70      * -1 with <code>remainder</code> => 3.  NOTE: If numerator is
     71      * too large, the returned quotient may overflow.
     72      * @param numerator the numerator
     73      * @param denominator a divisor which must be != 0
     74      * @param remainder output parameter to receive the
     75      * remainder. Unlike <code>numerator % denominator</code>, this
     76      * will always be non-negative, in the half-open range <code>[0,
     77      * |denominator|)</code>.
     78      * @return the floor of the quotient
     79      */
     80     static int32_t floorDivide(double numerator, int32_t denominator,
     81                                int32_t& remainder);
     82 
     83     /**
     84      * For a positive divisor, return the quotient and remainder
     85      * such that dividend = quotient*divisor + remainder and
     86      * 0 <= remainder < divisor.
     87      *
     88      * Works around edge-case bugs.  Handles pathological input
     89      * (divident >> divisor) reasonably.
     90      *
     91      * Calling with a divisor <= 0 is disallowed.
     92      */
     93     static double floorDivide(double dividend, double divisor,
     94                               double& remainder);
     95 };
     96 
     97 // Useful millisecond constants
     98 #define kOneDay    (1.0 * U_MILLIS_PER_DAY)       //  86,400,000
     99 #define kOneHour   (60*60*1000)
    100 #define kOneMinute 60000
    101 #define kOneSecond 1000
    102 #define kOneMillisecond  1
    103 #define kOneWeek   (7.0 * kOneDay) // 604,800,000
    104 
    105 // Epoch constants
    106 #define kJan1_1JulianDay  1721426 // January 1, year 1 (Gregorian)
    107 
    108 #define kEpochStartAsJulianDay  2440588 // January 1, 1970 (Gregorian)
    109 
    110 #define kEpochYear              1970
    111 
    112 
    113 #define kEarliestViableMillis  -185331720384000000.0  // minimum representable by julian day  -1e17
    114 
    115 #define kLatestViableMillis     185753453990400000.0  // max representable by julian day      +1e17
    116 
    117 /**
    118  * The minimum supported Julian day.  This value is equivalent to
    119  * MIN_MILLIS.
    120  */
    121 #define MIN_JULIAN (-0x7F000000)
    122 
    123 /**
    124  * The minimum supported epoch milliseconds.  This value is equivalent
    125  * to MIN_JULIAN.
    126  */
    127 #define MIN_MILLIS ((MIN_JULIAN - kEpochStartAsJulianDay) * kOneDay)
    128 
    129 /**
    130  * The maximum supported Julian day.  This value is equivalent to
    131  * MAX_MILLIS.
    132  */
    133 #define MAX_JULIAN (+0x7F000000)
    134 
    135 /**
    136  * The maximum supported epoch milliseconds.  This value is equivalent
    137  * to MAX_JULIAN.
    138  */
    139 #define MAX_MILLIS ((MAX_JULIAN - kEpochStartAsJulianDay) * kOneDay)
    140 
    141 /**
    142  * A utility class providing proleptic Gregorian calendar functions
    143  * used by time zone and calendar code.  Do not instantiate.
    144  *
    145  * Note:  Unlike GregorianCalendar, all computations performed by this
    146  * class occur in the pure proleptic GregorianCalendar.
    147  */
    148 class Grego {
    149  public:
    150     /**
    151      * Return TRUE if the given year is a leap year.
    152      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
    153      * @return TRUE if the year is a leap year
    154      */
    155     static inline UBool isLeapYear(int32_t year);
    156 
    157     /**
    158      * Return the number of days in the given month.
    159      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
    160      * @param month 0-based month, with 0==Jan
    161      * @return the number of days in the given month
    162      */
    163     static inline int8_t monthLength(int32_t year, int32_t month);
    164 
    165     /**
    166      * Return the length of a previous month of the Gregorian calendar.
    167      * @param y the extended year
    168      * @param m the 0-based month number
    169      * @return the number of days in the month previous to the given month
    170      */
    171     static inline int8_t previousMonthLength(int y, int m);
    172 
    173     /**
    174      * Convert a year, month, and day-of-month, given in the proleptic
    175      * Gregorian calendar, to 1970 epoch days.
    176      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
    177      * @param month 0-based month, with 0==Jan
    178      * @param dom 1-based day of month
    179      * @return the day number, with day 0 == Jan 1 1970
    180      */
    181     static double fieldsToDay(int32_t year, int32_t month, int32_t dom);
    182 
    183     /**
    184      * Convert a 1970-epoch day number to proleptic Gregorian year,
    185      * month, day-of-month, and day-of-week.
    186      * @param day 1970-epoch day (integral value)
    187      * @param year output parameter to receive year
    188      * @param month output parameter to receive month (0-based, 0==Jan)
    189      * @param dom output parameter to receive day-of-month (1-based)
    190      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
    191      * @param doy output parameter to receive day-of-year (1-based)
    192      */
    193     static void dayToFields(double day, int32_t& year, int32_t& month,
    194                             int32_t& dom, int32_t& dow, int32_t& doy);
    195 
    196     /**
    197      * Convert a 1970-epoch day number to proleptic Gregorian year,
    198      * month, day-of-month, and day-of-week.
    199      * @param day 1970-epoch day (integral value)
    200      * @param year output parameter to receive year
    201      * @param month output parameter to receive month (0-based, 0==Jan)
    202      * @param dom output parameter to receive day-of-month (1-based)
    203      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
    204      */
    205     static inline void dayToFields(double day, int32_t& year, int32_t& month,
    206                                    int32_t& dom, int32_t& dow);
    207 
    208     /**
    209      * Convert a 1970-epoch milliseconds to proleptic Gregorian year,
    210      * month, day-of-month, and day-of-week, day of year and millis-in-day.
    211      * @param time 1970-epoch milliseconds
    212      * @param year output parameter to receive year
    213      * @param month output parameter to receive month (0-based, 0==Jan)
    214      * @param dom output parameter to receive day-of-month (1-based)
    215      * @param dow output parameter to receive day-of-week (1-based, 1==Sun)
    216      * @param doy output parameter to receive day-of-year (1-based)
    217      * @param mid output parameter to recieve millis-in-day
    218      */
    219     static void timeToFields(UDate time, int32_t& year, int32_t& month,
    220                             int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid);
    221 
    222     /**
    223      * Return the day of week on the 1970-epoch day
    224      * @param day the 1970-epoch day (integral value)
    225      * @return the day of week
    226      */
    227     static int32_t dayOfWeek(double day);
    228 
    229     /**
    230      * Returns the ordinal number for the specified day of week within the month.
    231      * The valid return value is 1, 2, 3, 4 or -1.
    232      * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc.
    233      * @param month 0-based month, with 0==Jan
    234      * @param dom 1-based day of month
    235      * @return The ordinal number for the specified day of week within the month
    236      */
    237     static int32_t dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom);
    238 
    239     /**
    240      * Converts Julian day to time as milliseconds.
    241      * @param julian the given Julian day number.
    242      * @return time as milliseconds.
    243      * @internal
    244      */
    245     static inline double julianDayToMillis(int32_t julian);
    246 
    247     /**
    248      * Converts time as milliseconds to Julian day.
    249      * @param millis the given milliseconds.
    250      * @return the Julian day number.
    251      * @internal
    252      */
    253     static inline int32_t millisToJulianDay(double millis);
    254 
    255     /**
    256      * Calculates the Gregorian day shift value for an extended year.
    257      * @param eyear Extended year
    258      * @returns number of days to ADD to Julian in order to convert from J->G
    259      */
    260     static inline int32_t gregorianShift(int32_t eyear);
    261 
    262  private:
    263     static const int16_t DAYS_BEFORE[24];
    264     static const int8_t MONTH_LENGTH[24];
    265 };
    266 
    267 inline double ClockMath::floorDivide(double numerator, double denominator) {
    268     return uprv_floor(numerator / denominator);
    269 }
    270 
    271 inline UBool Grego::isLeapYear(int32_t year) {
    272     // year&0x3 == year%4
    273     return ((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0));
    274 }
    275 
    276 inline int8_t
    277 Grego::monthLength(int32_t year, int32_t month) {
    278     return MONTH_LENGTH[month + (isLeapYear(year) ? 12 : 0)];
    279 }
    280 
    281 inline int8_t
    282 Grego::previousMonthLength(int y, int m) {
    283   return (m > 0) ? monthLength(y, m-1) : 31;
    284 }
    285 
    286 inline void Grego::dayToFields(double day, int32_t& year, int32_t& month,
    287                                int32_t& dom, int32_t& dow) {
    288   int32_t doy_unused;
    289   dayToFields(day,year,month,dom,dow,doy_unused);
    290 }
    291 
    292 inline double Grego::julianDayToMillis(int32_t julian)
    293 {
    294   return (julian - kEpochStartAsJulianDay) * kOneDay;
    295 }
    296 
    297 inline int32_t Grego::millisToJulianDay(double millis) {
    298   return (int32_t) (kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay));
    299 }
    300 
    301 inline int32_t Grego::gregorianShift(int32_t eyear) {
    302   int32_t y = eyear-1;
    303   int32_t gregShift = ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2;
    304   return gregShift;
    305 }
    306 
    307 U_NAMESPACE_END
    308 
    309 #endif // !UCONFIG_NO_FORMATTING
    310 #endif // GREGOIMP_H
    311 
    312 //eof
    313