Home | History | Annotate | Download | only in SVD
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 //
      7 // Copyright (C) 2013 Gauthier Brun <brun.gauthier (at) gmail.com>
      8 // Copyright (C) 2013 Nicolas Carre <nicolas.carre (at) ensimag.fr>
      9 // Copyright (C) 2013 Jean Ceccato <jean.ceccato (at) ensimag.fr>
     10 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli (at) ensimag.fr>
     11 //
     12 // This Source Code Form is subject to the terms of the Mozilla
     13 // Public License v. 2.0. If a copy of the MPL was not distributed
     14 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     15 
     16 #ifndef EIGEN_SVDBASE_H
     17 #define EIGEN_SVDBASE_H
     18 
     19 namespace Eigen {
     20 /** \ingroup SVD_Module
     21  *
     22  *
     23  * \class SVDBase
     24  *
     25  * \brief Base class of SVD algorithms
     26  *
     27  * \tparam Derived the type of the actual SVD decomposition
     28  *
     29  * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
     30  *   \f[ A = U S V^* \f]
     31  * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
     32  * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
     33  * and right \em singular \em vectors of \a A respectively.
     34  *
     35  * Singular values are always sorted in decreasing order.
     36  *
     37  *
     38  * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
     39  * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
     40  * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
     41  * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
     42  *
     43  * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
     44  * terminate in finite (and reasonable) time.
     45  * \sa class BDCSVD, class JacobiSVD
     46  */
     47 template<typename Derived>
     48 class SVDBase
     49 {
     50 
     51 public:
     52   typedef typename internal::traits<Derived>::MatrixType MatrixType;
     53   typedef typename MatrixType::Scalar Scalar;
     54   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
     55   typedef typename MatrixType::StorageIndex StorageIndex;
     56   typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
     57   enum {
     58     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     59     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     60     DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
     61     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     62     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
     63     MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
     64     MatrixOptions = MatrixType::Options
     65   };
     66 
     67   typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
     68   typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
     69   typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
     70 
     71   Derived& derived() { return *static_cast<Derived*>(this); }
     72   const Derived& derived() const { return *static_cast<const Derived*>(this); }
     73 
     74   /** \returns the \a U matrix.
     75    *
     76    * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     77    * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
     78    *
     79    * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
     80    *
     81    * This method asserts that you asked for \a U to be computed.
     82    */
     83   const MatrixUType& matrixU() const
     84   {
     85     eigen_assert(m_isInitialized && "SVD is not initialized.");
     86     eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
     87     return m_matrixU;
     88   }
     89 
     90   /** \returns the \a V matrix.
     91    *
     92    * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
     93    * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
     94    *
     95    * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
     96    *
     97    * This method asserts that you asked for \a V to be computed.
     98    */
     99   const MatrixVType& matrixV() const
    100   {
    101     eigen_assert(m_isInitialized && "SVD is not initialized.");
    102     eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
    103     return m_matrixV;
    104   }
    105 
    106   /** \returns the vector of singular values.
    107    *
    108    * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
    109    * returned vector has size \a m.  Singular values are always sorted in decreasing order.
    110    */
    111   const SingularValuesType& singularValues() const
    112   {
    113     eigen_assert(m_isInitialized && "SVD is not initialized.");
    114     return m_singularValues;
    115   }
    116 
    117   /** \returns the number of singular values that are not exactly 0 */
    118   Index nonzeroSingularValues() const
    119   {
    120     eigen_assert(m_isInitialized && "SVD is not initialized.");
    121     return m_nonzeroSingularValues;
    122   }
    123 
    124   /** \returns the rank of the matrix of which \c *this is the SVD.
    125     *
    126     * \note This method has to determine which singular values should be considered nonzero.
    127     *       For that, it uses the threshold value that you can control by calling
    128     *       setThreshold(const RealScalar&).
    129     */
    130   inline Index rank() const
    131   {
    132     using std::abs;
    133     eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    134     if(m_singularValues.size()==0) return 0;
    135     RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
    136     Index i = m_nonzeroSingularValues-1;
    137     while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
    138     return i+1;
    139   }
    140 
    141   /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
    142     * which need to determine when singular values are to be considered nonzero.
    143     * This is not used for the SVD decomposition itself.
    144     *
    145     * When it needs to get the threshold value, Eigen calls threshold().
    146     * The default is \c NumTraits<Scalar>::epsilon()
    147     *
    148     * \param threshold The new value to use as the threshold.
    149     *
    150     * A singular value will be considered nonzero if its value is strictly greater than
    151     *  \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
    152     *
    153     * If you want to come back to the default behavior, call setThreshold(Default_t)
    154     */
    155   Derived& setThreshold(const RealScalar& threshold)
    156   {
    157     m_usePrescribedThreshold = true;
    158     m_prescribedThreshold = threshold;
    159     return derived();
    160   }
    161 
    162   /** Allows to come back to the default behavior, letting Eigen use its default formula for
    163     * determining the threshold.
    164     *
    165     * You should pass the special object Eigen::Default as parameter here.
    166     * \code svd.setThreshold(Eigen::Default); \endcode
    167     *
    168     * See the documentation of setThreshold(const RealScalar&).
    169     */
    170   Derived& setThreshold(Default_t)
    171   {
    172     m_usePrescribedThreshold = false;
    173     return derived();
    174   }
    175 
    176   /** Returns the threshold that will be used by certain methods such as rank().
    177     *
    178     * See the documentation of setThreshold(const RealScalar&).
    179     */
    180   RealScalar threshold() const
    181   {
    182     eigen_assert(m_isInitialized || m_usePrescribedThreshold);
    183     return m_usePrescribedThreshold ? m_prescribedThreshold
    184                                     : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
    185   }
    186 
    187   /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
    188   inline bool computeU() const { return m_computeFullU || m_computeThinU; }
    189   /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
    190   inline bool computeV() const { return m_computeFullV || m_computeThinV; }
    191 
    192   inline Index rows() const { return m_rows; }
    193   inline Index cols() const { return m_cols; }
    194 
    195   /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
    196     *
    197     * \param b the right-hand-side of the equation to solve.
    198     *
    199     * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
    200     *
    201     * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
    202     * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
    203     */
    204   template<typename Rhs>
    205   inline const Solve<Derived, Rhs>
    206   solve(const MatrixBase<Rhs>& b) const
    207   {
    208     eigen_assert(m_isInitialized && "SVD is not initialized.");
    209     eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
    210     return Solve<Derived, Rhs>(derived(), b.derived());
    211   }
    212 
    213   #ifndef EIGEN_PARSED_BY_DOXYGEN
    214   template<typename RhsType, typename DstType>
    215   EIGEN_DEVICE_FUNC
    216   void _solve_impl(const RhsType &rhs, DstType &dst) const;
    217   #endif
    218 
    219 protected:
    220 
    221   static void check_template_parameters()
    222   {
    223     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    224   }
    225 
    226   // return true if already allocated
    227   bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
    228 
    229   MatrixUType m_matrixU;
    230   MatrixVType m_matrixV;
    231   SingularValuesType m_singularValues;
    232   bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
    233   bool m_computeFullU, m_computeThinU;
    234   bool m_computeFullV, m_computeThinV;
    235   unsigned int m_computationOptions;
    236   Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
    237   RealScalar m_prescribedThreshold;
    238 
    239   /** \brief Default Constructor.
    240    *
    241    * Default constructor of SVDBase
    242    */
    243   SVDBase()
    244     : m_isInitialized(false),
    245       m_isAllocated(false),
    246       m_usePrescribedThreshold(false),
    247       m_computationOptions(0),
    248       m_rows(-1), m_cols(-1), m_diagSize(0)
    249   {
    250     check_template_parameters();
    251   }
    252 
    253 
    254 };
    255 
    256 #ifndef EIGEN_PARSED_BY_DOXYGEN
    257 template<typename Derived>
    258 template<typename RhsType, typename DstType>
    259 void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
    260 {
    261   eigen_assert(rhs.rows() == rows());
    262 
    263   // A = U S V^*
    264   // So A^{-1} = V S^{-1} U^*
    265 
    266   Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
    267   Index l_rank = rank();
    268   tmp.noalias() =  m_matrixU.leftCols(l_rank).adjoint() * rhs;
    269   tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
    270   dst = m_matrixV.leftCols(l_rank) * tmp;
    271 }
    272 #endif
    273 
    274 template<typename MatrixType>
    275 bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
    276 {
    277   eigen_assert(rows >= 0 && cols >= 0);
    278 
    279   if (m_isAllocated &&
    280       rows == m_rows &&
    281       cols == m_cols &&
    282       computationOptions == m_computationOptions)
    283   {
    284     return true;
    285   }
    286 
    287   m_rows = rows;
    288   m_cols = cols;
    289   m_isInitialized = false;
    290   m_isAllocated = true;
    291   m_computationOptions = computationOptions;
    292   m_computeFullU = (computationOptions & ComputeFullU) != 0;
    293   m_computeThinU = (computationOptions & ComputeThinU) != 0;
    294   m_computeFullV = (computationOptions & ComputeFullV) != 0;
    295   m_computeThinV = (computationOptions & ComputeThinV) != 0;
    296   eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
    297   eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
    298   eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
    299 	       "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
    300 
    301   m_diagSize = (std::min)(m_rows, m_cols);
    302   m_singularValues.resize(m_diagSize);
    303   if(RowsAtCompileTime==Dynamic)
    304     m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
    305   if(ColsAtCompileTime==Dynamic)
    306     m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
    307 
    308   return false;
    309 }
    310 
    311 }// end namespace
    312 
    313 #endif // EIGEN_SVDBASE_H
    314