1 //===-- BuiltinGCs.cpp - Boilerplate for our built in GC types --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the boilerplate required to define our various built in 11 // gc lowering strategies. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/GCs.h" 16 #include "llvm/CodeGen/GCStrategy.h" 17 18 using namespace llvm; 19 20 namespace { 21 22 /// An example GC which attempts to be compatibile with Erlang/OTP garbage 23 /// collector. 24 /// 25 /// The frametable emitter is in ErlangGCPrinter.cpp. 26 class ErlangGC : public GCStrategy { 27 public: 28 ErlangGC() { 29 InitRoots = false; 30 NeededSafePoints = 1 << GC::PostCall; 31 UsesMetadata = true; 32 CustomRoots = false; 33 } 34 }; 35 36 /// An example GC which attempts to be compatible with Objective Caml 3.10.0 37 /// 38 /// The frametable emitter is in OcamlGCPrinter.cpp. 39 class OcamlGC : public GCStrategy { 40 public: 41 OcamlGC() { 42 NeededSafePoints = 1 << GC::PostCall; 43 UsesMetadata = true; 44 } 45 }; 46 47 /// A GC strategy for uncooperative targets. This implements lowering for the 48 /// llvm.gc* intrinsics for targets that do not natively support them (which 49 /// includes the C backend). Note that the code generated is not quite as 50 /// efficient as algorithms which generate stack maps to identify roots. 51 /// 52 /// In order to support this particular transformation, all stack roots are 53 /// coallocated in the stack. This allows a fully target-independent stack map 54 /// while introducing only minor runtime overhead. 55 class ShadowStackGC : public GCStrategy { 56 public: 57 ShadowStackGC() { 58 InitRoots = true; 59 CustomRoots = true; 60 } 61 }; 62 63 /// A GCStrategy which serves as an example for the usage of a statepoint based 64 /// lowering strategy. This GCStrategy is intended to suitable as a default 65 /// implementation usable with any collector which can consume the standard 66 /// stackmap format generated by statepoints, uses the default addrespace to 67 /// distinguish between gc managed and non-gc managed pointers, and has 68 /// reasonable relocation semantics. 69 class StatepointGC : public GCStrategy { 70 public: 71 StatepointGC() { 72 UseStatepoints = true; 73 // These options are all gc.root specific, we specify them so that the 74 // gc.root lowering code doesn't run. 75 InitRoots = false; 76 NeededSafePoints = 0; 77 UsesMetadata = false; 78 CustomRoots = false; 79 } 80 Optional<bool> isGCManagedPointer(const Type *Ty) const override { 81 // Method is only valid on pointer typed values. 82 const PointerType *PT = cast<PointerType>(Ty); 83 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 84 // GC managed heap. We know that a pointer into this heap needs to be 85 // updated and that no other pointer does. Note that addrspace(1) is used 86 // only as an example, it has no special meaning, and is not reserved for 87 // GC usage. 88 return (1 == PT->getAddressSpace()); 89 } 90 }; 91 92 /// A GCStrategy for the CoreCLR Runtime. The strategy is similar to 93 /// Statepoint-example GC, but differs from it in certain aspects, such as: 94 /// 1) Base-pointers need not be explicitly tracked and reported for 95 /// interior pointers 96 /// 2) Uses a different format for encoding stack-maps 97 /// 3) Location of Safe-point polls: polls are only needed before loop-back 98 /// edges and before tail-calls (not needed at function-entry) 99 /// 100 /// The above differences in behavior are to be implemented in upcoming 101 /// checkins. 102 class CoreCLRGC : public GCStrategy { 103 public: 104 CoreCLRGC() { 105 UseStatepoints = true; 106 // These options are all gc.root specific, we specify them so that the 107 // gc.root lowering code doesn't run. 108 InitRoots = false; 109 NeededSafePoints = 0; 110 UsesMetadata = false; 111 CustomRoots = false; 112 } 113 Optional<bool> isGCManagedPointer(const Type *Ty) const override { 114 // Method is only valid on pointer typed values. 115 const PointerType *PT = cast<PointerType>(Ty); 116 // We pick addrspace(1) as our GC managed heap. 117 return (1 == PT->getAddressSpace()); 118 } 119 }; 120 } 121 122 // Register all the above so that they can be found at runtime. Note that 123 // these static initializers are important since the registration list is 124 // constructed from their storage. 125 static GCRegistry::Add<ErlangGC> A("erlang", 126 "erlang-compatible garbage collector"); 127 static GCRegistry::Add<OcamlGC> B("ocaml", "ocaml 3.10-compatible GC"); 128 static GCRegistry::Add<ShadowStackGC> 129 C("shadow-stack", "Very portable GC for uncooperative code generators"); 130 static GCRegistry::Add<StatepointGC> D("statepoint-example", 131 "an example strategy for statepoint"); 132 static GCRegistry::Add<CoreCLRGC> E("coreclr", "CoreCLR-compatible GC"); 133 134 // Provide hooks to ensure the containing library is fully loaded. 135 void llvm::linkErlangGC() {} 136 void llvm::linkOcamlGC() {} 137 void llvm::linkShadowStackGC() {} 138 void llvm::linkStatepointExampleGC() {} 139 void llvm::linkCoreCLRGC() {} 140