Home | History | Annotate | Download | only in Analysis
      1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The implementation for the loop memory dependence that was originally
     11 // developed for the loop vectorizer.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Analysis/LoopAccessAnalysis.h"
     16 #include "llvm/Analysis/LoopInfo.h"
     17 #include "llvm/Analysis/LoopPassManager.h"
     18 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     19 #include "llvm/Analysis/TargetLibraryInfo.h"
     20 #include "llvm/Analysis/ValueTracking.h"
     21 #include "llvm/Analysis/VectorUtils.h"
     22 #include "llvm/IR/DiagnosticInfo.h"
     23 #include "llvm/IR/Dominators.h"
     24 #include "llvm/IR/IRBuilder.h"
     25 #include "llvm/IR/PassManager.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 using namespace llvm;
     29 
     30 #define DEBUG_TYPE "loop-accesses"
     31 
     32 static cl::opt<unsigned, true>
     33 VectorizationFactor("force-vector-width", cl::Hidden,
     34                     cl::desc("Sets the SIMD width. Zero is autoselect."),
     35                     cl::location(VectorizerParams::VectorizationFactor));
     36 unsigned VectorizerParams::VectorizationFactor;
     37 
     38 static cl::opt<unsigned, true>
     39 VectorizationInterleave("force-vector-interleave", cl::Hidden,
     40                         cl::desc("Sets the vectorization interleave count. "
     41                                  "Zero is autoselect."),
     42                         cl::location(
     43                             VectorizerParams::VectorizationInterleave));
     44 unsigned VectorizerParams::VectorizationInterleave;
     45 
     46 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
     47     "runtime-memory-check-threshold", cl::Hidden,
     48     cl::desc("When performing memory disambiguation checks at runtime do not "
     49              "generate more than this number of comparisons (default = 8)."),
     50     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
     51 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
     52 
     53 /// \brief The maximum iterations used to merge memory checks
     54 static cl::opt<unsigned> MemoryCheckMergeThreshold(
     55     "memory-check-merge-threshold", cl::Hidden,
     56     cl::desc("Maximum number of comparisons done when trying to merge "
     57              "runtime memory checks. (default = 100)"),
     58     cl::init(100));
     59 
     60 /// Maximum SIMD width.
     61 const unsigned VectorizerParams::MaxVectorWidth = 64;
     62 
     63 /// \brief We collect dependences up to this threshold.
     64 static cl::opt<unsigned>
     65     MaxDependences("max-dependences", cl::Hidden,
     66                    cl::desc("Maximum number of dependences collected by "
     67                             "loop-access analysis (default = 100)"),
     68                    cl::init(100));
     69 
     70 /// This enables versioning on the strides of symbolically striding memory
     71 /// accesses in code like the following.
     72 ///   for (i = 0; i < N; ++i)
     73 ///     A[i * Stride1] += B[i * Stride2] ...
     74 ///
     75 /// Will be roughly translated to
     76 ///    if (Stride1 == 1 && Stride2 == 1) {
     77 ///      for (i = 0; i < N; i+=4)
     78 ///       A[i:i+3] += ...
     79 ///    } else
     80 ///      ...
     81 static cl::opt<bool> EnableMemAccessVersioning(
     82     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
     83     cl::desc("Enable symbolic stride memory access versioning"));
     84 
     85 /// \brief Enable store-to-load forwarding conflict detection. This option can
     86 /// be disabled for correctness testing.
     87 static cl::opt<bool> EnableForwardingConflictDetection(
     88     "store-to-load-forwarding-conflict-detection", cl::Hidden,
     89     cl::desc("Enable conflict detection in loop-access analysis"),
     90     cl::init(true));
     91 
     92 bool VectorizerParams::isInterleaveForced() {
     93   return ::VectorizationInterleave.getNumOccurrences() > 0;
     94 }
     95 
     96 void LoopAccessReport::emitAnalysis(const LoopAccessReport &Message,
     97                                     const Function *TheFunction,
     98                                     const Loop *TheLoop,
     99                                     const char *PassName) {
    100   DebugLoc DL = TheLoop->getStartLoc();
    101   if (const Instruction *I = Message.getInstr())
    102     DL = I->getDebugLoc();
    103   emitOptimizationRemarkAnalysis(TheFunction->getContext(), PassName,
    104                                  *TheFunction, DL, Message.str());
    105 }
    106 
    107 Value *llvm::stripIntegerCast(Value *V) {
    108   if (auto *CI = dyn_cast<CastInst>(V))
    109     if (CI->getOperand(0)->getType()->isIntegerTy())
    110       return CI->getOperand(0);
    111   return V;
    112 }
    113 
    114 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
    115                                             const ValueToValueMap &PtrToStride,
    116                                             Value *Ptr, Value *OrigPtr) {
    117   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
    118 
    119   // If there is an entry in the map return the SCEV of the pointer with the
    120   // symbolic stride replaced by one.
    121   ValueToValueMap::const_iterator SI =
    122       PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
    123   if (SI != PtrToStride.end()) {
    124     Value *StrideVal = SI->second;
    125 
    126     // Strip casts.
    127     StrideVal = stripIntegerCast(StrideVal);
    128 
    129     // Replace symbolic stride by one.
    130     Value *One = ConstantInt::get(StrideVal->getType(), 1);
    131     ValueToValueMap RewriteMap;
    132     RewriteMap[StrideVal] = One;
    133 
    134     ScalarEvolution *SE = PSE.getSE();
    135     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal));
    136     const auto *CT =
    137         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType()));
    138 
    139     PSE.addPredicate(*SE->getEqualPredicate(U, CT));
    140     auto *Expr = PSE.getSCEV(Ptr);
    141 
    142     DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV << " by: " << *Expr
    143                  << "\n");
    144     return Expr;
    145   }
    146 
    147   // Otherwise, just return the SCEV of the original pointer.
    148   return OrigSCEV;
    149 }
    150 
    151 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
    152                                     unsigned DepSetId, unsigned ASId,
    153                                     const ValueToValueMap &Strides,
    154                                     PredicatedScalarEvolution &PSE) {
    155   // Get the stride replaced scev.
    156   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
    157   ScalarEvolution *SE = PSE.getSE();
    158 
    159   const SCEV *ScStart;
    160   const SCEV *ScEnd;
    161 
    162   if (SE->isLoopInvariant(Sc, Lp))
    163     ScStart = ScEnd = Sc;
    164   else {
    165     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
    166     assert(AR && "Invalid addrec expression");
    167     const SCEV *Ex = PSE.getBackedgeTakenCount();
    168 
    169     ScStart = AR->getStart();
    170     ScEnd = AR->evaluateAtIteration(Ex, *SE);
    171     const SCEV *Step = AR->getStepRecurrence(*SE);
    172 
    173     // For expressions with negative step, the upper bound is ScStart and the
    174     // lower bound is ScEnd.
    175     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
    176       if (CStep->getValue()->isNegative())
    177         std::swap(ScStart, ScEnd);
    178     } else {
    179       // Fallback case: the step is not constant, but the we can still
    180       // get the upper and lower bounds of the interval by using min/max
    181       // expressions.
    182       ScStart = SE->getUMinExpr(ScStart, ScEnd);
    183       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
    184     }
    185   }
    186 
    187   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
    188 }
    189 
    190 SmallVector<RuntimePointerChecking::PointerCheck, 4>
    191 RuntimePointerChecking::generateChecks() const {
    192   SmallVector<PointerCheck, 4> Checks;
    193 
    194   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    195     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
    196       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I];
    197       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J];
    198 
    199       if (needsChecking(CGI, CGJ))
    200         Checks.push_back(std::make_pair(&CGI, &CGJ));
    201     }
    202   }
    203   return Checks;
    204 }
    205 
    206 void RuntimePointerChecking::generateChecks(
    207     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
    208   assert(Checks.empty() && "Checks is not empty");
    209   groupChecks(DepCands, UseDependencies);
    210   Checks = generateChecks();
    211 }
    212 
    213 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M,
    214                                            const CheckingPtrGroup &N) const {
    215   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
    216     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
    217       if (needsChecking(M.Members[I], N.Members[J]))
    218         return true;
    219   return false;
    220 }
    221 
    222 /// Compare \p I and \p J and return the minimum.
    223 /// Return nullptr in case we couldn't find an answer.
    224 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
    225                                    ScalarEvolution *SE) {
    226   const SCEV *Diff = SE->getMinusSCEV(J, I);
    227   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
    228 
    229   if (!C)
    230     return nullptr;
    231   if (C->getValue()->isNegative())
    232     return J;
    233   return I;
    234 }
    235 
    236 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) {
    237   const SCEV *Start = RtCheck.Pointers[Index].Start;
    238   const SCEV *End = RtCheck.Pointers[Index].End;
    239 
    240   // Compare the starts and ends with the known minimum and maximum
    241   // of this set. We need to know how we compare against the min/max
    242   // of the set in order to be able to emit memchecks.
    243   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
    244   if (!Min0)
    245     return false;
    246 
    247   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
    248   if (!Min1)
    249     return false;
    250 
    251   // Update the low bound  expression if we've found a new min value.
    252   if (Min0 == Start)
    253     Low = Start;
    254 
    255   // Update the high bound expression if we've found a new max value.
    256   if (Min1 != End)
    257     High = End;
    258 
    259   Members.push_back(Index);
    260   return true;
    261 }
    262 
    263 void RuntimePointerChecking::groupChecks(
    264     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
    265   // We build the groups from dependency candidates equivalence classes
    266   // because:
    267   //    - We know that pointers in the same equivalence class share
    268   //      the same underlying object and therefore there is a chance
    269   //      that we can compare pointers
    270   //    - We wouldn't be able to merge two pointers for which we need
    271   //      to emit a memcheck. The classes in DepCands are already
    272   //      conveniently built such that no two pointers in the same
    273   //      class need checking against each other.
    274 
    275   // We use the following (greedy) algorithm to construct the groups
    276   // For every pointer in the equivalence class:
    277   //   For each existing group:
    278   //   - if the difference between this pointer and the min/max bounds
    279   //     of the group is a constant, then make the pointer part of the
    280   //     group and update the min/max bounds of that group as required.
    281 
    282   CheckingGroups.clear();
    283 
    284   // If we need to check two pointers to the same underlying object
    285   // with a non-constant difference, we shouldn't perform any pointer
    286   // grouping with those pointers. This is because we can easily get
    287   // into cases where the resulting check would return false, even when
    288   // the accesses are safe.
    289   //
    290   // The following example shows this:
    291   // for (i = 0; i < 1000; ++i)
    292   //   a[5000 + i * m] = a[i] + a[i + 9000]
    293   //
    294   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
    295   // (0, 10000) which is always false. However, if m is 1, there is no
    296   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
    297   // us to perform an accurate check in this case.
    298   //
    299   // The above case requires that we have an UnknownDependence between
    300   // accesses to the same underlying object. This cannot happen unless
    301   // ShouldRetryWithRuntimeCheck is set, and therefore UseDependencies
    302   // is also false. In this case we will use the fallback path and create
    303   // separate checking groups for all pointers.
    304 
    305   // If we don't have the dependency partitions, construct a new
    306   // checking pointer group for each pointer. This is also required
    307   // for correctness, because in this case we can have checking between
    308   // pointers to the same underlying object.
    309   if (!UseDependencies) {
    310     for (unsigned I = 0; I < Pointers.size(); ++I)
    311       CheckingGroups.push_back(CheckingPtrGroup(I, *this));
    312     return;
    313   }
    314 
    315   unsigned TotalComparisons = 0;
    316 
    317   DenseMap<Value *, unsigned> PositionMap;
    318   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
    319     PositionMap[Pointers[Index].PointerValue] = Index;
    320 
    321   // We need to keep track of what pointers we've already seen so we
    322   // don't process them twice.
    323   SmallSet<unsigned, 2> Seen;
    324 
    325   // Go through all equivalence classes, get the "pointer check groups"
    326   // and add them to the overall solution. We use the order in which accesses
    327   // appear in 'Pointers' to enforce determinism.
    328   for (unsigned I = 0; I < Pointers.size(); ++I) {
    329     // We've seen this pointer before, and therefore already processed
    330     // its equivalence class.
    331     if (Seen.count(I))
    332       continue;
    333 
    334     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
    335                                            Pointers[I].IsWritePtr);
    336 
    337     SmallVector<CheckingPtrGroup, 2> Groups;
    338     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
    339 
    340     // Because DepCands is constructed by visiting accesses in the order in
    341     // which they appear in alias sets (which is deterministic) and the
    342     // iteration order within an equivalence class member is only dependent on
    343     // the order in which unions and insertions are performed on the
    344     // equivalence class, the iteration order is deterministic.
    345     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
    346          MI != ME; ++MI) {
    347       unsigned Pointer = PositionMap[MI->getPointer()];
    348       bool Merged = false;
    349       // Mark this pointer as seen.
    350       Seen.insert(Pointer);
    351 
    352       // Go through all the existing sets and see if we can find one
    353       // which can include this pointer.
    354       for (CheckingPtrGroup &Group : Groups) {
    355         // Don't perform more than a certain amount of comparisons.
    356         // This should limit the cost of grouping the pointers to something
    357         // reasonable.  If we do end up hitting this threshold, the algorithm
    358         // will create separate groups for all remaining pointers.
    359         if (TotalComparisons > MemoryCheckMergeThreshold)
    360           break;
    361 
    362         TotalComparisons++;
    363 
    364         if (Group.addPointer(Pointer)) {
    365           Merged = true;
    366           break;
    367         }
    368       }
    369 
    370       if (!Merged)
    371         // We couldn't add this pointer to any existing set or the threshold
    372         // for the number of comparisons has been reached. Create a new group
    373         // to hold the current pointer.
    374         Groups.push_back(CheckingPtrGroup(Pointer, *this));
    375     }
    376 
    377     // We've computed the grouped checks for this partition.
    378     // Save the results and continue with the next one.
    379     std::copy(Groups.begin(), Groups.end(), std::back_inserter(CheckingGroups));
    380   }
    381 }
    382 
    383 bool RuntimePointerChecking::arePointersInSamePartition(
    384     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
    385     unsigned PtrIdx2) {
    386   return (PtrToPartition[PtrIdx1] != -1 &&
    387           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
    388 }
    389 
    390 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
    391   const PointerInfo &PointerI = Pointers[I];
    392   const PointerInfo &PointerJ = Pointers[J];
    393 
    394   // No need to check if two readonly pointers intersect.
    395   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
    396     return false;
    397 
    398   // Only need to check pointers between two different dependency sets.
    399   if (PointerI.DependencySetId == PointerJ.DependencySetId)
    400     return false;
    401 
    402   // Only need to check pointers in the same alias set.
    403   if (PointerI.AliasSetId != PointerJ.AliasSetId)
    404     return false;
    405 
    406   return true;
    407 }
    408 
    409 void RuntimePointerChecking::printChecks(
    410     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    411     unsigned Depth) const {
    412   unsigned N = 0;
    413   for (const auto &Check : Checks) {
    414     const auto &First = Check.first->Members, &Second = Check.second->Members;
    415 
    416     OS.indent(Depth) << "Check " << N++ << ":\n";
    417 
    418     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
    419     for (unsigned K = 0; K < First.size(); ++K)
    420       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
    421 
    422     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
    423     for (unsigned K = 0; K < Second.size(); ++K)
    424       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
    425   }
    426 }
    427 
    428 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
    429 
    430   OS.indent(Depth) << "Run-time memory checks:\n";
    431   printChecks(OS, Checks, Depth);
    432 
    433   OS.indent(Depth) << "Grouped accesses:\n";
    434   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    435     const auto &CG = CheckingGroups[I];
    436 
    437     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
    438     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
    439                          << ")\n";
    440     for (unsigned J = 0; J < CG.Members.size(); ++J) {
    441       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
    442                            << "\n";
    443     }
    444   }
    445 }
    446 
    447 namespace {
    448 /// \brief Analyses memory accesses in a loop.
    449 ///
    450 /// Checks whether run time pointer checks are needed and builds sets for data
    451 /// dependence checking.
    452 class AccessAnalysis {
    453 public:
    454   /// \brief Read or write access location.
    455   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
    456   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
    457 
    458   AccessAnalysis(const DataLayout &Dl, AliasAnalysis *AA, LoopInfo *LI,
    459                  MemoryDepChecker::DepCandidates &DA,
    460                  PredicatedScalarEvolution &PSE)
    461       : DL(Dl), AST(*AA), LI(LI), DepCands(DA), IsRTCheckAnalysisNeeded(false),
    462         PSE(PSE) {}
    463 
    464   /// \brief Register a load  and whether it is only read from.
    465   void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
    466     Value *Ptr = const_cast<Value*>(Loc.Ptr);
    467     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
    468     Accesses.insert(MemAccessInfo(Ptr, false));
    469     if (IsReadOnly)
    470       ReadOnlyPtr.insert(Ptr);
    471   }
    472 
    473   /// \brief Register a store.
    474   void addStore(MemoryLocation &Loc) {
    475     Value *Ptr = const_cast<Value*>(Loc.Ptr);
    476     AST.add(Ptr, MemoryLocation::UnknownSize, Loc.AATags);
    477     Accesses.insert(MemAccessInfo(Ptr, true));
    478   }
    479 
    480   /// \brief Check whether we can check the pointers at runtime for
    481   /// non-intersection.
    482   ///
    483   /// Returns true if we need no check or if we do and we can generate them
    484   /// (i.e. the pointers have computable bounds).
    485   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
    486                        Loop *TheLoop, const ValueToValueMap &Strides,
    487                        bool ShouldCheckWrap = false);
    488 
    489   /// \brief Goes over all memory accesses, checks whether a RT check is needed
    490   /// and builds sets of dependent accesses.
    491   void buildDependenceSets() {
    492     processMemAccesses();
    493   }
    494 
    495   /// \brief Initial processing of memory accesses determined that we need to
    496   /// perform dependency checking.
    497   ///
    498   /// Note that this can later be cleared if we retry memcheck analysis without
    499   /// dependency checking (i.e. ShouldRetryWithRuntimeCheck).
    500   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
    501 
    502   /// We decided that no dependence analysis would be used.  Reset the state.
    503   void resetDepChecks(MemoryDepChecker &DepChecker) {
    504     CheckDeps.clear();
    505     DepChecker.clearDependences();
    506   }
    507 
    508   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
    509 
    510 private:
    511   typedef SetVector<MemAccessInfo> PtrAccessSet;
    512 
    513   /// \brief Go over all memory access and check whether runtime pointer checks
    514   /// are needed and build sets of dependency check candidates.
    515   void processMemAccesses();
    516 
    517   /// Set of all accesses.
    518   PtrAccessSet Accesses;
    519 
    520   const DataLayout &DL;
    521 
    522   /// Set of accesses that need a further dependence check.
    523   MemAccessInfoSet CheckDeps;
    524 
    525   /// Set of pointers that are read only.
    526   SmallPtrSet<Value*, 16> ReadOnlyPtr;
    527 
    528   /// An alias set tracker to partition the access set by underlying object and
    529   //intrinsic property (such as TBAA metadata).
    530   AliasSetTracker AST;
    531 
    532   LoopInfo *LI;
    533 
    534   /// Sets of potentially dependent accesses - members of one set share an
    535   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
    536   /// dependence check.
    537   MemoryDepChecker::DepCandidates &DepCands;
    538 
    539   /// \brief Initial processing of memory accesses determined that we may need
    540   /// to add memchecks.  Perform the analysis to determine the necessary checks.
    541   ///
    542   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
    543   /// memcheck analysis without dependency checking
    544   /// (i.e. ShouldRetryWithRuntimeCheck), isDependencyCheckNeeded is cleared
    545   /// while this remains set if we have potentially dependent accesses.
    546   bool IsRTCheckAnalysisNeeded;
    547 
    548   /// The SCEV predicate containing all the SCEV-related assumptions.
    549   PredicatedScalarEvolution &PSE;
    550 };
    551 
    552 } // end anonymous namespace
    553 
    554 /// \brief Check whether a pointer can participate in a runtime bounds check.
    555 static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
    556                                 const ValueToValueMap &Strides, Value *Ptr,
    557                                 Loop *L) {
    558   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
    559 
    560   // The bounds for loop-invariant pointer is trivial.
    561   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    562     return true;
    563 
    564   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
    565   if (!AR)
    566     return false;
    567 
    568   return AR->isAffine();
    569 }
    570 
    571 /// \brief Check whether a pointer address cannot wrap.
    572 static bool isNoWrap(PredicatedScalarEvolution &PSE,
    573                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
    574   const SCEV *PtrScev = PSE.getSCEV(Ptr);
    575   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    576     return true;
    577 
    578   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
    579   return Stride == 1;
    580 }
    581 
    582 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
    583                                      ScalarEvolution *SE, Loop *TheLoop,
    584                                      const ValueToValueMap &StridesMap,
    585                                      bool ShouldCheckWrap) {
    586   // Find pointers with computable bounds. We are going to use this information
    587   // to place a runtime bound check.
    588   bool CanDoRT = true;
    589 
    590   bool NeedRTCheck = false;
    591   if (!IsRTCheckAnalysisNeeded) return true;
    592 
    593   bool IsDepCheckNeeded = isDependencyCheckNeeded();
    594 
    595   // We assign a consecutive id to access from different alias sets.
    596   // Accesses between different groups doesn't need to be checked.
    597   unsigned ASId = 1;
    598   for (auto &AS : AST) {
    599     int NumReadPtrChecks = 0;
    600     int NumWritePtrChecks = 0;
    601 
    602     // We assign consecutive id to access from different dependence sets.
    603     // Accesses within the same set don't need a runtime check.
    604     unsigned RunningDepId = 1;
    605     DenseMap<Value *, unsigned> DepSetId;
    606 
    607     for (auto A : AS) {
    608       Value *Ptr = A.getValue();
    609       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
    610       MemAccessInfo Access(Ptr, IsWrite);
    611 
    612       if (IsWrite)
    613         ++NumWritePtrChecks;
    614       else
    615         ++NumReadPtrChecks;
    616 
    617       if (hasComputableBounds(PSE, StridesMap, Ptr, TheLoop) &&
    618           // When we run after a failing dependency check we have to make sure
    619           // we don't have wrapping pointers.
    620           (!ShouldCheckWrap || isNoWrap(PSE, StridesMap, Ptr, TheLoop))) {
    621         // The id of the dependence set.
    622         unsigned DepId;
    623 
    624         if (IsDepCheckNeeded) {
    625           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
    626           unsigned &LeaderId = DepSetId[Leader];
    627           if (!LeaderId)
    628             LeaderId = RunningDepId++;
    629           DepId = LeaderId;
    630         } else
    631           // Each access has its own dependence set.
    632           DepId = RunningDepId++;
    633 
    634         RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
    635 
    636         DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
    637       } else {
    638         DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n');
    639         CanDoRT = false;
    640       }
    641     }
    642 
    643     // If we have at least two writes or one write and a read then we need to
    644     // check them.  But there is no need to checks if there is only one
    645     // dependence set for this alias set.
    646     //
    647     // Note that this function computes CanDoRT and NeedRTCheck independently.
    648     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer
    649     // for which we couldn't find the bounds but we don't actually need to emit
    650     // any checks so it does not matter.
    651     if (!(IsDepCheckNeeded && CanDoRT && RunningDepId == 2))
    652       NeedRTCheck |= (NumWritePtrChecks >= 2 || (NumReadPtrChecks >= 1 &&
    653                                                  NumWritePtrChecks >= 1));
    654 
    655     ++ASId;
    656   }
    657 
    658   // If the pointers that we would use for the bounds comparison have different
    659   // address spaces, assume the values aren't directly comparable, so we can't
    660   // use them for the runtime check. We also have to assume they could
    661   // overlap. In the future there should be metadata for whether address spaces
    662   // are disjoint.
    663   unsigned NumPointers = RtCheck.Pointers.size();
    664   for (unsigned i = 0; i < NumPointers; ++i) {
    665     for (unsigned j = i + 1; j < NumPointers; ++j) {
    666       // Only need to check pointers between two different dependency sets.
    667       if (RtCheck.Pointers[i].DependencySetId ==
    668           RtCheck.Pointers[j].DependencySetId)
    669        continue;
    670       // Only need to check pointers in the same alias set.
    671       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
    672         continue;
    673 
    674       Value *PtrI = RtCheck.Pointers[i].PointerValue;
    675       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
    676 
    677       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
    678       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
    679       if (ASi != ASj) {
    680         DEBUG(dbgs() << "LAA: Runtime check would require comparison between"
    681                        " different address spaces\n");
    682         return false;
    683       }
    684     }
    685   }
    686 
    687   if (NeedRTCheck && CanDoRT)
    688     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
    689 
    690   DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
    691                << " pointer comparisons.\n");
    692 
    693   RtCheck.Need = NeedRTCheck;
    694 
    695   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT;
    696   if (!CanDoRTIfNeeded)
    697     RtCheck.reset();
    698   return CanDoRTIfNeeded;
    699 }
    700 
    701 void AccessAnalysis::processMemAccesses() {
    702   // We process the set twice: first we process read-write pointers, last we
    703   // process read-only pointers. This allows us to skip dependence tests for
    704   // read-only pointers.
    705 
    706   DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
    707   DEBUG(dbgs() << "  AST: "; AST.dump());
    708   DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
    709   DEBUG({
    710     for (auto A : Accesses)
    711       dbgs() << "\t" << *A.getPointer() << " (" <<
    712                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
    713                                          "read-only" : "read")) << ")\n";
    714   });
    715 
    716   // The AliasSetTracker has nicely partitioned our pointers by metadata
    717   // compatibility and potential for underlying-object overlap. As a result, we
    718   // only need to check for potential pointer dependencies within each alias
    719   // set.
    720   for (auto &AS : AST) {
    721     // Note that both the alias-set tracker and the alias sets themselves used
    722     // linked lists internally and so the iteration order here is deterministic
    723     // (matching the original instruction order within each set).
    724 
    725     bool SetHasWrite = false;
    726 
    727     // Map of pointers to last access encountered.
    728     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
    729     UnderlyingObjToAccessMap ObjToLastAccess;
    730 
    731     // Set of access to check after all writes have been processed.
    732     PtrAccessSet DeferredAccesses;
    733 
    734     // Iterate over each alias set twice, once to process read/write pointers,
    735     // and then to process read-only pointers.
    736     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
    737       bool UseDeferred = SetIteration > 0;
    738       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
    739 
    740       for (auto AV : AS) {
    741         Value *Ptr = AV.getValue();
    742 
    743         // For a single memory access in AliasSetTracker, Accesses may contain
    744         // both read and write, and they both need to be handled for CheckDeps.
    745         for (auto AC : S) {
    746           if (AC.getPointer() != Ptr)
    747             continue;
    748 
    749           bool IsWrite = AC.getInt();
    750 
    751           // If we're using the deferred access set, then it contains only
    752           // reads.
    753           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
    754           if (UseDeferred && !IsReadOnlyPtr)
    755             continue;
    756           // Otherwise, the pointer must be in the PtrAccessSet, either as a
    757           // read or a write.
    758           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
    759                   S.count(MemAccessInfo(Ptr, false))) &&
    760                  "Alias-set pointer not in the access set?");
    761 
    762           MemAccessInfo Access(Ptr, IsWrite);
    763           DepCands.insert(Access);
    764 
    765           // Memorize read-only pointers for later processing and skip them in
    766           // the first round (they need to be checked after we have seen all
    767           // write pointers). Note: we also mark pointer that are not
    768           // consecutive as "read-only" pointers (so that we check
    769           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
    770           if (!UseDeferred && IsReadOnlyPtr) {
    771             DeferredAccesses.insert(Access);
    772             continue;
    773           }
    774 
    775           // If this is a write - check other reads and writes for conflicts. If
    776           // this is a read only check other writes for conflicts (but only if
    777           // there is no other write to the ptr - this is an optimization to
    778           // catch "a[i] = a[i] + " without having to do a dependence check).
    779           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
    780             CheckDeps.insert(Access);
    781             IsRTCheckAnalysisNeeded = true;
    782           }
    783 
    784           if (IsWrite)
    785             SetHasWrite = true;
    786 
    787           // Create sets of pointers connected by a shared alias set and
    788           // underlying object.
    789           typedef SmallVector<Value *, 16> ValueVector;
    790           ValueVector TempObjects;
    791 
    792           GetUnderlyingObjects(Ptr, TempObjects, DL, LI);
    793           DEBUG(dbgs() << "Underlying objects for pointer " << *Ptr << "\n");
    794           for (Value *UnderlyingObj : TempObjects) {
    795             // nullptr never alias, don't join sets for pointer that have "null"
    796             // in their UnderlyingObjects list.
    797             if (isa<ConstantPointerNull>(UnderlyingObj))
    798               continue;
    799 
    800             UnderlyingObjToAccessMap::iterator Prev =
    801                 ObjToLastAccess.find(UnderlyingObj);
    802             if (Prev != ObjToLastAccess.end())
    803               DepCands.unionSets(Access, Prev->second);
    804 
    805             ObjToLastAccess[UnderlyingObj] = Access;
    806             DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
    807           }
    808         }
    809       }
    810     }
    811   }
    812 }
    813 
    814 static bool isInBoundsGep(Value *Ptr) {
    815   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
    816     return GEP->isInBounds();
    817   return false;
    818 }
    819 
    820 /// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
    821 /// i.e. monotonically increasing/decreasing.
    822 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
    823                            PredicatedScalarEvolution &PSE, const Loop *L) {
    824   // FIXME: This should probably only return true for NUW.
    825   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
    826     return true;
    827 
    828   // Scalar evolution does not propagate the non-wrapping flags to values that
    829   // are derived from a non-wrapping induction variable because non-wrapping
    830   // could be flow-sensitive.
    831   //
    832   // Look through the potentially overflowing instruction to try to prove
    833   // non-wrapping for the *specific* value of Ptr.
    834 
    835   // The arithmetic implied by an inbounds GEP can't overflow.
    836   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
    837   if (!GEP || !GEP->isInBounds())
    838     return false;
    839 
    840   // Make sure there is only one non-const index and analyze that.
    841   Value *NonConstIndex = nullptr;
    842   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end()))
    843     if (!isa<ConstantInt>(Index)) {
    844       if (NonConstIndex)
    845         return false;
    846       NonConstIndex = Index;
    847     }
    848   if (!NonConstIndex)
    849     // The recurrence is on the pointer, ignore for now.
    850     return false;
    851 
    852   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
    853   // AddRec using a NSW operation.
    854   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
    855     if (OBO->hasNoSignedWrap() &&
    856         // Assume constant for other the operand so that the AddRec can be
    857         // easily found.
    858         isa<ConstantInt>(OBO->getOperand(1))) {
    859       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
    860 
    861       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
    862         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
    863     }
    864 
    865   return false;
    866 }
    867 
    868 /// \brief Check whether the access through \p Ptr has a constant stride.
    869 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
    870                            const Loop *Lp, const ValueToValueMap &StridesMap,
    871                            bool Assume) {
    872   Type *Ty = Ptr->getType();
    873   assert(Ty->isPointerTy() && "Unexpected non-ptr");
    874 
    875   // Make sure that the pointer does not point to aggregate types.
    876   auto *PtrTy = cast<PointerType>(Ty);
    877   if (PtrTy->getElementType()->isAggregateType()) {
    878     DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" << *Ptr
    879                  << "\n");
    880     return 0;
    881   }
    882 
    883   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
    884 
    885   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
    886   if (Assume && !AR)
    887     AR = PSE.getAsAddRec(Ptr);
    888 
    889   if (!AR) {
    890     DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
    891                  << " SCEV: " << *PtrScev << "\n");
    892     return 0;
    893   }
    894 
    895   // The accesss function must stride over the innermost loop.
    896   if (Lp != AR->getLoop()) {
    897     DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " <<
    898           *Ptr << " SCEV: " << *AR << "\n");
    899     return 0;
    900   }
    901 
    902   // The address calculation must not wrap. Otherwise, a dependence could be
    903   // inverted.
    904   // An inbounds getelementptr that is a AddRec with a unit stride
    905   // cannot wrap per definition. The unit stride requirement is checked later.
    906   // An getelementptr without an inbounds attribute and unit stride would have
    907   // to access the pointer value "0" which is undefined behavior in address
    908   // space 0, therefore we can also vectorize this case.
    909   bool IsInBoundsGEP = isInBoundsGep(Ptr);
    910   bool IsNoWrapAddRec =
    911       PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
    912       isNoWrapAddRec(Ptr, AR, PSE, Lp);
    913   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
    914   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
    915     if (Assume) {
    916       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    917       IsNoWrapAddRec = true;
    918       DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
    919                    << "LAA:   Pointer: " << *Ptr << "\n"
    920                    << "LAA:   SCEV: " << *AR << "\n"
    921                    << "LAA:   Added an overflow assumption\n");
    922     } else {
    923       DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
    924                    << *Ptr << " SCEV: " << *AR << "\n");
    925       return 0;
    926     }
    927   }
    928 
    929   // Check the step is constant.
    930   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
    931 
    932   // Calculate the pointer stride and check if it is constant.
    933   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
    934   if (!C) {
    935     DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr <<
    936           " SCEV: " << *AR << "\n");
    937     return 0;
    938   }
    939 
    940   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
    941   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
    942   const APInt &APStepVal = C->getAPInt();
    943 
    944   // Huge step value - give up.
    945   if (APStepVal.getBitWidth() > 64)
    946     return 0;
    947 
    948   int64_t StepVal = APStepVal.getSExtValue();
    949 
    950   // Strided access.
    951   int64_t Stride = StepVal / Size;
    952   int64_t Rem = StepVal % Size;
    953   if (Rem)
    954     return 0;
    955 
    956   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
    957   // know we can't "wrap around the address space". In case of address space
    958   // zero we know that this won't happen without triggering undefined behavior.
    959   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
    960       Stride != 1 && Stride != -1) {
    961     if (Assume) {
    962       // We can avoid this case by adding a run-time check.
    963       DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
    964                    << "inbouds or in address space 0 may wrap:\n"
    965                    << "LAA:   Pointer: " << *Ptr << "\n"
    966                    << "LAA:   SCEV: " << *AR << "\n"
    967                    << "LAA:   Added an overflow assumption\n");
    968       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    969     } else
    970       return 0;
    971   }
    972 
    973   return Stride;
    974 }
    975 
    976 /// Take the pointer operand from the Load/Store instruction.
    977 /// Returns NULL if this is not a valid Load/Store instruction.
    978 static Value *getPointerOperand(Value *I) {
    979   if (auto *LI = dyn_cast<LoadInst>(I))
    980     return LI->getPointerOperand();
    981   if (auto *SI = dyn_cast<StoreInst>(I))
    982     return SI->getPointerOperand();
    983   return nullptr;
    984 }
    985 
    986 /// Take the address space operand from the Load/Store instruction.
    987 /// Returns -1 if this is not a valid Load/Store instruction.
    988 static unsigned getAddressSpaceOperand(Value *I) {
    989   if (LoadInst *L = dyn_cast<LoadInst>(I))
    990     return L->getPointerAddressSpace();
    991   if (StoreInst *S = dyn_cast<StoreInst>(I))
    992     return S->getPointerAddressSpace();
    993   return -1;
    994 }
    995 
    996 /// Returns true if the memory operations \p A and \p B are consecutive.
    997 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
    998                                ScalarEvolution &SE, bool CheckType) {
    999   Value *PtrA = getPointerOperand(A);
   1000   Value *PtrB = getPointerOperand(B);
   1001   unsigned ASA = getAddressSpaceOperand(A);
   1002   unsigned ASB = getAddressSpaceOperand(B);
   1003 
   1004   // Check that the address spaces match and that the pointers are valid.
   1005   if (!PtrA || !PtrB || (ASA != ASB))
   1006     return false;
   1007 
   1008   // Make sure that A and B are different pointers.
   1009   if (PtrA == PtrB)
   1010     return false;
   1011 
   1012   // Make sure that A and B have the same type if required.
   1013   if(CheckType && PtrA->getType() != PtrB->getType())
   1014       return false;
   1015 
   1016   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
   1017   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
   1018   APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
   1019 
   1020   APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
   1021   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
   1022   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
   1023 
   1024   //  OffsetDelta = OffsetB - OffsetA;
   1025   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
   1026   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
   1027   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
   1028   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV);
   1029   const APInt &OffsetDelta = OffsetDeltaC->getAPInt();
   1030   // Check if they are based on the same pointer. That makes the offsets
   1031   // sufficient.
   1032   if (PtrA == PtrB)
   1033     return OffsetDelta == Size;
   1034 
   1035   // Compute the necessary base pointer delta to have the necessary final delta
   1036   // equal to the size.
   1037   // BaseDelta = Size - OffsetDelta;
   1038   const SCEV *SizeSCEV = SE.getConstant(Size);
   1039   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);
   1040 
   1041   // Otherwise compute the distance with SCEV between the base pointers.
   1042   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
   1043   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
   1044   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
   1045   return X == PtrSCEVB;
   1046 }
   1047 
   1048 bool MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
   1049   switch (Type) {
   1050   case NoDep:
   1051   case Forward:
   1052   case BackwardVectorizable:
   1053     return true;
   1054 
   1055   case Unknown:
   1056   case ForwardButPreventsForwarding:
   1057   case Backward:
   1058   case BackwardVectorizableButPreventsForwarding:
   1059     return false;
   1060   }
   1061   llvm_unreachable("unexpected DepType!");
   1062 }
   1063 
   1064 bool MemoryDepChecker::Dependence::isBackward() const {
   1065   switch (Type) {
   1066   case NoDep:
   1067   case Forward:
   1068   case ForwardButPreventsForwarding:
   1069   case Unknown:
   1070     return false;
   1071 
   1072   case BackwardVectorizable:
   1073   case Backward:
   1074   case BackwardVectorizableButPreventsForwarding:
   1075     return true;
   1076   }
   1077   llvm_unreachable("unexpected DepType!");
   1078 }
   1079 
   1080 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
   1081   return isBackward() || Type == Unknown;
   1082 }
   1083 
   1084 bool MemoryDepChecker::Dependence::isForward() const {
   1085   switch (Type) {
   1086   case Forward:
   1087   case ForwardButPreventsForwarding:
   1088     return true;
   1089 
   1090   case NoDep:
   1091   case Unknown:
   1092   case BackwardVectorizable:
   1093   case Backward:
   1094   case BackwardVectorizableButPreventsForwarding:
   1095     return false;
   1096   }
   1097   llvm_unreachable("unexpected DepType!");
   1098 }
   1099 
   1100 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
   1101                                                     uint64_t TypeByteSize) {
   1102   // If loads occur at a distance that is not a multiple of a feasible vector
   1103   // factor store-load forwarding does not take place.
   1104   // Positive dependences might cause troubles because vectorizing them might
   1105   // prevent store-load forwarding making vectorized code run a lot slower.
   1106   //   a[i] = a[i-3] ^ a[i-8];
   1107   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
   1108   //   hence on your typical architecture store-load forwarding does not take
   1109   //   place. Vectorizing in such cases does not make sense.
   1110   // Store-load forwarding distance.
   1111 
   1112   // After this many iterations store-to-load forwarding conflicts should not
   1113   // cause any slowdowns.
   1114   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
   1115   // Maximum vector factor.
   1116   uint64_t MaxVFWithoutSLForwardIssues = std::min(
   1117       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);
   1118 
   1119   // Compute the smallest VF at which the store and load would be misaligned.
   1120   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
   1121        VF *= 2) {
   1122     // If the number of vector iteration between the store and the load are
   1123     // small we could incur conflicts.
   1124     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
   1125       MaxVFWithoutSLForwardIssues = (VF >>= 1);
   1126       break;
   1127     }
   1128   }
   1129 
   1130   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
   1131     DEBUG(dbgs() << "LAA: Distance " << Distance
   1132                  << " that could cause a store-load forwarding conflict\n");
   1133     return true;
   1134   }
   1135 
   1136   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
   1137       MaxVFWithoutSLForwardIssues !=
   1138           VectorizerParams::MaxVectorWidth * TypeByteSize)
   1139     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
   1140   return false;
   1141 }
   1142 
   1143 /// \brief Check the dependence for two accesses with the same stride \p Stride.
   1144 /// \p Distance is the positive distance and \p TypeByteSize is type size in
   1145 /// bytes.
   1146 ///
   1147 /// \returns true if they are independent.
   1148 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
   1149                                           uint64_t TypeByteSize) {
   1150   assert(Stride > 1 && "The stride must be greater than 1");
   1151   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
   1152   assert(Distance > 0 && "The distance must be non-zero");
   1153 
   1154   // Skip if the distance is not multiple of type byte size.
   1155   if (Distance % TypeByteSize)
   1156     return false;
   1157 
   1158   uint64_t ScaledDist = Distance / TypeByteSize;
   1159 
   1160   // No dependence if the scaled distance is not multiple of the stride.
   1161   // E.g.
   1162   //      for (i = 0; i < 1024 ; i += 4)
   1163   //        A[i+2] = A[i] + 1;
   1164   //
   1165   // Two accesses in memory (scaled distance is 2, stride is 4):
   1166   //     | A[0] |      |      |      | A[4] |      |      |      |
   1167   //     |      |      | A[2] |      |      |      | A[6] |      |
   1168   //
   1169   // E.g.
   1170   //      for (i = 0; i < 1024 ; i += 3)
   1171   //        A[i+4] = A[i] + 1;
   1172   //
   1173   // Two accesses in memory (scaled distance is 4, stride is 3):
   1174   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
   1175   //     |      |      |      |      | A[4] |      |      | A[7] |      |
   1176   return ScaledDist % Stride;
   1177 }
   1178 
   1179 MemoryDepChecker::Dependence::DepType
   1180 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
   1181                               const MemAccessInfo &B, unsigned BIdx,
   1182                               const ValueToValueMap &Strides) {
   1183   assert (AIdx < BIdx && "Must pass arguments in program order");
   1184 
   1185   Value *APtr = A.getPointer();
   1186   Value *BPtr = B.getPointer();
   1187   bool AIsWrite = A.getInt();
   1188   bool BIsWrite = B.getInt();
   1189 
   1190   // Two reads are independent.
   1191   if (!AIsWrite && !BIsWrite)
   1192     return Dependence::NoDep;
   1193 
   1194   // We cannot check pointers in different address spaces.
   1195   if (APtr->getType()->getPointerAddressSpace() !=
   1196       BPtr->getType()->getPointerAddressSpace())
   1197     return Dependence::Unknown;
   1198 
   1199   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
   1200   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);
   1201 
   1202   const SCEV *Src = PSE.getSCEV(APtr);
   1203   const SCEV *Sink = PSE.getSCEV(BPtr);
   1204 
   1205   // If the induction step is negative we have to invert source and sink of the
   1206   // dependence.
   1207   if (StrideAPtr < 0) {
   1208     std::swap(APtr, BPtr);
   1209     std::swap(Src, Sink);
   1210     std::swap(AIsWrite, BIsWrite);
   1211     std::swap(AIdx, BIdx);
   1212     std::swap(StrideAPtr, StrideBPtr);
   1213   }
   1214 
   1215   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);
   1216 
   1217   DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
   1218                << "(Induction step: " << StrideAPtr << ")\n");
   1219   DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
   1220                << *InstMap[BIdx] << ": " << *Dist << "\n");
   1221 
   1222   // Need accesses with constant stride. We don't want to vectorize
   1223   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
   1224   // the address space.
   1225   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
   1226     DEBUG(dbgs() << "Pointer access with non-constant stride\n");
   1227     return Dependence::Unknown;
   1228   }
   1229 
   1230   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
   1231   if (!C) {
   1232     DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
   1233     ShouldRetryWithRuntimeCheck = true;
   1234     return Dependence::Unknown;
   1235   }
   1236 
   1237   Type *ATy = APtr->getType()->getPointerElementType();
   1238   Type *BTy = BPtr->getType()->getPointerElementType();
   1239   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
   1240   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
   1241 
   1242   const APInt &Val = C->getAPInt();
   1243   int64_t Distance = Val.getSExtValue();
   1244   uint64_t Stride = std::abs(StrideAPtr);
   1245 
   1246   // Attempt to prove strided accesses independent.
   1247   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
   1248       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
   1249     DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
   1250     return Dependence::NoDep;
   1251   }
   1252 
   1253   // Negative distances are not plausible dependencies.
   1254   if (Val.isNegative()) {
   1255     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
   1256     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
   1257         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
   1258          ATy != BTy)) {
   1259       DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
   1260       return Dependence::ForwardButPreventsForwarding;
   1261     }
   1262 
   1263     DEBUG(dbgs() << "LAA: Dependence is negative\n");
   1264     return Dependence::Forward;
   1265   }
   1266 
   1267   // Write to the same location with the same size.
   1268   // Could be improved to assert type sizes are the same (i32 == float, etc).
   1269   if (Val == 0) {
   1270     if (ATy == BTy)
   1271       return Dependence::Forward;
   1272     DEBUG(dbgs() << "LAA: Zero dependence difference but different types\n");
   1273     return Dependence::Unknown;
   1274   }
   1275 
   1276   assert(Val.isStrictlyPositive() && "Expect a positive value");
   1277 
   1278   if (ATy != BTy) {
   1279     DEBUG(dbgs() <<
   1280           "LAA: ReadWrite-Write positive dependency with different types\n");
   1281     return Dependence::Unknown;
   1282   }
   1283 
   1284   // Bail out early if passed-in parameters make vectorization not feasible.
   1285   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
   1286                            VectorizerParams::VectorizationFactor : 1);
   1287   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
   1288                            VectorizerParams::VectorizationInterleave : 1);
   1289   // The minimum number of iterations for a vectorized/unrolled version.
   1290   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
   1291 
   1292   // It's not vectorizable if the distance is smaller than the minimum distance
   1293   // needed for a vectroized/unrolled version. Vectorizing one iteration in
   1294   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
   1295   // TypeByteSize (No need to plus the last gap distance).
   1296   //
   1297   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
   1298   //      foo(int *A) {
   1299   //        int *B = (int *)((char *)A + 14);
   1300   //        for (i = 0 ; i < 1024 ; i += 2)
   1301   //          B[i] = A[i] + 1;
   1302   //      }
   1303   //
   1304   // Two accesses in memory (stride is 2):
   1305   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
   1306   //                              | B[0] |      | B[2] |      | B[4] |
   1307   //
   1308   // Distance needs for vectorizing iterations except the last iteration:
   1309   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
   1310   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
   1311   //
   1312   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
   1313   // 12, which is less than distance.
   1314   //
   1315   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
   1316   // the minimum distance needed is 28, which is greater than distance. It is
   1317   // not safe to do vectorization.
   1318   uint64_t MinDistanceNeeded =
   1319       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
   1320   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
   1321     DEBUG(dbgs() << "LAA: Failure because of positive distance " << Distance
   1322                  << '\n');
   1323     return Dependence::Backward;
   1324   }
   1325 
   1326   // Unsafe if the minimum distance needed is greater than max safe distance.
   1327   if (MinDistanceNeeded > MaxSafeDepDistBytes) {
   1328     DEBUG(dbgs() << "LAA: Failure because it needs at least "
   1329                  << MinDistanceNeeded << " size in bytes");
   1330     return Dependence::Backward;
   1331   }
   1332 
   1333   // Positive distance bigger than max vectorization factor.
   1334   // FIXME: Should use max factor instead of max distance in bytes, which could
   1335   // not handle different types.
   1336   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
   1337   //      void foo (int *A, char *B) {
   1338   //        for (unsigned i = 0; i < 1024; i++) {
   1339   //          A[i+2] = A[i] + 1;
   1340   //          B[i+2] = B[i] + 1;
   1341   //        }
   1342   //      }
   1343   //
   1344   // This case is currently unsafe according to the max safe distance. If we
   1345   // analyze the two accesses on array B, the max safe dependence distance
   1346   // is 2. Then we analyze the accesses on array A, the minimum distance needed
   1347   // is 8, which is less than 2 and forbidden vectorization, But actually
   1348   // both A and B could be vectorized by 2 iterations.
   1349   MaxSafeDepDistBytes =
   1350       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);
   1351 
   1352   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
   1353   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
   1354       couldPreventStoreLoadForward(Distance, TypeByteSize))
   1355     return Dependence::BackwardVectorizableButPreventsForwarding;
   1356 
   1357   DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
   1358                << " with max VF = "
   1359                << MaxSafeDepDistBytes / (TypeByteSize * Stride) << '\n');
   1360 
   1361   return Dependence::BackwardVectorizable;
   1362 }
   1363 
   1364 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
   1365                                    MemAccessInfoSet &CheckDeps,
   1366                                    const ValueToValueMap &Strides) {
   1367 
   1368   MaxSafeDepDistBytes = -1;
   1369   while (!CheckDeps.empty()) {
   1370     MemAccessInfo CurAccess = *CheckDeps.begin();
   1371 
   1372     // Get the relevant memory access set.
   1373     EquivalenceClasses<MemAccessInfo>::iterator I =
   1374       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
   1375 
   1376     // Check accesses within this set.
   1377     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
   1378         AccessSets.member_begin(I);
   1379     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
   1380         AccessSets.member_end();
   1381 
   1382     // Check every access pair.
   1383     while (AI != AE) {
   1384       CheckDeps.erase(*AI);
   1385       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
   1386       while (OI != AE) {
   1387         // Check every accessing instruction pair in program order.
   1388         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
   1389              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
   1390           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
   1391                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
   1392             auto A = std::make_pair(&*AI, *I1);
   1393             auto B = std::make_pair(&*OI, *I2);
   1394 
   1395             assert(*I1 != *I2);
   1396             if (*I1 > *I2)
   1397               std::swap(A, B);
   1398 
   1399             Dependence::DepType Type =
   1400                 isDependent(*A.first, A.second, *B.first, B.second, Strides);
   1401             SafeForVectorization &= Dependence::isSafeForVectorization(Type);
   1402 
   1403             // Gather dependences unless we accumulated MaxDependences
   1404             // dependences.  In that case return as soon as we find the first
   1405             // unsafe dependence.  This puts a limit on this quadratic
   1406             // algorithm.
   1407             if (RecordDependences) {
   1408               if (Type != Dependence::NoDep)
   1409                 Dependences.push_back(Dependence(A.second, B.second, Type));
   1410 
   1411               if (Dependences.size() >= MaxDependences) {
   1412                 RecordDependences = false;
   1413                 Dependences.clear();
   1414                 DEBUG(dbgs() << "Too many dependences, stopped recording\n");
   1415               }
   1416             }
   1417             if (!RecordDependences && !SafeForVectorization)
   1418               return false;
   1419           }
   1420         ++OI;
   1421       }
   1422       AI++;
   1423     }
   1424   }
   1425 
   1426   DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
   1427   return SafeForVectorization;
   1428 }
   1429 
   1430 SmallVector<Instruction *, 4>
   1431 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
   1432   MemAccessInfo Access(Ptr, isWrite);
   1433   auto &IndexVector = Accesses.find(Access)->second;
   1434 
   1435   SmallVector<Instruction *, 4> Insts;
   1436   std::transform(IndexVector.begin(), IndexVector.end(),
   1437                  std::back_inserter(Insts),
   1438                  [&](unsigned Idx) { return this->InstMap[Idx]; });
   1439   return Insts;
   1440 }
   1441 
   1442 const char *MemoryDepChecker::Dependence::DepName[] = {
   1443     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
   1444     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};
   1445 
   1446 void MemoryDepChecker::Dependence::print(
   1447     raw_ostream &OS, unsigned Depth,
   1448     const SmallVectorImpl<Instruction *> &Instrs) const {
   1449   OS.indent(Depth) << DepName[Type] << ":\n";
   1450   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
   1451   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
   1452 }
   1453 
   1454 bool LoopAccessInfo::canAnalyzeLoop() {
   1455   // We need to have a loop header.
   1456   DEBUG(dbgs() << "LAA: Found a loop in "
   1457                << TheLoop->getHeader()->getParent()->getName() << ": "
   1458                << TheLoop->getHeader()->getName() << '\n');
   1459 
   1460   // We can only analyze innermost loops.
   1461   if (!TheLoop->empty()) {
   1462     DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
   1463     emitAnalysis(LoopAccessReport() << "loop is not the innermost loop");
   1464     return false;
   1465   }
   1466 
   1467   // We must have a single backedge.
   1468   if (TheLoop->getNumBackEdges() != 1) {
   1469     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
   1470     emitAnalysis(
   1471         LoopAccessReport() <<
   1472         "loop control flow is not understood by analyzer");
   1473     return false;
   1474   }
   1475 
   1476   // We must have a single exiting block.
   1477   if (!TheLoop->getExitingBlock()) {
   1478     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
   1479     emitAnalysis(
   1480         LoopAccessReport() <<
   1481         "loop control flow is not understood by analyzer");
   1482     return false;
   1483   }
   1484 
   1485   // We only handle bottom-tested loops, i.e. loop in which the condition is
   1486   // checked at the end of each iteration. With that we can assume that all
   1487   // instructions in the loop are executed the same number of times.
   1488   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
   1489     DEBUG(dbgs() << "LAA: loop control flow is not understood by analyzer\n");
   1490     emitAnalysis(
   1491         LoopAccessReport() <<
   1492         "loop control flow is not understood by analyzer");
   1493     return false;
   1494   }
   1495 
   1496   // ScalarEvolution needs to be able to find the exit count.
   1497   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
   1498   if (ExitCount == PSE->getSE()->getCouldNotCompute()) {
   1499     emitAnalysis(LoopAccessReport()
   1500                  << "could not determine number of loop iterations");
   1501     DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
   1502     return false;
   1503   }
   1504 
   1505   return true;
   1506 }
   1507 
   1508 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
   1509                                  const TargetLibraryInfo *TLI,
   1510                                  DominatorTree *DT) {
   1511   typedef SmallPtrSet<Value*, 16> ValueSet;
   1512 
   1513   // Holds the Load and Store instructions.
   1514   SmallVector<LoadInst *, 16> Loads;
   1515   SmallVector<StoreInst *, 16> Stores;
   1516 
   1517   // Holds all the different accesses in the loop.
   1518   unsigned NumReads = 0;
   1519   unsigned NumReadWrites = 0;
   1520 
   1521   PtrRtChecking->Pointers.clear();
   1522   PtrRtChecking->Need = false;
   1523 
   1524   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
   1525 
   1526   // For each block.
   1527   for (BasicBlock *BB : TheLoop->blocks()) {
   1528     // Scan the BB and collect legal loads and stores.
   1529     for (Instruction &I : *BB) {
   1530       // If this is a load, save it. If this instruction can read from memory
   1531       // but is not a load, then we quit. Notice that we don't handle function
   1532       // calls that read or write.
   1533       if (I.mayReadFromMemory()) {
   1534         // Many math library functions read the rounding mode. We will only
   1535         // vectorize a loop if it contains known function calls that don't set
   1536         // the flag. Therefore, it is safe to ignore this read from memory.
   1537         auto *Call = dyn_cast<CallInst>(&I);
   1538         if (Call && getVectorIntrinsicIDForCall(Call, TLI))
   1539           continue;
   1540 
   1541         // If the function has an explicit vectorized counterpart, we can safely
   1542         // assume that it can be vectorized.
   1543         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
   1544             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName()))
   1545           continue;
   1546 
   1547         auto *Ld = dyn_cast<LoadInst>(&I);
   1548         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
   1549           emitAnalysis(LoopAccessReport(Ld)
   1550                        << "read with atomic ordering or volatile read");
   1551           DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
   1552           CanVecMem = false;
   1553           return;
   1554         }
   1555         NumLoads++;
   1556         Loads.push_back(Ld);
   1557         DepChecker->addAccess(Ld);
   1558         if (EnableMemAccessVersioning)
   1559           collectStridedAccess(Ld);
   1560         continue;
   1561       }
   1562 
   1563       // Save 'store' instructions. Abort if other instructions write to memory.
   1564       if (I.mayWriteToMemory()) {
   1565         auto *St = dyn_cast<StoreInst>(&I);
   1566         if (!St) {
   1567           emitAnalysis(LoopAccessReport(St)
   1568                        << "instruction cannot be vectorized");
   1569           CanVecMem = false;
   1570           return;
   1571         }
   1572         if (!St->isSimple() && !IsAnnotatedParallel) {
   1573           emitAnalysis(LoopAccessReport(St)
   1574                        << "write with atomic ordering or volatile write");
   1575           DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
   1576           CanVecMem = false;
   1577           return;
   1578         }
   1579         NumStores++;
   1580         Stores.push_back(St);
   1581         DepChecker->addAccess(St);
   1582         if (EnableMemAccessVersioning)
   1583           collectStridedAccess(St);
   1584       }
   1585     } // Next instr.
   1586   } // Next block.
   1587 
   1588   // Now we have two lists that hold the loads and the stores.
   1589   // Next, we find the pointers that they use.
   1590 
   1591   // Check if we see any stores. If there are no stores, then we don't
   1592   // care if the pointers are *restrict*.
   1593   if (!Stores.size()) {
   1594     DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
   1595     CanVecMem = true;
   1596     return;
   1597   }
   1598 
   1599   MemoryDepChecker::DepCandidates DependentAccesses;
   1600   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(),
   1601                           AA, LI, DependentAccesses, *PSE);
   1602 
   1603   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
   1604   // multiple times on the same object. If the ptr is accessed twice, once
   1605   // for read and once for write, it will only appear once (on the write
   1606   // list). This is okay, since we are going to check for conflicts between
   1607   // writes and between reads and writes, but not between reads and reads.
   1608   ValueSet Seen;
   1609 
   1610   for (StoreInst *ST : Stores) {
   1611     Value *Ptr = ST->getPointerOperand();
   1612     // Check for store to loop invariant address.
   1613     StoreToLoopInvariantAddress |= isUniform(Ptr);
   1614     // If we did *not* see this pointer before, insert it to  the read-write
   1615     // list. At this phase it is only a 'write' list.
   1616     if (Seen.insert(Ptr).second) {
   1617       ++NumReadWrites;
   1618 
   1619       MemoryLocation Loc = MemoryLocation::get(ST);
   1620       // The TBAA metadata could have a control dependency on the predication
   1621       // condition, so we cannot rely on it when determining whether or not we
   1622       // need runtime pointer checks.
   1623       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
   1624         Loc.AATags.TBAA = nullptr;
   1625 
   1626       Accesses.addStore(Loc);
   1627     }
   1628   }
   1629 
   1630   if (IsAnnotatedParallel) {
   1631     DEBUG(dbgs()
   1632           << "LAA: A loop annotated parallel, ignore memory dependency "
   1633           << "checks.\n");
   1634     CanVecMem = true;
   1635     return;
   1636   }
   1637 
   1638   for (LoadInst *LD : Loads) {
   1639     Value *Ptr = LD->getPointerOperand();
   1640     // If we did *not* see this pointer before, insert it to the
   1641     // read list. If we *did* see it before, then it is already in
   1642     // the read-write list. This allows us to vectorize expressions
   1643     // such as A[i] += x;  Because the address of A[i] is a read-write
   1644     // pointer. This only works if the index of A[i] is consecutive.
   1645     // If the address of i is unknown (for example A[B[i]]) then we may
   1646     // read a few words, modify, and write a few words, and some of the
   1647     // words may be written to the same address.
   1648     bool IsReadOnlyPtr = false;
   1649     if (Seen.insert(Ptr).second ||
   1650         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
   1651       ++NumReads;
   1652       IsReadOnlyPtr = true;
   1653     }
   1654 
   1655     MemoryLocation Loc = MemoryLocation::get(LD);
   1656     // The TBAA metadata could have a control dependency on the predication
   1657     // condition, so we cannot rely on it when determining whether or not we
   1658     // need runtime pointer checks.
   1659     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
   1660       Loc.AATags.TBAA = nullptr;
   1661 
   1662     Accesses.addLoad(Loc, IsReadOnlyPtr);
   1663   }
   1664 
   1665   // If we write (or read-write) to a single destination and there are no
   1666   // other reads in this loop then is it safe to vectorize.
   1667   if (NumReadWrites == 1 && NumReads == 0) {
   1668     DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
   1669     CanVecMem = true;
   1670     return;
   1671   }
   1672 
   1673   // Build dependence sets and check whether we need a runtime pointer bounds
   1674   // check.
   1675   Accesses.buildDependenceSets();
   1676 
   1677   // Find pointers with computable bounds. We are going to use this information
   1678   // to place a runtime bound check.
   1679   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
   1680                                                   TheLoop, SymbolicStrides);
   1681   if (!CanDoRTIfNeeded) {
   1682     emitAnalysis(LoopAccessReport() << "cannot identify array bounds");
   1683     DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
   1684                  << "the array bounds.\n");
   1685     CanVecMem = false;
   1686     return;
   1687   }
   1688 
   1689   DEBUG(dbgs() << "LAA: We can perform a memory runtime check if needed.\n");
   1690 
   1691   CanVecMem = true;
   1692   if (Accesses.isDependencyCheckNeeded()) {
   1693     DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
   1694     CanVecMem = DepChecker->areDepsSafe(
   1695         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
   1696     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();
   1697 
   1698     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
   1699       DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
   1700 
   1701       // Clear the dependency checks. We assume they are not needed.
   1702       Accesses.resetDepChecks(*DepChecker);
   1703 
   1704       PtrRtChecking->reset();
   1705       PtrRtChecking->Need = true;
   1706 
   1707       auto *SE = PSE->getSE();
   1708       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
   1709                                                  SymbolicStrides, true);
   1710 
   1711       // Check that we found the bounds for the pointer.
   1712       if (!CanDoRTIfNeeded) {
   1713         emitAnalysis(LoopAccessReport()
   1714                      << "cannot check memory dependencies at runtime");
   1715         DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
   1716         CanVecMem = false;
   1717         return;
   1718       }
   1719 
   1720       CanVecMem = true;
   1721     }
   1722   }
   1723 
   1724   if (CanVecMem)
   1725     DEBUG(dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
   1726                  << (PtrRtChecking->Need ? "" : " don't")
   1727                  << " need runtime memory checks.\n");
   1728   else {
   1729     emitAnalysis(
   1730         LoopAccessReport()
   1731         << "unsafe dependent memory operations in loop. Use "
   1732            "#pragma loop distribute(enable) to allow loop distribution "
   1733            "to attempt to isolate the offending operations into a separate "
   1734            "loop");
   1735     DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
   1736   }
   1737 }
   1738 
   1739 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
   1740                                            DominatorTree *DT)  {
   1741   assert(TheLoop->contains(BB) && "Unknown block used");
   1742 
   1743   // Blocks that do not dominate the latch need predication.
   1744   BasicBlock* Latch = TheLoop->getLoopLatch();
   1745   return !DT->dominates(BB, Latch);
   1746 }
   1747 
   1748 void LoopAccessInfo::emitAnalysis(LoopAccessReport &Message) {
   1749   assert(!Report && "Multiple reports generated");
   1750   Report = Message;
   1751 }
   1752 
   1753 bool LoopAccessInfo::isUniform(Value *V) const {
   1754   return (PSE->getSE()->isLoopInvariant(PSE->getSE()->getSCEV(V), TheLoop));
   1755 }
   1756 
   1757 // FIXME: this function is currently a duplicate of the one in
   1758 // LoopVectorize.cpp.
   1759 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
   1760                                  Instruction *Loc) {
   1761   if (FirstInst)
   1762     return FirstInst;
   1763   if (Instruction *I = dyn_cast<Instruction>(V))
   1764     return I->getParent() == Loc->getParent() ? I : nullptr;
   1765   return nullptr;
   1766 }
   1767 
   1768 namespace {
   1769 /// \brief IR Values for the lower and upper bounds of a pointer evolution.  We
   1770 /// need to use value-handles because SCEV expansion can invalidate previously
   1771 /// expanded values.  Thus expansion of a pointer can invalidate the bounds for
   1772 /// a previous one.
   1773 struct PointerBounds {
   1774   TrackingVH<Value> Start;
   1775   TrackingVH<Value> End;
   1776 };
   1777 } // end anonymous namespace
   1778 
   1779 /// \brief Expand code for the lower and upper bound of the pointer group \p CG
   1780 /// in \p TheLoop.  \return the values for the bounds.
   1781 static PointerBounds
   1782 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop,
   1783              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE,
   1784              const RuntimePointerChecking &PtrRtChecking) {
   1785   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue;
   1786   const SCEV *Sc = SE->getSCEV(Ptr);
   1787 
   1788   if (SE->isLoopInvariant(Sc, TheLoop)) {
   1789     DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" << *Ptr
   1790                  << "\n");
   1791     return {Ptr, Ptr};
   1792   } else {
   1793     unsigned AS = Ptr->getType()->getPointerAddressSpace();
   1794     LLVMContext &Ctx = Loc->getContext();
   1795 
   1796     // Use this type for pointer arithmetic.
   1797     Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
   1798     Value *Start = nullptr, *End = nullptr;
   1799 
   1800     DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
   1801     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
   1802     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
   1803     DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
   1804     return {Start, End};
   1805   }
   1806 }
   1807 
   1808 /// \brief Turns a collection of checks into a collection of expanded upper and
   1809 /// lower bounds for both pointers in the check.
   1810 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds(
   1811     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks,
   1812     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp,
   1813     const RuntimePointerChecking &PtrRtChecking) {
   1814   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
   1815 
   1816   // Here we're relying on the SCEV Expander's cache to only emit code for the
   1817   // same bounds once.
   1818   std::transform(
   1819       PointerChecks.begin(), PointerChecks.end(),
   1820       std::back_inserter(ChecksWithBounds),
   1821       [&](const RuntimePointerChecking::PointerCheck &Check) {
   1822         PointerBounds
   1823           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking),
   1824           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking);
   1825         return std::make_pair(First, Second);
   1826       });
   1827 
   1828   return ChecksWithBounds;
   1829 }
   1830 
   1831 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks(
   1832     Instruction *Loc,
   1833     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks)
   1834     const {
   1835   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
   1836   auto *SE = PSE->getSE();
   1837   SCEVExpander Exp(*SE, DL, "induction");
   1838   auto ExpandedChecks =
   1839       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking);
   1840 
   1841   LLVMContext &Ctx = Loc->getContext();
   1842   Instruction *FirstInst = nullptr;
   1843   IRBuilder<> ChkBuilder(Loc);
   1844   // Our instructions might fold to a constant.
   1845   Value *MemoryRuntimeCheck = nullptr;
   1846 
   1847   for (const auto &Check : ExpandedChecks) {
   1848     const PointerBounds &A = Check.first, &B = Check.second;
   1849     // Check if two pointers (A and B) conflict where conflict is computed as:
   1850     // start(A) <= end(B) && start(B) <= end(A)
   1851     unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
   1852     unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
   1853 
   1854     assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
   1855            (AS1 == A.End->getType()->getPointerAddressSpace()) &&
   1856            "Trying to bounds check pointers with different address spaces");
   1857 
   1858     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
   1859     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
   1860 
   1861     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
   1862     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
   1863     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc");
   1864     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc");
   1865 
   1866     Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
   1867     FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
   1868     Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
   1869     FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
   1870     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
   1871     FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
   1872     if (MemoryRuntimeCheck) {
   1873       IsConflict =
   1874           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
   1875       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
   1876     }
   1877     MemoryRuntimeCheck = IsConflict;
   1878   }
   1879 
   1880   if (!MemoryRuntimeCheck)
   1881     return std::make_pair(nullptr, nullptr);
   1882 
   1883   // We have to do this trickery because the IRBuilder might fold the check to a
   1884   // constant expression in which case there is no Instruction anchored in a
   1885   // the block.
   1886   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
   1887                                                  ConstantInt::getTrue(Ctx));
   1888   ChkBuilder.Insert(Check, "memcheck.conflict");
   1889   FirstInst = getFirstInst(FirstInst, Check, Loc);
   1890   return std::make_pair(FirstInst, Check);
   1891 }
   1892 
   1893 std::pair<Instruction *, Instruction *>
   1894 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const {
   1895   if (!PtrRtChecking->Need)
   1896     return std::make_pair(nullptr, nullptr);
   1897 
   1898   return addRuntimeChecks(Loc, PtrRtChecking->getChecks());
   1899 }
   1900 
   1901 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
   1902   Value *Ptr = nullptr;
   1903   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
   1904     Ptr = LI->getPointerOperand();
   1905   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
   1906     Ptr = SI->getPointerOperand();
   1907   else
   1908     return;
   1909 
   1910   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
   1911   if (!Stride)
   1912     return;
   1913 
   1914   DEBUG(dbgs() << "LAA: Found a strided access that we can version");
   1915   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
   1916   SymbolicStrides[Ptr] = Stride;
   1917   StrideSet.insert(Stride);
   1918 }
   1919 
   1920 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
   1921                                const TargetLibraryInfo *TLI, AliasAnalysis *AA,
   1922                                DominatorTree *DT, LoopInfo *LI)
   1923     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)),
   1924       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)),
   1925       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
   1926       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
   1927       StoreToLoopInvariantAddress(false) {
   1928   if (canAnalyzeLoop())
   1929     analyzeLoop(AA, LI, TLI, DT);
   1930 }
   1931 
   1932 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
   1933   if (CanVecMem) {
   1934     OS.indent(Depth) << "Memory dependences are safe";
   1935     if (MaxSafeDepDistBytes != -1ULL)
   1936       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
   1937          << " bytes";
   1938     if (PtrRtChecking->Need)
   1939       OS << " with run-time checks";
   1940     OS << "\n";
   1941   }
   1942 
   1943   if (Report)
   1944     OS.indent(Depth) << "Report: " << Report->str() << "\n";
   1945 
   1946   if (auto *Dependences = DepChecker->getDependences()) {
   1947     OS.indent(Depth) << "Dependences:\n";
   1948     for (auto &Dep : *Dependences) {
   1949       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
   1950       OS << "\n";
   1951     }
   1952   } else
   1953     OS.indent(Depth) << "Too many dependences, not recorded\n";
   1954 
   1955   // List the pair of accesses need run-time checks to prove independence.
   1956   PtrRtChecking->print(OS, Depth);
   1957   OS << "\n";
   1958 
   1959   OS.indent(Depth) << "Store to invariant address was "
   1960                    << (StoreToLoopInvariantAddress ? "" : "not ")
   1961                    << "found in loop.\n";
   1962 
   1963   OS.indent(Depth) << "SCEV assumptions:\n";
   1964   PSE->getUnionPredicate().print(OS, Depth);
   1965 
   1966   OS << "\n";
   1967 
   1968   OS.indent(Depth) << "Expressions re-written:\n";
   1969   PSE->print(OS, Depth);
   1970 }
   1971 
   1972 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
   1973   auto &LAI = LoopAccessInfoMap[L];
   1974 
   1975   if (!LAI)
   1976     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);
   1977 
   1978   return *LAI.get();
   1979 }
   1980 
   1981 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
   1982   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);
   1983 
   1984   for (Loop *TopLevelLoop : *LI)
   1985     for (Loop *L : depth_first(TopLevelLoop)) {
   1986       OS.indent(2) << L->getHeader()->getName() << ":\n";
   1987       auto &LAI = LAA.getInfo(L);
   1988       LAI.print(OS, 4);
   1989     }
   1990 }
   1991 
   1992 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
   1993   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   1994   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   1995   TLI = TLIP ? &TLIP->getTLI() : nullptr;
   1996   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   1997   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1998   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1999 
   2000   return false;
   2001 }
   2002 
   2003 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
   2004     AU.addRequired<ScalarEvolutionWrapperPass>();
   2005     AU.addRequired<AAResultsWrapperPass>();
   2006     AU.addRequired<DominatorTreeWrapperPass>();
   2007     AU.addRequired<LoopInfoWrapperPass>();
   2008 
   2009     AU.setPreservesAll();
   2010 }
   2011 
   2012 char LoopAccessLegacyAnalysis::ID = 0;
   2013 static const char laa_name[] = "Loop Access Analysis";
   2014 #define LAA_NAME "loop-accesses"
   2015 
   2016 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
   2017 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   2018 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
   2019 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   2020 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   2021 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
   2022 
   2023 char LoopAccessAnalysis::PassID;
   2024 
   2025 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, AnalysisManager<Loop> &AM) {
   2026   const AnalysisManager<Function> &FAM =
   2027       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
   2028   Function &F = *L.getHeader()->getParent();
   2029   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(F);
   2030   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(F);
   2031   auto *AA = FAM.getCachedResult<AAManager>(F);
   2032   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
   2033   auto *LI = FAM.getCachedResult<LoopAnalysis>(F);
   2034   if (!SE)
   2035     report_fatal_error(
   2036         "ScalarEvolution must have been cached at a higher level");
   2037   if (!AA)
   2038     report_fatal_error("AliasAnalysis must have been cached at a higher level");
   2039   if (!DT)
   2040     report_fatal_error("DominatorTree must have been cached at a higher level");
   2041   if (!LI)
   2042     report_fatal_error("LoopInfo must have been cached at a higher level");
   2043   return LoopAccessInfo(&L, SE, TLI, AA, DT, LI);
   2044 }
   2045 
   2046 PreservedAnalyses LoopAccessInfoPrinterPass::run(Loop &L,
   2047                                                  AnalysisManager<Loop> &AM) {
   2048   Function &F = *L.getHeader()->getParent();
   2049   auto &LAI = AM.getResult<LoopAccessAnalysis>(L);
   2050   OS << "Loop access info in function '" << F.getName() << "':\n";
   2051   OS.indent(2) << L.getHeader()->getName() << ":\n";
   2052   LAI.print(OS, 4);
   2053   return PreservedAnalyses::all();
   2054 }
   2055 
   2056 namespace llvm {
   2057   Pass *createLAAPass() {
   2058     return new LoopAccessLegacyAnalysis();
   2059   }
   2060 }
   2061