Home | History | Annotate | Download | only in dec
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // main entry for the decoder
     11 //
     12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com)
     13 //          Jyrki Alakuijala (jyrki (at) google.com)
     14 
     15 #include <stdlib.h>
     16 
     17 #include "src/dec/alphai_dec.h"
     18 #include "src/dec/vp8li_dec.h"
     19 #include "src/dsp/dsp.h"
     20 #include "src/dsp/lossless.h"
     21 #include "src/dsp/lossless_common.h"
     22 #include "src/dsp/yuv.h"
     23 #include "src/utils/endian_inl_utils.h"
     24 #include "src/utils/huffman_utils.h"
     25 #include "src/utils/utils.h"
     26 
     27 #define NUM_ARGB_CACHE_ROWS          16
     28 
     29 static const int kCodeLengthLiterals = 16;
     30 static const int kCodeLengthRepeatCode = 16;
     31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
     32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
     33 
     34 // -----------------------------------------------------------------------------
     35 //  Five Huffman codes are used at each meta code:
     36 //  1. green + length prefix codes + color cache codes,
     37 //  2. alpha,
     38 //  3. red,
     39 //  4. blue, and,
     40 //  5. distance prefix codes.
     41 typedef enum {
     42   GREEN = 0,
     43   RED   = 1,
     44   BLUE  = 2,
     45   ALPHA = 3,
     46   DIST  = 4
     47 } HuffIndex;
     48 
     49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
     50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
     51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
     52   NUM_DISTANCE_CODES
     53 };
     54 
     55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
     56   0, 1, 1, 1, 0
     57 };
     58 
     59 #define NUM_CODE_LENGTH_CODES       19
     60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
     61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
     62 };
     63 
     64 #define CODE_TO_PLANE_CODES        120
     65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
     66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
     67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
     68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
     69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
     70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
     71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
     72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
     73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
     74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
     75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
     76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
     77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
     78 };
     79 
     80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
     81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
     82 // distance) and lookup table sizes for them in worst case are 630 and 410
     83 // respectively. Size of green alphabet depends on color cache size and is equal
     84 // to 256 (green component values) + 24 (length prefix values)
     85 // + color_cache_size (between 0 and 2048).
     86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
     87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
     88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
     89 static const uint16_t kTableSize[12] = {
     90   FIXED_TABLE_SIZE + 654,
     91   FIXED_TABLE_SIZE + 656,
     92   FIXED_TABLE_SIZE + 658,
     93   FIXED_TABLE_SIZE + 662,
     94   FIXED_TABLE_SIZE + 670,
     95   FIXED_TABLE_SIZE + 686,
     96   FIXED_TABLE_SIZE + 718,
     97   FIXED_TABLE_SIZE + 782,
     98   FIXED_TABLE_SIZE + 912,
     99   FIXED_TABLE_SIZE + 1168,
    100   FIXED_TABLE_SIZE + 1680,
    101   FIXED_TABLE_SIZE + 2704
    102 };
    103 
    104 static int DecodeImageStream(int xsize, int ysize,
    105                              int is_level0,
    106                              VP8LDecoder* const dec,
    107                              uint32_t** const decoded_data);
    108 
    109 //------------------------------------------------------------------------------
    110 
    111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
    112   return (size >= VP8L_FRAME_HEADER_SIZE &&
    113           data[0] == VP8L_MAGIC_BYTE &&
    114           (data[4] >> 5) == 0);  // version
    115 }
    116 
    117 static int ReadImageInfo(VP8LBitReader* const br,
    118                          int* const width, int* const height,
    119                          int* const has_alpha) {
    120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
    121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    123   *has_alpha = VP8LReadBits(br, 1);
    124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
    125   return !br->eos_;
    126 }
    127 
    128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
    129                 int* const width, int* const height, int* const has_alpha) {
    130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    131     return 0;         // not enough data
    132   } else if (!VP8LCheckSignature(data, data_size)) {
    133     return 0;         // bad signature
    134   } else {
    135     int w, h, a;
    136     VP8LBitReader br;
    137     VP8LInitBitReader(&br, data, data_size);
    138     if (!ReadImageInfo(&br, &w, &h, &a)) {
    139       return 0;
    140     }
    141     if (width != NULL) *width = w;
    142     if (height != NULL) *height = h;
    143     if (has_alpha != NULL) *has_alpha = a;
    144     return 1;
    145   }
    146 }
    147 
    148 //------------------------------------------------------------------------------
    149 
    150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
    151                                        VP8LBitReader* const br) {
    152   int extra_bits, offset;
    153   if (distance_symbol < 4) {
    154     return distance_symbol + 1;
    155   }
    156   extra_bits = (distance_symbol - 2) >> 1;
    157   offset = (2 + (distance_symbol & 1)) << extra_bits;
    158   return offset + VP8LReadBits(br, extra_bits) + 1;
    159 }
    160 
    161 static WEBP_INLINE int GetCopyLength(int length_symbol,
    162                                      VP8LBitReader* const br) {
    163   // Length and distance prefixes are encoded the same way.
    164   return GetCopyDistance(length_symbol, br);
    165 }
    166 
    167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
    168   if (plane_code > CODE_TO_PLANE_CODES) {
    169     return plane_code - CODE_TO_PLANE_CODES;
    170   } else {
    171     const int dist_code = kCodeToPlane[plane_code - 1];
    172     const int yoffset = dist_code >> 4;
    173     const int xoffset = 8 - (dist_code & 0xf);
    174     const int dist = yoffset * xsize + xoffset;
    175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
    176   }
    177 }
    178 
    179 //------------------------------------------------------------------------------
    180 // Decodes the next Huffman code from bit-stream.
    181 // FillBitWindow(br) needs to be called at minimum every second call
    182 // to ReadSymbol, in order to pre-fetch enough bits.
    183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
    184                                   VP8LBitReader* const br) {
    185   int nbits;
    186   uint32_t val = VP8LPrefetchBits(br);
    187   table += val & HUFFMAN_TABLE_MASK;
    188   nbits = table->bits - HUFFMAN_TABLE_BITS;
    189   if (nbits > 0) {
    190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
    191     val = VP8LPrefetchBits(br);
    192     table += table->value;
    193     table += val & ((1 << nbits) - 1);
    194   }
    195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
    196   return table->value;
    197 }
    198 
    199 // Reads packed symbol depending on GREEN channel
    200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
    201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
    202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
    203                                          VP8LBitReader* const br,
    204                                          uint32_t* const dst) {
    205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
    206   const HuffmanCode32 code = group->packed_table[val];
    207   assert(group->use_packed_table);
    208   if (code.bits < BITS_SPECIAL_MARKER) {
    209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
    210     *dst = code.value;
    211     return PACKED_NON_LITERAL_CODE;
    212   } else {
    213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
    214     assert(code.value >= NUM_LITERAL_CODES);
    215     return code.value;
    216   }
    217 }
    218 
    219 static int AccumulateHCode(HuffmanCode hcode, int shift,
    220                            HuffmanCode32* const huff) {
    221   huff->bits += hcode.bits;
    222   huff->value |= (uint32_t)hcode.value << shift;
    223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
    224   return hcode.bits;
    225 }
    226 
    227 static void BuildPackedTable(HTreeGroup* const htree_group) {
    228   uint32_t code;
    229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
    230     uint32_t bits = code;
    231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
    232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
    233     if (hcode.value >= NUM_LITERAL_CODES) {
    234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
    235       huff->value = hcode.value;
    236     } else {
    237       huff->bits = 0;
    238       huff->value = 0;
    239       bits >>= AccumulateHCode(hcode, 8, huff);
    240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
    241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
    242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
    243       (void)bits;
    244     }
    245   }
    246 }
    247 
    248 static int ReadHuffmanCodeLengths(
    249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
    250     int num_symbols, int* const code_lengths) {
    251   int ok = 0;
    252   VP8LBitReader* const br = &dec->br_;
    253   int symbol;
    254   int max_symbol;
    255   int prev_code_len = DEFAULT_CODE_LENGTH;
    256   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
    257 
    258   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
    259                              code_length_code_lengths,
    260                              NUM_CODE_LENGTH_CODES)) {
    261     goto End;
    262   }
    263 
    264   if (VP8LReadBits(br, 1)) {    // use length
    265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
    267     if (max_symbol > num_symbols) {
    268       goto End;
    269     }
    270   } else {
    271     max_symbol = num_symbols;
    272   }
    273 
    274   symbol = 0;
    275   while (symbol < num_symbols) {
    276     const HuffmanCode* p;
    277     int code_len;
    278     if (max_symbol-- == 0) break;
    279     VP8LFillBitWindow(br);
    280     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
    281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
    282     code_len = p->value;
    283     if (code_len < kCodeLengthLiterals) {
    284       code_lengths[symbol++] = code_len;
    285       if (code_len != 0) prev_code_len = code_len;
    286     } else {
    287       const int use_prev = (code_len == kCodeLengthRepeatCode);
    288       const int slot = code_len - kCodeLengthLiterals;
    289       const int extra_bits = kCodeLengthExtraBits[slot];
    290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
    291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
    292       if (symbol + repeat > num_symbols) {
    293         goto End;
    294       } else {
    295         const int length = use_prev ? prev_code_len : 0;
    296         while (repeat-- > 0) code_lengths[symbol++] = length;
    297       }
    298     }
    299   }
    300   ok = 1;
    301 
    302  End:
    303   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    304   return ok;
    305 }
    306 
    307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
    308 // tree.
    309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
    310                            int* const code_lengths, HuffmanCode* const table) {
    311   int ok = 0;
    312   int size = 0;
    313   VP8LBitReader* const br = &dec->br_;
    314   const int simple_code = VP8LReadBits(br, 1);
    315 
    316   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
    317 
    318   if (simple_code) {  // Read symbols, codes & code lengths directly.
    319     const int num_symbols = VP8LReadBits(br, 1) + 1;
    320     const int first_symbol_len_code = VP8LReadBits(br, 1);
    321     // The first code is either 1 bit or 8 bit code.
    322     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    323     code_lengths[symbol] = 1;
    324     // The second code (if present), is always 8 bit long.
    325     if (num_symbols == 2) {
    326       symbol = VP8LReadBits(br, 8);
    327       code_lengths[symbol] = 1;
    328     }
    329     ok = 1;
    330   } else {  // Decode Huffman-coded code lengths.
    331     int i;
    332     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    333     const int num_codes = VP8LReadBits(br, 4) + 4;
    334     if (num_codes > NUM_CODE_LENGTH_CODES) {
    335       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    336       return 0;
    337     }
    338 
    339     for (i = 0; i < num_codes; ++i) {
    340       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    341     }
    342     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
    343                                 code_lengths);
    344   }
    345 
    346   ok = ok && !br->eos_;
    347   if (ok) {
    348     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
    349                                  code_lengths, alphabet_size);
    350   }
    351   if (!ok || size == 0) {
    352     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    353     return 0;
    354   }
    355   return size;
    356 }
    357 
    358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
    359                             int color_cache_bits, int allow_recursion) {
    360   int i, j;
    361   VP8LBitReader* const br = &dec->br_;
    362   VP8LMetadata* const hdr = &dec->hdr_;
    363   uint32_t* huffman_image = NULL;
    364   HTreeGroup* htree_groups = NULL;
    365   HuffmanCode* huffman_tables = NULL;
    366   HuffmanCode* next = NULL;
    367   int num_htree_groups = 1;
    368   int max_alphabet_size = 0;
    369   int* code_lengths = NULL;
    370   const int table_size = kTableSize[color_cache_bits];
    371 
    372   if (allow_recursion && VP8LReadBits(br, 1)) {
    373     // use meta Huffman codes.
    374     const int huffman_precision = VP8LReadBits(br, 3) + 2;
    375     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    376     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    377     const int huffman_pixs = huffman_xsize * huffman_ysize;
    378     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
    379                            &huffman_image)) {
    380       goto Error;
    381     }
    382     hdr->huffman_subsample_bits_ = huffman_precision;
    383     for (i = 0; i < huffman_pixs; ++i) {
    384       // The huffman data is stored in red and green bytes.
    385       const int group = (huffman_image[i] >> 8) & 0xffff;
    386       huffman_image[i] = group;
    387       if (group >= num_htree_groups) {
    388         num_htree_groups = group + 1;
    389       }
    390     }
    391   }
    392 
    393   if (br->eos_) goto Error;
    394 
    395   // Find maximum alphabet size for the htree group.
    396   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    397     int alphabet_size = kAlphabetSize[j];
    398     if (j == 0 && color_cache_bits > 0) {
    399       alphabet_size += 1 << color_cache_bits;
    400     }
    401     if (max_alphabet_size < alphabet_size) {
    402       max_alphabet_size = alphabet_size;
    403     }
    404   }
    405 
    406   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
    407                                                 sizeof(*huffman_tables));
    408   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
    409   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
    410                                       sizeof(*code_lengths));
    411 
    412   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
    413     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    414     goto Error;
    415   }
    416 
    417   next = huffman_tables;
    418   for (i = 0; i < num_htree_groups; ++i) {
    419     HTreeGroup* const htree_group = &htree_groups[i];
    420     HuffmanCode** const htrees = htree_group->htrees;
    421     int size;
    422     int total_size = 0;
    423     int is_trivial_literal = 1;
    424     int max_bits = 0;
    425     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    426       int alphabet_size = kAlphabetSize[j];
    427       htrees[j] = next;
    428       if (j == 0 && color_cache_bits > 0) {
    429         alphabet_size += 1 << color_cache_bits;
    430       }
    431       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
    432       if (size == 0) {
    433         goto Error;
    434       }
    435       if (is_trivial_literal && kLiteralMap[j] == 1) {
    436         is_trivial_literal = (next->bits == 0);
    437       }
    438       total_size += next->bits;
    439       next += size;
    440       if (j <= ALPHA) {
    441         int local_max_bits = code_lengths[0];
    442         int k;
    443         for (k = 1; k < alphabet_size; ++k) {
    444           if (code_lengths[k] > local_max_bits) {
    445             local_max_bits = code_lengths[k];
    446           }
    447         }
    448         max_bits += local_max_bits;
    449       }
    450     }
    451     htree_group->is_trivial_literal = is_trivial_literal;
    452     htree_group->is_trivial_code = 0;
    453     if (is_trivial_literal) {
    454       const int red = htrees[RED][0].value;
    455       const int blue = htrees[BLUE][0].value;
    456       const int alpha = htrees[ALPHA][0].value;
    457       htree_group->literal_arb =
    458           ((uint32_t)alpha << 24) | (red << 16) | blue;
    459       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
    460         htree_group->is_trivial_code = 1;
    461         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
    462       }
    463     }
    464     htree_group->use_packed_table = !htree_group->is_trivial_code &&
    465                                     (max_bits < HUFFMAN_PACKED_BITS);
    466     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
    467   }
    468   WebPSafeFree(code_lengths);
    469 
    470   // All OK. Finalize pointers and return.
    471   hdr->huffman_image_ = huffman_image;
    472   hdr->num_htree_groups_ = num_htree_groups;
    473   hdr->htree_groups_ = htree_groups;
    474   hdr->huffman_tables_ = huffman_tables;
    475   return 1;
    476 
    477  Error:
    478   WebPSafeFree(code_lengths);
    479   WebPSafeFree(huffman_image);
    480   WebPSafeFree(huffman_tables);
    481   VP8LHtreeGroupsFree(htree_groups);
    482   return 0;
    483 }
    484 
    485 //------------------------------------------------------------------------------
    486 // Scaling.
    487 
    488 #if !defined(WEBP_REDUCE_SIZE)
    489 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
    490   const int num_channels = 4;
    491   const int in_width = io->mb_w;
    492   const int out_width = io->scaled_width;
    493   const int in_height = io->mb_h;
    494   const int out_height = io->scaled_height;
    495   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
    496   rescaler_t* work;        // Rescaler work area.
    497   const uint64_t scaled_data_size = (uint64_t)out_width;
    498   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
    499   const uint64_t memory_size = sizeof(*dec->rescaler) +
    500                                work_size * sizeof(*work) +
    501                                scaled_data_size * sizeof(*scaled_data);
    502   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
    503   if (memory == NULL) {
    504     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    505     return 0;
    506   }
    507   assert(dec->rescaler_memory == NULL);
    508   dec->rescaler_memory = memory;
    509 
    510   dec->rescaler = (WebPRescaler*)memory;
    511   memory += sizeof(*dec->rescaler);
    512   work = (rescaler_t*)memory;
    513   memory += work_size * sizeof(*work);
    514   scaled_data = (uint32_t*)memory;
    515 
    516   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
    517                    out_width, out_height, 0, num_channels, work);
    518   return 1;
    519 }
    520 #endif   // WEBP_REDUCE_SIZE
    521 
    522 //------------------------------------------------------------------------------
    523 // Export to ARGB
    524 
    525 #if !defined(WEBP_REDUCE_SIZE)
    526 
    527 // We have special "export" function since we need to convert from BGRA
    528 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
    529                   int rgba_stride, uint8_t* const rgba) {
    530   uint32_t* const src = (uint32_t*)rescaler->dst;
    531   const int dst_width = rescaler->dst_width;
    532   int num_lines_out = 0;
    533   while (WebPRescalerHasPendingOutput(rescaler)) {
    534     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    535     WebPRescalerExportRow(rescaler);
    536     WebPMultARGBRow(src, dst_width, 1);
    537     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    538     ++num_lines_out;
    539   }
    540   return num_lines_out;
    541 }
    542 
    543 // Emit scaled rows.
    544 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
    545                                 uint8_t* in, int in_stride, int mb_h,
    546                                 uint8_t* const out, int out_stride) {
    547   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
    548   int num_lines_in = 0;
    549   int num_lines_out = 0;
    550   while (num_lines_in < mb_h) {
    551     uint8_t* const row_in = in + num_lines_in * in_stride;
    552     uint8_t* const row_out = out + num_lines_out * out_stride;
    553     const int lines_left = mb_h - num_lines_in;
    554     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    555     int lines_imported;
    556     assert(needed_lines > 0 && needed_lines <= lines_left);
    557     WebPMultARGBRows(row_in, in_stride,
    558                      dec->rescaler->src_width, needed_lines, 0);
    559     lines_imported =
    560         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
    561     assert(lines_imported == needed_lines);
    562     num_lines_in += lines_imported;
    563     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
    564   }
    565   return num_lines_out;
    566 }
    567 
    568 #endif   // WEBP_REDUCE_SIZE
    569 
    570 // Emit rows without any scaling.
    571 static int EmitRows(WEBP_CSP_MODE colorspace,
    572                     const uint8_t* row_in, int in_stride,
    573                     int mb_w, int mb_h,
    574                     uint8_t* const out, int out_stride) {
    575   int lines = mb_h;
    576   uint8_t* row_out = out;
    577   while (lines-- > 0) {
    578     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    579     row_in += in_stride;
    580     row_out += out_stride;
    581   }
    582   return mb_h;  // Num rows out == num rows in.
    583 }
    584 
    585 //------------------------------------------------------------------------------
    586 // Export to YUVA
    587 
    588 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
    589                           const WebPDecBuffer* const output) {
    590   const WebPYUVABuffer* const buf = &output->u.YUVA;
    591 
    592   // first, the luma plane
    593   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
    594 
    595   // then U/V planes
    596   {
    597     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    598     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    599     // even lines: store values
    600     // odd lines: average with previous values
    601     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
    602   }
    603   // Lastly, store alpha if needed.
    604   if (buf->a != NULL) {
    605     uint8_t* const a = buf->a + y_pos * buf->a_stride;
    606 #if defined(WORDS_BIGENDIAN)
    607     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
    608 #else
    609     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
    610 #endif
    611   }
    612 }
    613 
    614 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
    615   WebPRescaler* const rescaler = dec->rescaler;
    616   uint32_t* const src = (uint32_t*)rescaler->dst;
    617   const int dst_width = rescaler->dst_width;
    618   int num_lines_out = 0;
    619   while (WebPRescalerHasPendingOutput(rescaler)) {
    620     WebPRescalerExportRow(rescaler);
    621     WebPMultARGBRow(src, dst_width, 1);
    622     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    623     ++y_pos;
    624     ++num_lines_out;
    625   }
    626   return num_lines_out;
    627 }
    628 
    629 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
    630                                 uint8_t* in, int in_stride, int mb_h) {
    631   int num_lines_in = 0;
    632   int y_pos = dec->last_out_row_;
    633   while (num_lines_in < mb_h) {
    634     const int lines_left = mb_h - num_lines_in;
    635     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    636     int lines_imported;
    637     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
    638     lines_imported =
    639         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
    640     assert(lines_imported == needed_lines);
    641     num_lines_in += lines_imported;
    642     in += needed_lines * in_stride;
    643     y_pos += ExportYUVA(dec, y_pos);
    644   }
    645   return y_pos;
    646 }
    647 
    648 static int EmitRowsYUVA(const VP8LDecoder* const dec,
    649                         const uint8_t* in, int in_stride,
    650                         int mb_w, int num_rows) {
    651   int y_pos = dec->last_out_row_;
    652   while (num_rows-- > 0) {
    653     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
    654     in += in_stride;
    655     ++y_pos;
    656   }
    657   return y_pos;
    658 }
    659 
    660 //------------------------------------------------------------------------------
    661 // Cropping.
    662 
    663 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
    664 // crop options. Also updates the input data pointer, so that it points to the
    665 // start of the cropped window. Note that pixels are in ARGB format even if
    666 // 'in_data' is uint8_t*.
    667 // Returns true if the crop window is not empty.
    668 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
    669                          uint8_t** const in_data, int pixel_stride) {
    670   assert(y_start < y_end);
    671   assert(io->crop_left < io->crop_right);
    672   if (y_end > io->crop_bottom) {
    673     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
    674   }
    675   if (y_start < io->crop_top) {
    676     const int delta = io->crop_top - y_start;
    677     y_start = io->crop_top;
    678     *in_data += delta * pixel_stride;
    679   }
    680   if (y_start >= y_end) return 0;  // Crop window is empty.
    681 
    682   *in_data += io->crop_left * sizeof(uint32_t);
    683 
    684   io->mb_y = y_start - io->crop_top;
    685   io->mb_w = io->crop_right - io->crop_left;
    686   io->mb_h = y_end - y_start;
    687   return 1;  // Non-empty crop window.
    688 }
    689 
    690 //------------------------------------------------------------------------------
    691 
    692 static WEBP_INLINE int GetMetaIndex(
    693     const uint32_t* const image, int xsize, int bits, int x, int y) {
    694   if (bits == 0) return 0;
    695   return image[xsize * (y >> bits) + (x >> bits)];
    696 }
    697 
    698 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
    699                                                    int x, int y) {
    700   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
    701                                       hdr->huffman_subsample_bits_, x, y);
    702   assert(meta_index < hdr->num_htree_groups_);
    703   return hdr->htree_groups_ + meta_index;
    704 }
    705 
    706 //------------------------------------------------------------------------------
    707 // Main loop, with custom row-processing function
    708 
    709 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
    710 
    711 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
    712                                    const uint32_t* const rows) {
    713   int n = dec->next_transform_;
    714   const int cache_pixs = dec->width_ * num_rows;
    715   const int start_row = dec->last_row_;
    716   const int end_row = start_row + num_rows;
    717   const uint32_t* rows_in = rows;
    718   uint32_t* const rows_out = dec->argb_cache_;
    719 
    720   // Inverse transforms.
    721   while (n-- > 0) {
    722     VP8LTransform* const transform = &dec->transforms_[n];
    723     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    724     rows_in = rows_out;
    725   }
    726   if (rows_in != rows_out) {
    727     // No transform called, hence just copy.
    728     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
    729   }
    730 }
    731 
    732 // Processes (transforms, scales & color-converts) the rows decoded after the
    733 // last call.
    734 static void ProcessRows(VP8LDecoder* const dec, int row) {
    735   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
    736   const int num_rows = row - dec->last_row_;
    737 
    738   assert(row <= dec->io_->crop_bottom);
    739   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
    740   // of argb_cache_), but we currently don't need more than that.
    741   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
    742   if (num_rows > 0) {    // Emit output.
    743     VP8Io* const io = dec->io_;
    744     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
    745     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
    746 
    747     ApplyInverseTransforms(dec, num_rows, rows);
    748     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
    749       // Nothing to output (this time).
    750     } else {
    751       const WebPDecBuffer* const output = dec->output_;
    752       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
    753         const WebPRGBABuffer* const buf = &output->u.RGBA;
    754         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
    755         const int num_rows_out =
    756 #if !defined(WEBP_REDUCE_SIZE)
    757          io->use_scaling ?
    758             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
    759                                  rgba, buf->stride) :
    760 #endif  // WEBP_REDUCE_SIZE
    761             EmitRows(output->colorspace, rows_data, in_stride,
    762                      io->mb_w, io->mb_h, rgba, buf->stride);
    763         // Update 'last_out_row_'.
    764         dec->last_out_row_ += num_rows_out;
    765       } else {                              // convert to YUVA
    766         dec->last_out_row_ = io->use_scaling ?
    767             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
    768             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
    769       }
    770       assert(dec->last_out_row_ <= output->height);
    771     }
    772   }
    773 
    774   // Update 'last_row_'.
    775   dec->last_row_ = row;
    776   assert(dec->last_row_ <= dec->height_);
    777 }
    778 
    779 // Row-processing for the special case when alpha data contains only one
    780 // transform (color indexing), and trivial non-green literals.
    781 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
    782   int i;
    783   if (hdr->color_cache_size_ > 0) return 0;
    784   // When the Huffman tree contains only one symbol, we can skip the
    785   // call to ReadSymbol() for red/blue/alpha channels.
    786   for (i = 0; i < hdr->num_htree_groups_; ++i) {
    787     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
    788     if (htrees[RED][0].bits > 0) return 0;
    789     if (htrees[BLUE][0].bits > 0) return 0;
    790     if (htrees[ALPHA][0].bits > 0) return 0;
    791   }
    792   return 1;
    793 }
    794 
    795 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
    796                              int first_row, int last_row,
    797                              uint8_t* out, int stride) {
    798   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
    799     int y;
    800     const uint8_t* prev_line = alph_dec->prev_line_;
    801     assert(WebPUnfilters[alph_dec->filter_] != NULL);
    802     for (y = first_row; y < last_row; ++y) {
    803       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
    804       prev_line = out;
    805       out += stride;
    806     }
    807     alph_dec->prev_line_ = prev_line;
    808   }
    809 }
    810 
    811 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
    812   // For vertical and gradient filtering, we need to decode the part above the
    813   // crop_top row, in order to have the correct spatial predictors.
    814   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
    815   const int top_row =
    816       (alph_dec->filter_ == WEBP_FILTER_NONE ||
    817        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
    818                                                     : dec->last_row_;
    819   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
    820   assert(last_row <= dec->io_->crop_bottom);
    821   if (last_row > first_row) {
    822     // Special method for paletted alpha data. We only process the cropped area.
    823     const int width = dec->io_->width;
    824     uint8_t* out = alph_dec->output_ + width * first_row;
    825     const uint8_t* const in =
    826       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
    827     VP8LTransform* const transform = &dec->transforms_[0];
    828     assert(dec->next_transform_ == 1);
    829     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
    830     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
    831                                         in, out);
    832     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
    833   }
    834   dec->last_row_ = dec->last_out_row_ = last_row;
    835 }
    836 
    837 //------------------------------------------------------------------------------
    838 // Helper functions for fast pattern copy (8b and 32b)
    839 
    840 // cyclic rotation of pattern word
    841 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
    842 #if defined(WORDS_BIGENDIAN)
    843   return ((V & 0xff000000u) >> 24) | (V << 8);
    844 #else
    845   return ((V & 0xffu) << 24) | (V >> 8);
    846 #endif
    847 }
    848 
    849 // copy 1, 2 or 4-bytes pattern
    850 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
    851                                            int length, uint32_t pattern) {
    852   int i;
    853   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
    854   while ((uintptr_t)dst & 3) {
    855     *dst++ = *src++;
    856     pattern = Rotate8b(pattern);
    857     --length;
    858   }
    859   // Copy the pattern 4 bytes at a time.
    860   for (i = 0; i < (length >> 2); ++i) {
    861     ((uint32_t*)dst)[i] = pattern;
    862   }
    863   // Finish with left-overs. 'pattern' is still correctly positioned,
    864   // so no Rotate8b() call is needed.
    865   for (i <<= 2; i < length; ++i) {
    866     dst[i] = src[i];
    867   }
    868 }
    869 
    870 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
    871   const uint8_t* src = dst - dist;
    872   if (length >= 8) {
    873     uint32_t pattern = 0;
    874     switch (dist) {
    875       case 1:
    876         pattern = src[0];
    877 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
    878         pattern |= pattern << 8;
    879         pattern |= pattern << 16;
    880 #elif defined(WEBP_USE_MIPS_DSP_R2)
    881         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
    882 #else
    883         pattern = 0x01010101u * pattern;
    884 #endif
    885         break;
    886       case 2:
    887         memcpy(&pattern, src, sizeof(uint16_t));
    888 #if defined(__arm__) || defined(_M_ARM)
    889         pattern |= pattern << 16;
    890 #elif defined(WEBP_USE_MIPS_DSP_R2)
    891         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
    892 #else
    893         pattern = 0x00010001u * pattern;
    894 #endif
    895         break;
    896       case 4:
    897         memcpy(&pattern, src, sizeof(uint32_t));
    898         break;
    899       default:
    900         goto Copy;
    901         break;
    902     }
    903     CopySmallPattern8b(src, dst, length, pattern);
    904     return;
    905   }
    906  Copy:
    907   if (dist >= length) {  // no overlap -> use memcpy()
    908     memcpy(dst, src, length * sizeof(*dst));
    909   } else {
    910     int i;
    911     for (i = 0; i < length; ++i) dst[i] = src[i];
    912   }
    913 }
    914 
    915 // copy pattern of 1 or 2 uint32_t's
    916 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
    917                                             uint32_t* dst,
    918                                             int length, uint64_t pattern) {
    919   int i;
    920   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
    921     *dst++ = *src++;
    922     pattern = (pattern >> 32) | (pattern << 32);
    923     --length;
    924   }
    925   assert(0 == ((uintptr_t)dst & 7));
    926   for (i = 0; i < (length >> 1); ++i) {
    927     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
    928   }
    929   if (length & 1) {                   // Finish with left-over.
    930     dst[i << 1] = src[i << 1];
    931   }
    932 }
    933 
    934 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
    935                                      int dist, int length) {
    936   const uint32_t* const src = dst - dist;
    937   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
    938     uint64_t pattern;
    939     if (dist == 1) {
    940       pattern = (uint64_t)src[0];
    941       pattern |= pattern << 32;
    942     } else {
    943       memcpy(&pattern, src, sizeof(pattern));
    944     }
    945     CopySmallPattern32b(src, dst, length, pattern);
    946   } else if (dist >= length) {  // no overlap
    947     memcpy(dst, src, length * sizeof(*dst));
    948   } else {
    949     int i;
    950     for (i = 0; i < length; ++i) dst[i] = src[i];
    951   }
    952 }
    953 
    954 //------------------------------------------------------------------------------
    955 
    956 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
    957                            int width, int height, int last_row) {
    958   int ok = 1;
    959   int row = dec->last_pixel_ / width;
    960   int col = dec->last_pixel_ % width;
    961   VP8LBitReader* const br = &dec->br_;
    962   VP8LMetadata* const hdr = &dec->hdr_;
    963   int pos = dec->last_pixel_;         // current position
    964   const int end = width * height;     // End of data
    965   const int last = width * last_row;  // Last pixel to decode
    966   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
    967   const int mask = hdr->huffman_mask_;
    968   const HTreeGroup* htree_group =
    969       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
    970   assert(pos <= end);
    971   assert(last_row <= height);
    972   assert(Is8bOptimizable(hdr));
    973 
    974   while (!br->eos_ && pos < last) {
    975     int code;
    976     // Only update when changing tile.
    977     if ((col & mask) == 0) {
    978       htree_group = GetHtreeGroupForPos(hdr, col, row);
    979     }
    980     assert(htree_group != NULL);
    981     VP8LFillBitWindow(br);
    982     code = ReadSymbol(htree_group->htrees[GREEN], br);
    983     if (code < NUM_LITERAL_CODES) {  // Literal
    984       data[pos] = code;
    985       ++pos;
    986       ++col;
    987       if (col >= width) {
    988         col = 0;
    989         ++row;
    990         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
    991           ExtractPalettedAlphaRows(dec, row);
    992         }
    993       }
    994     } else if (code < len_code_limit) {  // Backward reference
    995       int dist_code, dist;
    996       const int length_sym = code - NUM_LITERAL_CODES;
    997       const int length = GetCopyLength(length_sym, br);
    998       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
    999       VP8LFillBitWindow(br);
   1000       dist_code = GetCopyDistance(dist_symbol, br);
   1001       dist = PlaneCodeToDistance(width, dist_code);
   1002       if (pos >= dist && end - pos >= length) {
   1003         CopyBlock8b(data + pos, dist, length);
   1004       } else {
   1005         ok = 0;
   1006         goto End;
   1007       }
   1008       pos += length;
   1009       col += length;
   1010       while (col >= width) {
   1011         col -= width;
   1012         ++row;
   1013         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1014           ExtractPalettedAlphaRows(dec, row);
   1015         }
   1016       }
   1017       if (pos < last && (col & mask)) {
   1018         htree_group = GetHtreeGroupForPos(hdr, col, row);
   1019       }
   1020     } else {  // Not reached
   1021       ok = 0;
   1022       goto End;
   1023     }
   1024     br->eos_ = VP8LIsEndOfStream(br);
   1025   }
   1026   // Process the remaining rows corresponding to last row-block.
   1027   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
   1028 
   1029  End:
   1030   br->eos_ = VP8LIsEndOfStream(br);
   1031   if (!ok || (br->eos_ && pos < end)) {
   1032     ok = 0;
   1033     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
   1034                             : VP8_STATUS_BITSTREAM_ERROR;
   1035   } else {
   1036     dec->last_pixel_ = pos;
   1037   }
   1038   return ok;
   1039 }
   1040 
   1041 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
   1042   assert(dec->incremental_);
   1043   dec->saved_br_ = dec->br_;
   1044   dec->saved_last_pixel_ = last_pixel;
   1045   if (dec->hdr_.color_cache_size_ > 0) {
   1046     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
   1047   }
   1048 }
   1049 
   1050 static void RestoreState(VP8LDecoder* const dec) {
   1051   assert(dec->br_.eos_);
   1052   dec->status_ = VP8_STATUS_SUSPENDED;
   1053   dec->br_ = dec->saved_br_;
   1054   dec->last_pixel_ = dec->saved_last_pixel_;
   1055   if (dec->hdr_.color_cache_size_ > 0) {
   1056     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
   1057   }
   1058 }
   1059 
   1060 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
   1061 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
   1062                            int width, int height, int last_row,
   1063                            ProcessRowsFunc process_func) {
   1064   int row = dec->last_pixel_ / width;
   1065   int col = dec->last_pixel_ % width;
   1066   VP8LBitReader* const br = &dec->br_;
   1067   VP8LMetadata* const hdr = &dec->hdr_;
   1068   uint32_t* src = data + dec->last_pixel_;
   1069   uint32_t* last_cached = src;
   1070   uint32_t* const src_end = data + width * height;     // End of data
   1071   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
   1072   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
   1073   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
   1074   int next_sync_row = dec->incremental_ ? row : 1 << 24;
   1075   VP8LColorCache* const color_cache =
   1076       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
   1077   const int mask = hdr->huffman_mask_;
   1078   const HTreeGroup* htree_group =
   1079       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
   1080   assert(dec->last_row_ < last_row);
   1081   assert(src_last <= src_end);
   1082 
   1083   while (src < src_last) {
   1084     int code;
   1085     if (row >= next_sync_row) {
   1086       SaveState(dec, (int)(src - data));
   1087       next_sync_row = row + SYNC_EVERY_N_ROWS;
   1088     }
   1089     // Only update when changing tile. Note we could use this test:
   1090     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
   1091     // but that's actually slower and needs storing the previous col/row.
   1092     if ((col & mask) == 0) {
   1093       htree_group = GetHtreeGroupForPos(hdr, col, row);
   1094     }
   1095     assert(htree_group != NULL);
   1096     if (htree_group->is_trivial_code) {
   1097       *src = htree_group->literal_arb;
   1098       goto AdvanceByOne;
   1099     }
   1100     VP8LFillBitWindow(br);
   1101     if (htree_group->use_packed_table) {
   1102       code = ReadPackedSymbols(htree_group, br, src);
   1103       if (VP8LIsEndOfStream(br)) break;
   1104       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
   1105     } else {
   1106       code = ReadSymbol(htree_group->htrees[GREEN], br);
   1107     }
   1108     if (VP8LIsEndOfStream(br)) break;
   1109     if (code < NUM_LITERAL_CODES) {  // Literal
   1110       if (htree_group->is_trivial_literal) {
   1111         *src = htree_group->literal_arb | (code << 8);
   1112       } else {
   1113         int red, blue, alpha;
   1114         red = ReadSymbol(htree_group->htrees[RED], br);
   1115         VP8LFillBitWindow(br);
   1116         blue = ReadSymbol(htree_group->htrees[BLUE], br);
   1117         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
   1118         if (VP8LIsEndOfStream(br)) break;
   1119         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
   1120       }
   1121     AdvanceByOne:
   1122       ++src;
   1123       ++col;
   1124       if (col >= width) {
   1125         col = 0;
   1126         ++row;
   1127         if (process_func != NULL) {
   1128           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1129             process_func(dec, row);
   1130           }
   1131         }
   1132         if (color_cache != NULL) {
   1133           while (last_cached < src) {
   1134             VP8LColorCacheInsert(color_cache, *last_cached++);
   1135           }
   1136         }
   1137       }
   1138     } else if (code < len_code_limit) {  // Backward reference
   1139       int dist_code, dist;
   1140       const int length_sym = code - NUM_LITERAL_CODES;
   1141       const int length = GetCopyLength(length_sym, br);
   1142       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
   1143       VP8LFillBitWindow(br);
   1144       dist_code = GetCopyDistance(dist_symbol, br);
   1145       dist = PlaneCodeToDistance(width, dist_code);
   1146       if (VP8LIsEndOfStream(br)) break;
   1147       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
   1148         goto Error;
   1149       } else {
   1150         CopyBlock32b(src, dist, length);
   1151       }
   1152       src += length;
   1153       col += length;
   1154       while (col >= width) {
   1155         col -= width;
   1156         ++row;
   1157         if (process_func != NULL) {
   1158           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1159             process_func(dec, row);
   1160           }
   1161         }
   1162       }
   1163       // Because of the check done above (before 'src' was incremented by
   1164       // 'length'), the following holds true.
   1165       assert(src <= src_end);
   1166       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
   1167       if (color_cache != NULL) {
   1168         while (last_cached < src) {
   1169           VP8LColorCacheInsert(color_cache, *last_cached++);
   1170         }
   1171       }
   1172     } else if (code < color_cache_limit) {  // Color cache
   1173       const int key = code - len_code_limit;
   1174       assert(color_cache != NULL);
   1175       while (last_cached < src) {
   1176         VP8LColorCacheInsert(color_cache, *last_cached++);
   1177       }
   1178       *src = VP8LColorCacheLookup(color_cache, key);
   1179       goto AdvanceByOne;
   1180     } else {  // Not reached
   1181       goto Error;
   1182     }
   1183   }
   1184 
   1185   br->eos_ = VP8LIsEndOfStream(br);
   1186   if (dec->incremental_ && br->eos_ && src < src_end) {
   1187     RestoreState(dec);
   1188   } else if (!br->eos_) {
   1189     // Process the remaining rows corresponding to last row-block.
   1190     if (process_func != NULL) {
   1191       process_func(dec, row > last_row ? last_row : row);
   1192     }
   1193     dec->status_ = VP8_STATUS_OK;
   1194     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
   1195   } else {
   1196     // if not incremental, and we are past the end of buffer (eos_=1), then this
   1197     // is a real bitstream error.
   1198     goto Error;
   1199   }
   1200   return 1;
   1201 
   1202  Error:
   1203   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1204   return 0;
   1205 }
   1206 
   1207 // -----------------------------------------------------------------------------
   1208 // VP8LTransform
   1209 
   1210 static void ClearTransform(VP8LTransform* const transform) {
   1211   WebPSafeFree(transform->data_);
   1212   transform->data_ = NULL;
   1213 }
   1214 
   1215 // For security reason, we need to remap the color map to span
   1216 // the total possible bundled values, and not just the num_colors.
   1217 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
   1218   int i;
   1219   const int final_num_colors = 1 << (8 >> transform->bits_);
   1220   uint32_t* const new_color_map =
   1221       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
   1222                                 sizeof(*new_color_map));
   1223   if (new_color_map == NULL) {
   1224     return 0;
   1225   } else {
   1226     uint8_t* const data = (uint8_t*)transform->data_;
   1227     uint8_t* const new_data = (uint8_t*)new_color_map;
   1228     new_color_map[0] = transform->data_[0];
   1229     for (i = 4; i < 4 * num_colors; ++i) {
   1230       // Equivalent to AddPixelEq(), on a byte-basis.
   1231       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
   1232     }
   1233     for (; i < 4 * final_num_colors; ++i) {
   1234       new_data[i] = 0;  // black tail.
   1235     }
   1236     WebPSafeFree(transform->data_);
   1237     transform->data_ = new_color_map;
   1238   }
   1239   return 1;
   1240 }
   1241 
   1242 static int ReadTransform(int* const xsize, int const* ysize,
   1243                          VP8LDecoder* const dec) {
   1244   int ok = 1;
   1245   VP8LBitReader* const br = &dec->br_;
   1246   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
   1247   const VP8LImageTransformType type =
   1248       (VP8LImageTransformType)VP8LReadBits(br, 2);
   1249 
   1250   // Each transform type can only be present once in the stream.
   1251   if (dec->transforms_seen_ & (1U << type)) {
   1252     return 0;  // Already there, let's not accept the second same transform.
   1253   }
   1254   dec->transforms_seen_ |= (1U << type);
   1255 
   1256   transform->type_ = type;
   1257   transform->xsize_ = *xsize;
   1258   transform->ysize_ = *ysize;
   1259   transform->data_ = NULL;
   1260   ++dec->next_transform_;
   1261   assert(dec->next_transform_ <= NUM_TRANSFORMS);
   1262 
   1263   switch (type) {
   1264     case PREDICTOR_TRANSFORM:
   1265     case CROSS_COLOR_TRANSFORM:
   1266       transform->bits_ = VP8LReadBits(br, 3) + 2;
   1267       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
   1268                                                transform->bits_),
   1269                              VP8LSubSampleSize(transform->ysize_,
   1270                                                transform->bits_),
   1271                              0, dec, &transform->data_);
   1272       break;
   1273     case COLOR_INDEXING_TRANSFORM: {
   1274        const int num_colors = VP8LReadBits(br, 8) + 1;
   1275        const int bits = (num_colors > 16) ? 0
   1276                       : (num_colors > 4) ? 1
   1277                       : (num_colors > 2) ? 2
   1278                       : 3;
   1279        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
   1280        transform->bits_ = bits;
   1281        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
   1282        ok = ok && ExpandColorMap(num_colors, transform);
   1283       break;
   1284     }
   1285     case SUBTRACT_GREEN:
   1286       break;
   1287     default:
   1288       assert(0);    // can't happen
   1289       break;
   1290   }
   1291 
   1292   return ok;
   1293 }
   1294 
   1295 // -----------------------------------------------------------------------------
   1296 // VP8LMetadata
   1297 
   1298 static void InitMetadata(VP8LMetadata* const hdr) {
   1299   assert(hdr != NULL);
   1300   memset(hdr, 0, sizeof(*hdr));
   1301 }
   1302 
   1303 static void ClearMetadata(VP8LMetadata* const hdr) {
   1304   assert(hdr != NULL);
   1305 
   1306   WebPSafeFree(hdr->huffman_image_);
   1307   WebPSafeFree(hdr->huffman_tables_);
   1308   VP8LHtreeGroupsFree(hdr->htree_groups_);
   1309   VP8LColorCacheClear(&hdr->color_cache_);
   1310   VP8LColorCacheClear(&hdr->saved_color_cache_);
   1311   InitMetadata(hdr);
   1312 }
   1313 
   1314 // -----------------------------------------------------------------------------
   1315 // VP8LDecoder
   1316 
   1317 VP8LDecoder* VP8LNew(void) {
   1318   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
   1319   if (dec == NULL) return NULL;
   1320   dec->status_ = VP8_STATUS_OK;
   1321   dec->state_ = READ_DIM;
   1322 
   1323   VP8LDspInit();  // Init critical function pointers.
   1324 
   1325   return dec;
   1326 }
   1327 
   1328 void VP8LClear(VP8LDecoder* const dec) {
   1329   int i;
   1330   if (dec == NULL) return;
   1331   ClearMetadata(&dec->hdr_);
   1332 
   1333   WebPSafeFree(dec->pixels_);
   1334   dec->pixels_ = NULL;
   1335   for (i = 0; i < dec->next_transform_; ++i) {
   1336     ClearTransform(&dec->transforms_[i]);
   1337   }
   1338   dec->next_transform_ = 0;
   1339   dec->transforms_seen_ = 0;
   1340 
   1341   WebPSafeFree(dec->rescaler_memory);
   1342   dec->rescaler_memory = NULL;
   1343 
   1344   dec->output_ = NULL;   // leave no trace behind
   1345 }
   1346 
   1347 void VP8LDelete(VP8LDecoder* const dec) {
   1348   if (dec != NULL) {
   1349     VP8LClear(dec);
   1350     WebPSafeFree(dec);
   1351   }
   1352 }
   1353 
   1354 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
   1355   VP8LMetadata* const hdr = &dec->hdr_;
   1356   const int num_bits = hdr->huffman_subsample_bits_;
   1357   dec->width_ = width;
   1358   dec->height_ = height;
   1359 
   1360   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
   1361   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
   1362 }
   1363 
   1364 static int DecodeImageStream(int xsize, int ysize,
   1365                              int is_level0,
   1366                              VP8LDecoder* const dec,
   1367                              uint32_t** const decoded_data) {
   1368   int ok = 1;
   1369   int transform_xsize = xsize;
   1370   int transform_ysize = ysize;
   1371   VP8LBitReader* const br = &dec->br_;
   1372   VP8LMetadata* const hdr = &dec->hdr_;
   1373   uint32_t* data = NULL;
   1374   int color_cache_bits = 0;
   1375 
   1376   // Read the transforms (may recurse).
   1377   if (is_level0) {
   1378     while (ok && VP8LReadBits(br, 1)) {
   1379       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
   1380     }
   1381   }
   1382 
   1383   // Color cache
   1384   if (ok && VP8LReadBits(br, 1)) {
   1385     color_cache_bits = VP8LReadBits(br, 4);
   1386     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
   1387     if (!ok) {
   1388       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1389       goto End;
   1390     }
   1391   }
   1392 
   1393   // Read the Huffman codes (may recurse).
   1394   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
   1395                               color_cache_bits, is_level0);
   1396   if (!ok) {
   1397     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1398     goto End;
   1399   }
   1400 
   1401   // Finish setting up the color-cache
   1402   if (color_cache_bits > 0) {
   1403     hdr->color_cache_size_ = 1 << color_cache_bits;
   1404     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
   1405       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1406       ok = 0;
   1407       goto End;
   1408     }
   1409   } else {
   1410     hdr->color_cache_size_ = 0;
   1411   }
   1412   UpdateDecoder(dec, transform_xsize, transform_ysize);
   1413 
   1414   if (is_level0) {   // level 0 complete
   1415     dec->state_ = READ_HDR;
   1416     goto End;
   1417   }
   1418 
   1419   {
   1420     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
   1421     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
   1422     if (data == NULL) {
   1423       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1424       ok = 0;
   1425       goto End;
   1426     }
   1427   }
   1428 
   1429   // Use the Huffman trees to decode the LZ77 encoded data.
   1430   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
   1431                        transform_ysize, NULL);
   1432   ok = ok && !br->eos_;
   1433 
   1434  End:
   1435   if (!ok) {
   1436     WebPSafeFree(data);
   1437     ClearMetadata(hdr);
   1438   } else {
   1439     if (decoded_data != NULL) {
   1440       *decoded_data = data;
   1441     } else {
   1442       // We allocate image data in this function only for transforms. At level 0
   1443       // (that is: not the transforms), we shouldn't have allocated anything.
   1444       assert(data == NULL);
   1445       assert(is_level0);
   1446     }
   1447     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
   1448     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
   1449   }
   1450   return ok;
   1451 }
   1452 
   1453 //------------------------------------------------------------------------------
   1454 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
   1455 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
   1456   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
   1457   // Scratch buffer corresponding to top-prediction row for transforming the
   1458   // first row in the row-blocks. Not needed for paletted alpha.
   1459   const uint64_t cache_top_pixels = (uint16_t)final_width;
   1460   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
   1461   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
   1462   const uint64_t total_num_pixels =
   1463       num_pixels + cache_top_pixels + cache_pixels;
   1464 
   1465   assert(dec->width_ <= final_width);
   1466   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
   1467   if (dec->pixels_ == NULL) {
   1468     dec->argb_cache_ = NULL;    // for sanity check
   1469     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1470     return 0;
   1471   }
   1472   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
   1473   return 1;
   1474 }
   1475 
   1476 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
   1477   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
   1478   dec->argb_cache_ = NULL;    // for sanity check
   1479   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
   1480   if (dec->pixels_ == NULL) {
   1481     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1482     return 0;
   1483   }
   1484   return 1;
   1485 }
   1486 
   1487 //------------------------------------------------------------------------------
   1488 
   1489 // Special row-processing that only stores the alpha data.
   1490 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
   1491   int cur_row = dec->last_row_;
   1492   int num_rows = last_row - cur_row;
   1493   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
   1494 
   1495   assert(last_row <= dec->io_->crop_bottom);
   1496   while (num_rows > 0) {
   1497     const int num_rows_to_process =
   1498         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
   1499     // Extract alpha (which is stored in the green plane).
   1500     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
   1501     uint8_t* const output = alph_dec->output_;
   1502     const int width = dec->io_->width;      // the final width (!= dec->width_)
   1503     const int cache_pixs = width * num_rows_to_process;
   1504     uint8_t* const dst = output + width * cur_row;
   1505     const uint32_t* const src = dec->argb_cache_;
   1506     ApplyInverseTransforms(dec, num_rows_to_process, in);
   1507     WebPExtractGreen(src, dst, cache_pixs);
   1508     AlphaApplyFilter(alph_dec,
   1509                      cur_row, cur_row + num_rows_to_process, dst, width);
   1510     num_rows -= num_rows_to_process;
   1511     in += num_rows_to_process * dec->width_;
   1512     cur_row += num_rows_to_process;
   1513   }
   1514   assert(cur_row == last_row);
   1515   dec->last_row_ = dec->last_out_row_ = last_row;
   1516 }
   1517 
   1518 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
   1519                           const uint8_t* const data, size_t data_size) {
   1520   int ok = 0;
   1521   VP8LDecoder* dec = VP8LNew();
   1522 
   1523   if (dec == NULL) return 0;
   1524 
   1525   assert(alph_dec != NULL);
   1526   alph_dec->vp8l_dec_ = dec;
   1527 
   1528   dec->width_ = alph_dec->width_;
   1529   dec->height_ = alph_dec->height_;
   1530   dec->io_ = &alph_dec->io_;
   1531   dec->io_->opaque = alph_dec;
   1532   dec->io_->width = alph_dec->width_;
   1533   dec->io_->height = alph_dec->height_;
   1534 
   1535   dec->status_ = VP8_STATUS_OK;
   1536   VP8LInitBitReader(&dec->br_, data, data_size);
   1537 
   1538   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
   1539     goto Err;
   1540   }
   1541 
   1542   // Special case: if alpha data uses only the color indexing transform and
   1543   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
   1544   // method that only needs allocation of 1 byte per pixel (alpha channel).
   1545   if (dec->next_transform_ == 1 &&
   1546       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
   1547       Is8bOptimizable(&dec->hdr_)) {
   1548     alph_dec->use_8b_decode_ = 1;
   1549     ok = AllocateInternalBuffers8b(dec);
   1550   } else {
   1551     // Allocate internal buffers (note that dec->width_ may have changed here).
   1552     alph_dec->use_8b_decode_ = 0;
   1553     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
   1554   }
   1555 
   1556   if (!ok) goto Err;
   1557 
   1558   return 1;
   1559 
   1560  Err:
   1561   VP8LDelete(alph_dec->vp8l_dec_);
   1562   alph_dec->vp8l_dec_ = NULL;
   1563   return 0;
   1564 }
   1565 
   1566 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
   1567   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
   1568   assert(dec != NULL);
   1569   assert(last_row <= dec->height_);
   1570 
   1571   if (dec->last_row_ >= last_row) {
   1572     return 1;  // done
   1573   }
   1574 
   1575   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
   1576 
   1577   // Decode (with special row processing).
   1578   return alph_dec->use_8b_decode_ ?
   1579       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
   1580                       last_row) :
   1581       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1582                       last_row, ExtractAlphaRows);
   1583 }
   1584 
   1585 //------------------------------------------------------------------------------
   1586 
   1587 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
   1588   int width, height, has_alpha;
   1589 
   1590   if (dec == NULL) return 0;
   1591   if (io == NULL) {
   1592     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1593     return 0;
   1594   }
   1595 
   1596   dec->io_ = io;
   1597   dec->status_ = VP8_STATUS_OK;
   1598   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
   1599   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
   1600     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1601     goto Error;
   1602   }
   1603   dec->state_ = READ_DIM;
   1604   io->width = width;
   1605   io->height = height;
   1606 
   1607   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
   1608   return 1;
   1609 
   1610  Error:
   1611   VP8LClear(dec);
   1612   assert(dec->status_ != VP8_STATUS_OK);
   1613   return 0;
   1614 }
   1615 
   1616 int VP8LDecodeImage(VP8LDecoder* const dec) {
   1617   VP8Io* io = NULL;
   1618   WebPDecParams* params = NULL;
   1619 
   1620   // Sanity checks.
   1621   if (dec == NULL) return 0;
   1622 
   1623   assert(dec->hdr_.huffman_tables_ != NULL);
   1624   assert(dec->hdr_.htree_groups_ != NULL);
   1625   assert(dec->hdr_.num_htree_groups_ > 0);
   1626 
   1627   io = dec->io_;
   1628   assert(io != NULL);
   1629   params = (WebPDecParams*)io->opaque;
   1630   assert(params != NULL);
   1631 
   1632   // Initialization.
   1633   if (dec->state_ != READ_DATA) {
   1634     dec->output_ = params->output;
   1635     assert(dec->output_ != NULL);
   1636 
   1637     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
   1638       dec->status_ = VP8_STATUS_INVALID_PARAM;
   1639       goto Err;
   1640     }
   1641 
   1642     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
   1643 
   1644 #if !defined(WEBP_REDUCE_SIZE)
   1645     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
   1646 
   1647     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
   1648       // need the alpha-multiply functions for premultiplied output or rescaling
   1649       WebPInitAlphaProcessing();
   1650     }
   1651 #else
   1652     if (io->use_scaling) {
   1653       dec->status_ = VP8_STATUS_INVALID_PARAM;
   1654       goto Err;
   1655     }
   1656 #endif
   1657     if (!WebPIsRGBMode(dec->output_->colorspace)) {
   1658       WebPInitConvertARGBToYUV();
   1659       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
   1660     }
   1661     if (dec->incremental_) {
   1662       if (dec->hdr_.color_cache_size_ > 0 &&
   1663           dec->hdr_.saved_color_cache_.colors_ == NULL) {
   1664         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
   1665                                 dec->hdr_.color_cache_.hash_bits_)) {
   1666           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1667           goto Err;
   1668         }
   1669       }
   1670     }
   1671     dec->state_ = READ_DATA;
   1672   }
   1673 
   1674   // Decode.
   1675   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1676                        io->crop_bottom, ProcessRows)) {
   1677     goto Err;
   1678   }
   1679 
   1680   params->last_y = dec->last_out_row_;
   1681   return 1;
   1682 
   1683  Err:
   1684   VP8LClear(dec);
   1685   assert(dec->status_ != VP8_STATUS_OK);
   1686   return 0;
   1687 }
   1688 
   1689 //------------------------------------------------------------------------------
   1690