Home | History | Annotate | Download | only in distribution
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 package org.apache.commons.math.distribution;
     18 
     19 import java.io.Serializable;
     20 
     21 import org.apache.commons.math.MathException;
     22 import org.apache.commons.math.MathRuntimeException;
     23 import org.apache.commons.math.exception.util.LocalizedFormats;
     24 import org.apache.commons.math.special.Beta;
     25 import org.apache.commons.math.util.FastMath;
     26 
     27 /**
     28  * Default implementation of
     29  * {@link org.apache.commons.math.distribution.FDistribution}.
     30  *
     31  * @version $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
     32  */
     33 public class FDistributionImpl
     34     extends AbstractContinuousDistribution
     35     implements FDistribution, Serializable  {
     36 
     37     /**
     38      * Default inverse cumulative probability accuracy
     39      * @since 2.1
     40      */
     41     public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
     42 
     43     /** Serializable version identifier */
     44     private static final long serialVersionUID = -8516354193418641566L;
     45 
     46     /** The numerator degrees of freedom*/
     47     private double numeratorDegreesOfFreedom;
     48 
     49     /** The numerator degrees of freedom*/
     50     private double denominatorDegreesOfFreedom;
     51 
     52     /** Inverse cumulative probability accuracy */
     53     private final double solverAbsoluteAccuracy;
     54 
     55     /**
     56      * Create a F distribution using the given degrees of freedom.
     57      * @param numeratorDegreesOfFreedom the numerator degrees of freedom.
     58      * @param denominatorDegreesOfFreedom the denominator degrees of freedom.
     59      */
     60     public FDistributionImpl(double numeratorDegreesOfFreedom,
     61                              double denominatorDegreesOfFreedom) {
     62         this(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
     63     }
     64 
     65     /**
     66      * Create a F distribution using the given degrees of freedom and inverse cumulative probability accuracy.
     67      * @param numeratorDegreesOfFreedom the numerator degrees of freedom.
     68      * @param denominatorDegreesOfFreedom the denominator degrees of freedom.
     69      * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates
     70      * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY})
     71      * @since 2.1
     72      */
     73     public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom,
     74             double inverseCumAccuracy) {
     75         super();
     76         setNumeratorDegreesOfFreedomInternal(numeratorDegreesOfFreedom);
     77         setDenominatorDegreesOfFreedomInternal(denominatorDegreesOfFreedom);
     78         solverAbsoluteAccuracy = inverseCumAccuracy;
     79     }
     80 
     81     /**
     82      * Returns the probability density for a particular point.
     83      *
     84      * @param x The point at which the density should be computed.
     85      * @return The pdf at point x.
     86      * @since 2.1
     87      */
     88     @Override
     89     public double density(double x) {
     90         final double nhalf = numeratorDegreesOfFreedom / 2;
     91         final double mhalf = denominatorDegreesOfFreedom / 2;
     92         final double logx = FastMath.log(x);
     93         final double logn = FastMath.log(numeratorDegreesOfFreedom);
     94         final double logm = FastMath.log(denominatorDegreesOfFreedom);
     95         final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x + denominatorDegreesOfFreedom);
     96         return FastMath.exp(nhalf*logn + nhalf*logx - logx + mhalf*logm - nhalf*lognxm -
     97                mhalf*lognxm - Beta.logBeta(nhalf, mhalf));
     98     }
     99 
    100     /**
    101      * For this distribution, X, this method returns P(X < x).
    102      *
    103      * The implementation of this method is based on:
    104      * <ul>
    105      * <li>
    106      * <a href="http://mathworld.wolfram.com/F-Distribution.html">
    107      * F-Distribution</a>, equation (4).</li>
    108      * </ul>
    109      *
    110      * @param x the value at which the CDF is evaluated.
    111      * @return CDF for this distribution.
    112      * @throws MathException if the cumulative probability can not be
    113      *            computed due to convergence or other numerical errors.
    114      */
    115     public double cumulativeProbability(double x) throws MathException {
    116         double ret;
    117         if (x <= 0.0) {
    118             ret = 0.0;
    119         } else {
    120             double n = numeratorDegreesOfFreedom;
    121             double m = denominatorDegreesOfFreedom;
    122 
    123             ret = Beta.regularizedBeta((n * x) / (m + n * x),
    124                 0.5 * n,
    125                 0.5 * m);
    126         }
    127         return ret;
    128     }
    129 
    130     /**
    131      * For this distribution, X, this method returns the critical point x, such
    132      * that P(X &lt; x) = <code>p</code>.
    133      * <p>
    134      * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1.</p>
    135      *
    136      * @param p the desired probability
    137      * @return x, such that P(X &lt; x) = <code>p</code>
    138      * @throws MathException if the inverse cumulative probability can not be
    139      *         computed due to convergence or other numerical errors.
    140      * @throws IllegalArgumentException if <code>p</code> is not a valid
    141      *         probability.
    142      */
    143     @Override
    144     public double inverseCumulativeProbability(final double p)
    145         throws MathException {
    146         if (p == 0) {
    147             return 0d;
    148         }
    149         if (p == 1) {
    150             return Double.POSITIVE_INFINITY;
    151         }
    152         return super.inverseCumulativeProbability(p);
    153     }
    154 
    155     /**
    156      * Access the domain value lower bound, based on <code>p</code>, used to
    157      * bracket a CDF root.  This method is used by
    158      * {@link #inverseCumulativeProbability(double)} to find critical values.
    159      *
    160      * @param p the desired probability for the critical value
    161      * @return domain value lower bound, i.e.
    162      *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code>
    163      */
    164     @Override
    165     protected double getDomainLowerBound(double p) {
    166         return 0.0;
    167     }
    168 
    169     /**
    170      * Access the domain value upper bound, based on <code>p</code>, used to
    171      * bracket a CDF root.  This method is used by
    172      * {@link #inverseCumulativeProbability(double)} to find critical values.
    173      *
    174      * @param p the desired probability for the critical value
    175      * @return domain value upper bound, i.e.
    176      *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code>
    177      */
    178     @Override
    179     protected double getDomainUpperBound(double p) {
    180         return Double.MAX_VALUE;
    181     }
    182 
    183     /**
    184      * Access the initial domain value, based on <code>p</code>, used to
    185      * bracket a CDF root.  This method is used by
    186      * {@link #inverseCumulativeProbability(double)} to find critical values.
    187      *
    188      * @param p the desired probability for the critical value
    189      * @return initial domain value
    190      */
    191     @Override
    192     protected double getInitialDomain(double p) {
    193         double ret = 1.0;
    194         double d = denominatorDegreesOfFreedom;
    195         if (d > 2.0) {
    196             // use mean
    197             ret = d / (d - 2.0);
    198         }
    199         return ret;
    200     }
    201 
    202     /**
    203      * Modify the numerator degrees of freedom.
    204      * @param degreesOfFreedom the new numerator degrees of freedom.
    205      * @throws IllegalArgumentException if <code>degreesOfFreedom</code> is not
    206      *         positive.
    207      * @deprecated as of 2.1 (class will become immutable in 3.0)
    208      */
    209     @Deprecated
    210     public void setNumeratorDegreesOfFreedom(double degreesOfFreedom) {
    211         setNumeratorDegreesOfFreedomInternal(degreesOfFreedom);
    212     }
    213 
    214     /**
    215      * Modify the numerator degrees of freedom.
    216      * @param degreesOfFreedom the new numerator degrees of freedom.
    217      * @throws IllegalArgumentException if <code>degreesOfFreedom</code> is not
    218      *         positive.
    219      */
    220     private void setNumeratorDegreesOfFreedomInternal(double degreesOfFreedom) {
    221         if (degreesOfFreedom <= 0.0) {
    222             throw MathRuntimeException.createIllegalArgumentException(
    223                   LocalizedFormats.NOT_POSITIVE_DEGREES_OF_FREEDOM, degreesOfFreedom);
    224         }
    225         this.numeratorDegreesOfFreedom = degreesOfFreedom;
    226     }
    227 
    228     /**
    229      * Access the numerator degrees of freedom.
    230      * @return the numerator degrees of freedom.
    231      */
    232     public double getNumeratorDegreesOfFreedom() {
    233         return numeratorDegreesOfFreedom;
    234     }
    235 
    236     /**
    237      * Modify the denominator degrees of freedom.
    238      * @param degreesOfFreedom the new denominator degrees of freedom.
    239      * @throws IllegalArgumentException if <code>degreesOfFreedom</code> is not
    240      *         positive.
    241      * @deprecated as of 2.1 (class will become immutable in 3.0)
    242      */
    243     @Deprecated
    244     public void setDenominatorDegreesOfFreedom(double degreesOfFreedom) {
    245         setDenominatorDegreesOfFreedomInternal(degreesOfFreedom);
    246     }
    247 
    248     /**
    249      * Modify the denominator degrees of freedom.
    250      * @param degreesOfFreedom the new denominator degrees of freedom.
    251      * @throws IllegalArgumentException if <code>degreesOfFreedom</code> is not
    252      *         positive.
    253      */
    254     private void setDenominatorDegreesOfFreedomInternal(double degreesOfFreedom) {
    255         if (degreesOfFreedom <= 0.0) {
    256             throw MathRuntimeException.createIllegalArgumentException(
    257                   LocalizedFormats.NOT_POSITIVE_DEGREES_OF_FREEDOM, degreesOfFreedom);
    258         }
    259         this.denominatorDegreesOfFreedom = degreesOfFreedom;
    260     }
    261 
    262     /**
    263      * Access the denominator degrees of freedom.
    264      * @return the denominator degrees of freedom.
    265      */
    266     public double getDenominatorDegreesOfFreedom() {
    267         return denominatorDegreesOfFreedom;
    268     }
    269 
    270     /**
    271      * Return the absolute accuracy setting of the solver used to estimate
    272      * inverse cumulative probabilities.
    273      *
    274      * @return the solver absolute accuracy
    275      * @since 2.1
    276      */
    277     @Override
    278     protected double getSolverAbsoluteAccuracy() {
    279         return solverAbsoluteAccuracy;
    280     }
    281 
    282     /**
    283      * Returns the lower bound of the support for the distribution.
    284      *
    285      * The lower bound of the support is always 0, regardless of the parameters.
    286      *
    287      * @return lower bound of the support (always 0)
    288      * @since 2.2
    289      */
    290     public double getSupportLowerBound() {
    291         return 0;
    292     }
    293 
    294     /**
    295      * Returns the upper bound of the support for the distribution.
    296      *
    297      * The upper bound of the support is always positive infinity,
    298      * regardless of the parameters.
    299      *
    300      * @return upper bound of the support (always Double.POSITIVE_INFINITY)
    301      * @since 2.2
    302      */
    303     public double getSupportUpperBound() {
    304         return Double.POSITIVE_INFINITY;
    305     }
    306 
    307     /**
    308      * Returns the mean of the distribution.
    309      *
    310      * For denominator degrees of freedom parameter <code>b</code>,
    311      * the mean is
    312      * <ul>
    313      *  <li>if <code>b &gt; 2</code> then <code>b / (b - 2)</code></li>
    314      *  <li>else <code>undefined</code>
    315      * </ul>
    316      *
    317      * @return the mean
    318      * @since 2.2
    319      */
    320     public double getNumericalMean() {
    321         final double denominatorDF = getDenominatorDegreesOfFreedom();
    322 
    323         if (denominatorDF > 2) {
    324             return denominatorDF / (denominatorDF - 2);
    325         }
    326 
    327         return Double.NaN;
    328     }
    329 
    330     /**
    331      * Returns the variance of the distribution.
    332      *
    333      * For numerator degrees of freedom parameter <code>a</code>
    334      * and denominator degrees of freedom parameter <code>b</code>,
    335      * the variance is
    336      * <ul>
    337      *  <li>
    338      *    if <code>b &gt; 4</code> then
    339      *    <code>[ 2 * b^2 * (a + b - 2) ] / [ a * (b - 2)^2 * (b - 4) ]</code>
    340      *  </li>
    341      *  <li>else <code>undefined</code>
    342      * </ul>
    343      *
    344      * @return the variance
    345      * @since 2.2
    346      */
    347     public double getNumericalVariance() {
    348         final double denominatorDF = getDenominatorDegreesOfFreedom();
    349 
    350         if (denominatorDF > 4) {
    351             final double numeratorDF = getNumeratorDegreesOfFreedom();
    352             final double denomDFMinusTwo = denominatorDF - 2;
    353 
    354             return ( 2 * (denominatorDF * denominatorDF) * (numeratorDF + denominatorDF - 2) ) /
    355                     ( (numeratorDF * (denomDFMinusTwo * denomDFMinusTwo) * (denominatorDF - 4)) );
    356         }
    357 
    358         return Double.NaN;
    359     }
    360 }
    361