Home | History | Annotate | Download | only in Analysis
      1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the CFG and CFGBuilder classes for representing and
     11 //  building Control-Flow Graphs (CFGs) from ASTs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Analysis/CFG.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/Attr.h"
     18 #include "clang/AST/CharUnits.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/PrettyPrinter.h"
     21 #include "clang/AST/StmtVisitor.h"
     22 #include "clang/Basic/Builtins.h"
     23 #include "llvm/ADT/DenseMap.h"
     24 #include <memory>
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/Support/Allocator.h"
     27 #include "llvm/Support/Format.h"
     28 #include "llvm/Support/GraphWriter.h"
     29 #include "llvm/Support/SaveAndRestore.h"
     30 
     31 using namespace clang;
     32 
     33 namespace {
     34 
     35 static SourceLocation GetEndLoc(Decl *D) {
     36   if (VarDecl *VD = dyn_cast<VarDecl>(D))
     37     if (Expr *Ex = VD->getInit())
     38       return Ex->getSourceRange().getEnd();
     39   return D->getLocation();
     40 }
     41 
     42 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
     43 /// or EnumConstantDecl from the given Expr. If it fails, returns nullptr.
     44 const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
     45   E = E->IgnoreParens();
     46   if (isa<IntegerLiteral>(E))
     47     return E;
     48   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
     49     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
     50   return nullptr;
     51 }
     52 
     53 /// Tries to interpret a binary operator into `Decl Op Expr` form, if Expr is
     54 /// an integer literal or an enum constant.
     55 ///
     56 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
     57 /// null.
     58 static std::tuple<const DeclRefExpr *, BinaryOperatorKind, const Expr *>
     59 tryNormalizeBinaryOperator(const BinaryOperator *B) {
     60   BinaryOperatorKind Op = B->getOpcode();
     61 
     62   const Expr *MaybeDecl = B->getLHS();
     63   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
     64   // Expr looked like `0 == Foo` instead of `Foo == 0`
     65   if (Constant == nullptr) {
     66     // Flip the operator
     67     if (Op == BO_GT)
     68       Op = BO_LT;
     69     else if (Op == BO_GE)
     70       Op = BO_LE;
     71     else if (Op == BO_LT)
     72       Op = BO_GT;
     73     else if (Op == BO_LE)
     74       Op = BO_GE;
     75 
     76     MaybeDecl = B->getRHS();
     77     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
     78   }
     79 
     80   auto *D = dyn_cast<DeclRefExpr>(MaybeDecl->IgnoreParenImpCasts());
     81   return std::make_tuple(D, Op, Constant);
     82 }
     83 
     84 /// For an expression `x == Foo && x == Bar`, this determines whether the
     85 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
     86 /// literals.
     87 ///
     88 /// It's an error to pass this arguments that are not either IntegerLiterals
     89 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
     90 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
     91   // User intent isn't clear if they're mixing int literals with enum
     92   // constants.
     93   if (isa<IntegerLiteral>(E1) != isa<IntegerLiteral>(E2))
     94     return false;
     95 
     96   // Integer literal comparisons, regardless of literal type, are acceptable.
     97   if (isa<IntegerLiteral>(E1))
     98     return true;
     99 
    100   // IntegerLiterals are handled above and only EnumConstantDecls are expected
    101   // beyond this point
    102   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
    103   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
    104   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
    105 
    106   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
    107   const DeclContext *DC1 = Decl1->getDeclContext();
    108   const DeclContext *DC2 = Decl2->getDeclContext();
    109 
    110   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
    111   return DC1 == DC2;
    112 }
    113 
    114 class CFGBuilder;
    115 
    116 /// The CFG builder uses a recursive algorithm to build the CFG.  When
    117 ///  we process an expression, sometimes we know that we must add the
    118 ///  subexpressions as block-level expressions.  For example:
    119 ///
    120 ///    exp1 || exp2
    121 ///
    122 ///  When processing the '||' expression, we know that exp1 and exp2
    123 ///  need to be added as block-level expressions, even though they
    124 ///  might not normally need to be.  AddStmtChoice records this
    125 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
    126 ///  the builder has an option not to add a subexpression as a
    127 ///  block-level expression.
    128 ///
    129 class AddStmtChoice {
    130 public:
    131   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
    132 
    133   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
    134 
    135   bool alwaysAdd(CFGBuilder &builder,
    136                  const Stmt *stmt) const;
    137 
    138   /// Return a copy of this object, except with the 'always-add' bit
    139   ///  set as specified.
    140   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
    141     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
    142   }
    143 
    144 private:
    145   Kind kind;
    146 };
    147 
    148 /// LocalScope - Node in tree of local scopes created for C++ implicit
    149 /// destructor calls generation. It contains list of automatic variables
    150 /// declared in the scope and link to position in previous scope this scope
    151 /// began in.
    152 ///
    153 /// The process of creating local scopes is as follows:
    154 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
    155 /// - Before processing statements in scope (e.g. CompoundStmt) create
    156 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
    157 ///   and set CFGBuilder::ScopePos to the end of new scope,
    158 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
    159 ///   at this VarDecl,
    160 /// - For every normal (without jump) end of scope add to CFGBlock destructors
    161 ///   for objects in the current scope,
    162 /// - For every jump add to CFGBlock destructors for objects
    163 ///   between CFGBuilder::ScopePos and local scope position saved for jump
    164 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
    165 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
    166 ///   (adding any variable that doesn't need constructor to be called to
    167 ///   LocalScope can break this assumption),
    168 ///
    169 class LocalScope {
    170 public:
    171   typedef BumpVector<VarDecl*> AutomaticVarsTy;
    172 
    173   /// const_iterator - Iterates local scope backwards and jumps to previous
    174   /// scope on reaching the beginning of currently iterated scope.
    175   class const_iterator {
    176     const LocalScope* Scope;
    177 
    178     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
    179     /// Invalid iterator (with null Scope) has VarIter equal to 0.
    180     unsigned VarIter;
    181 
    182   public:
    183     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
    184     /// Incrementing invalid iterator is allowed and will result in invalid
    185     /// iterator.
    186     const_iterator()
    187         : Scope(nullptr), VarIter(0) {}
    188 
    189     /// Create valid iterator. In case when S.Prev is an invalid iterator and
    190     /// I is equal to 0, this will create invalid iterator.
    191     const_iterator(const LocalScope& S, unsigned I)
    192         : Scope(&S), VarIter(I) {
    193       // Iterator to "end" of scope is not allowed. Handle it by going up
    194       // in scopes tree possibly up to invalid iterator in the root.
    195       if (VarIter == 0 && Scope)
    196         *this = Scope->Prev;
    197     }
    198 
    199     VarDecl *const* operator->() const {
    200       assert (Scope && "Dereferencing invalid iterator is not allowed");
    201       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    202       return &Scope->Vars[VarIter - 1];
    203     }
    204     VarDecl *operator*() const {
    205       return *this->operator->();
    206     }
    207 
    208     const_iterator &operator++() {
    209       if (!Scope)
    210         return *this;
    211 
    212       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
    213       --VarIter;
    214       if (VarIter == 0)
    215         *this = Scope->Prev;
    216       return *this;
    217     }
    218     const_iterator operator++(int) {
    219       const_iterator P = *this;
    220       ++*this;
    221       return P;
    222     }
    223 
    224     bool operator==(const const_iterator &rhs) const {
    225       return Scope == rhs.Scope && VarIter == rhs.VarIter;
    226     }
    227     bool operator!=(const const_iterator &rhs) const {
    228       return !(*this == rhs);
    229     }
    230 
    231     explicit operator bool() const {
    232       return *this != const_iterator();
    233     }
    234 
    235     int distance(const_iterator L);
    236   };
    237 
    238   friend class const_iterator;
    239 
    240 private:
    241   BumpVectorContext ctx;
    242 
    243   /// Automatic variables in order of declaration.
    244   AutomaticVarsTy Vars;
    245   /// Iterator to variable in previous scope that was declared just before
    246   /// begin of this scope.
    247   const_iterator Prev;
    248 
    249 public:
    250   /// Constructs empty scope linked to previous scope in specified place.
    251   LocalScope(BumpVectorContext ctx, const_iterator P)
    252       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
    253 
    254   /// Begin of scope in direction of CFG building (backwards).
    255   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
    256 
    257   void addVar(VarDecl *VD) {
    258     Vars.push_back(VD, ctx);
    259   }
    260 };
    261 
    262 /// distance - Calculates distance from this to L. L must be reachable from this
    263 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
    264 /// number of scopes between this and L.
    265 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
    266   int D = 0;
    267   const_iterator F = *this;
    268   while (F.Scope != L.Scope) {
    269     assert (F != const_iterator()
    270         && "L iterator is not reachable from F iterator.");
    271     D += F.VarIter;
    272     F = F.Scope->Prev;
    273   }
    274   D += F.VarIter - L.VarIter;
    275   return D;
    276 }
    277 
    278 /// Structure for specifying position in CFG during its build process. It
    279 /// consists of CFGBlock that specifies position in CFG and
    280 /// LocalScope::const_iterator that specifies position in LocalScope graph.
    281 struct BlockScopePosPair {
    282   BlockScopePosPair() : block(nullptr) {}
    283   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
    284       : block(b), scopePosition(scopePos) {}
    285 
    286   CFGBlock *block;
    287   LocalScope::const_iterator scopePosition;
    288 };
    289 
    290 /// TryResult - a class representing a variant over the values
    291 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
    292 ///  and is used by the CFGBuilder to decide if a branch condition
    293 ///  can be decided up front during CFG construction.
    294 class TryResult {
    295   int X;
    296 public:
    297   TryResult(bool b) : X(b ? 1 : 0) {}
    298   TryResult() : X(-1) {}
    299 
    300   bool isTrue() const { return X == 1; }
    301   bool isFalse() const { return X == 0; }
    302   bool isKnown() const { return X >= 0; }
    303   void negate() {
    304     assert(isKnown());
    305     X ^= 0x1;
    306   }
    307 };
    308 
    309 TryResult bothKnownTrue(TryResult R1, TryResult R2) {
    310   if (!R1.isKnown() || !R2.isKnown())
    311     return TryResult();
    312   return TryResult(R1.isTrue() && R2.isTrue());
    313 }
    314 
    315 class reverse_children {
    316   llvm::SmallVector<Stmt *, 12> childrenBuf;
    317   ArrayRef<Stmt*> children;
    318 public:
    319   reverse_children(Stmt *S);
    320 
    321   typedef ArrayRef<Stmt*>::reverse_iterator iterator;
    322   iterator begin() const { return children.rbegin(); }
    323   iterator end() const { return children.rend(); }
    324 };
    325 
    326 
    327 reverse_children::reverse_children(Stmt *S) {
    328   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
    329     children = CE->getRawSubExprs();
    330     return;
    331   }
    332   switch (S->getStmtClass()) {
    333     // Note: Fill in this switch with more cases we want to optimize.
    334     case Stmt::InitListExprClass: {
    335       InitListExpr *IE = cast<InitListExpr>(S);
    336       children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
    337                                     IE->getNumInits());
    338       return;
    339     }
    340     default:
    341       break;
    342   }
    343 
    344   // Default case for all other statements.
    345   for (Stmt *SubStmt : S->children())
    346     childrenBuf.push_back(SubStmt);
    347 
    348   // This needs to be done *after* childrenBuf has been populated.
    349   children = childrenBuf;
    350 }
    351 
    352 /// CFGBuilder - This class implements CFG construction from an AST.
    353 ///   The builder is stateful: an instance of the builder should be used to only
    354 ///   construct a single CFG.
    355 ///
    356 ///   Example usage:
    357 ///
    358 ///     CFGBuilder builder;
    359 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
    360 ///
    361 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
    362 ///  the AST in reverse order so that the successor of a basic block is
    363 ///  constructed prior to its predecessor.  This allows us to nicely capture
    364 ///  implicit fall-throughs without extra basic blocks.
    365 ///
    366 class CFGBuilder {
    367   typedef BlockScopePosPair JumpTarget;
    368   typedef BlockScopePosPair JumpSource;
    369 
    370   ASTContext *Context;
    371   std::unique_ptr<CFG> cfg;
    372 
    373   CFGBlock *Block;
    374   CFGBlock *Succ;
    375   JumpTarget ContinueJumpTarget;
    376   JumpTarget BreakJumpTarget;
    377   CFGBlock *SwitchTerminatedBlock;
    378   CFGBlock *DefaultCaseBlock;
    379   CFGBlock *TryTerminatedBlock;
    380 
    381   // Current position in local scope.
    382   LocalScope::const_iterator ScopePos;
    383 
    384   // LabelMap records the mapping from Label expressions to their jump targets.
    385   typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
    386   LabelMapTy LabelMap;
    387 
    388   // A list of blocks that end with a "goto" that must be backpatched to their
    389   // resolved targets upon completion of CFG construction.
    390   typedef std::vector<JumpSource> BackpatchBlocksTy;
    391   BackpatchBlocksTy BackpatchBlocks;
    392 
    393   // A list of labels whose address has been taken (for indirect gotos).
    394   typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
    395   LabelSetTy AddressTakenLabels;
    396 
    397   bool badCFG;
    398   const CFG::BuildOptions &BuildOpts;
    399 
    400   // State to track for building switch statements.
    401   bool switchExclusivelyCovered;
    402   Expr::EvalResult *switchCond;
    403 
    404   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
    405   const Stmt *lastLookup;
    406 
    407   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
    408   // during construction of branches for chained logical operators.
    409   typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
    410   CachedBoolEvalsTy CachedBoolEvals;
    411 
    412 public:
    413   explicit CFGBuilder(ASTContext *astContext,
    414                       const CFG::BuildOptions &buildOpts)
    415     : Context(astContext), cfg(new CFG()), // crew a new CFG
    416       Block(nullptr), Succ(nullptr),
    417       SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
    418       TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
    419       switchExclusivelyCovered(false), switchCond(nullptr),
    420       cachedEntry(nullptr), lastLookup(nullptr) {}
    421 
    422   // buildCFG - Used by external clients to construct the CFG.
    423   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
    424 
    425   bool alwaysAdd(const Stmt *stmt);
    426 
    427 private:
    428   // Visitors to walk an AST and construct the CFG.
    429   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
    430   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
    431   CFGBlock *VisitBreakStmt(BreakStmt *B);
    432   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
    433   CFGBlock *VisitCaseStmt(CaseStmt *C);
    434   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
    435   CFGBlock *VisitCompoundStmt(CompoundStmt *C);
    436   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
    437                                      AddStmtChoice asc);
    438   CFGBlock *VisitContinueStmt(ContinueStmt *C);
    439   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
    440                                       AddStmtChoice asc);
    441   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
    442   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
    443   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
    444   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
    445   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
    446   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
    447                                        AddStmtChoice asc);
    448   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
    449                                         AddStmtChoice asc);
    450   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
    451   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
    452   CFGBlock *VisitDeclStmt(DeclStmt *DS);
    453   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
    454   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
    455   CFGBlock *VisitDoStmt(DoStmt *D);
    456   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
    457   CFGBlock *VisitForStmt(ForStmt *F);
    458   CFGBlock *VisitGotoStmt(GotoStmt *G);
    459   CFGBlock *VisitIfStmt(IfStmt *I);
    460   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
    461   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
    462   CFGBlock *VisitLabelStmt(LabelStmt *L);
    463   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
    464   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
    465   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
    466   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
    467                                                          Stmt *Term,
    468                                                          CFGBlock *TrueBlock,
    469                                                          CFGBlock *FalseBlock);
    470   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
    471   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
    472   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
    473   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
    474   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
    475   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
    476   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
    477   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
    478   CFGBlock *VisitReturnStmt(ReturnStmt *R);
    479   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
    480   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
    481   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
    482                                           AddStmtChoice asc);
    483   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
    484   CFGBlock *VisitWhileStmt(WhileStmt *W);
    485 
    486   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
    487   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
    488   CFGBlock *VisitChildren(Stmt *S);
    489   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
    490 
    491   /// When creating the CFG for temporary destructors, we want to mirror the
    492   /// branch structure of the corresponding constructor calls.
    493   /// Thus, while visiting a statement for temporary destructors, we keep a
    494   /// context to keep track of the following information:
    495   /// - whether a subexpression is executed unconditionally
    496   /// - if a subexpression is executed conditionally, the first
    497   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
    498   ///   corresponds to the last temporary destructor we have to call for this
    499   ///   subexpression) and the CFG block at that point (which will become the
    500   ///   successor block when inserting the decision point).
    501   ///
    502   /// That way, we can build the branch structure for temporary destructors as
    503   /// follows:
    504   /// 1. If a subexpression is executed unconditionally, we add the temporary
    505   ///    destructor calls to the current block.
    506   /// 2. If a subexpression is executed conditionally, when we encounter a
    507   ///    CXXBindTemporaryExpr:
    508   ///    a) If it is the first temporary destructor call in the subexpression,
    509   ///       we remember the CXXBindTemporaryExpr and the current block in the
    510   ///       TempDtorContext; we start a new block, and insert the temporary
    511   ///       destructor call.
    512   ///    b) Otherwise, add the temporary destructor call to the current block.
    513   ///  3. When we finished visiting a conditionally executed subexpression,
    514   ///     and we found at least one temporary constructor during the visitation
    515   ///     (2.a has executed), we insert a decision block that uses the
    516   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
    517   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
    518   ///     branches to the stored successor.
    519   struct TempDtorContext {
    520     TempDtorContext()
    521         : IsConditional(false), KnownExecuted(true), Succ(nullptr),
    522           TerminatorExpr(nullptr) {}
    523 
    524     TempDtorContext(TryResult KnownExecuted)
    525         : IsConditional(true), KnownExecuted(KnownExecuted), Succ(nullptr),
    526           TerminatorExpr(nullptr) {}
    527 
    528     /// Returns whether we need to start a new branch for a temporary destructor
    529     /// call. This is the case when the temporary destructor is
    530     /// conditionally executed, and it is the first one we encounter while
    531     /// visiting a subexpression - other temporary destructors at the same level
    532     /// will be added to the same block and are executed under the same
    533     /// condition.
    534     bool needsTempDtorBranch() const {
    535       return IsConditional && !TerminatorExpr;
    536     }
    537 
    538     /// Remember the successor S of a temporary destructor decision branch for
    539     /// the corresponding CXXBindTemporaryExpr E.
    540     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
    541       Succ = S;
    542       TerminatorExpr = E;
    543     }
    544 
    545     const bool IsConditional;
    546     const TryResult KnownExecuted;
    547     CFGBlock *Succ;
    548     CXXBindTemporaryExpr *TerminatorExpr;
    549   };
    550 
    551   // Visitors to walk an AST and generate destructors of temporaries in
    552   // full expression.
    553   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
    554                                    TempDtorContext &Context);
    555   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
    556   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
    557                                                  TempDtorContext &Context);
    558   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
    559       CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
    560   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
    561       AbstractConditionalOperator *E, bool BindToTemporary,
    562       TempDtorContext &Context);
    563   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
    564                                    CFGBlock *FalseSucc = nullptr);
    565 
    566   // NYS == Not Yet Supported
    567   CFGBlock *NYS() {
    568     badCFG = true;
    569     return Block;
    570   }
    571 
    572   void autoCreateBlock() { if (!Block) Block = createBlock(); }
    573   CFGBlock *createBlock(bool add_successor = true);
    574   CFGBlock *createNoReturnBlock();
    575 
    576   CFGBlock *addStmt(Stmt *S) {
    577     return Visit(S, AddStmtChoice::AlwaysAdd);
    578   }
    579   CFGBlock *addInitializer(CXXCtorInitializer *I);
    580   void addAutomaticObjDtors(LocalScope::const_iterator B,
    581                             LocalScope::const_iterator E, Stmt *S);
    582   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
    583 
    584   // Local scopes creation.
    585   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
    586 
    587   void addLocalScopeForStmt(Stmt *S);
    588   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
    589                                        LocalScope* Scope = nullptr);
    590   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
    591 
    592   void addLocalScopeAndDtors(Stmt *S);
    593 
    594   // Interface to CFGBlock - adding CFGElements.
    595   void appendStmt(CFGBlock *B, const Stmt *S) {
    596     if (alwaysAdd(S) && cachedEntry)
    597       cachedEntry->second = B;
    598 
    599     // All block-level expressions should have already been IgnoreParens()ed.
    600     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
    601     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
    602   }
    603   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
    604     B->appendInitializer(I, cfg->getBumpVectorContext());
    605   }
    606   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
    607     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
    608   }
    609   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
    610     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
    611   }
    612   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
    613     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
    614   }
    615   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
    616     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
    617   }
    618   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
    619     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
    620   }
    621 
    622   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
    623     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
    624   }
    625 
    626   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
    627       LocalScope::const_iterator B, LocalScope::const_iterator E);
    628 
    629   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
    630     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
    631                     cfg->getBumpVectorContext());
    632   }
    633 
    634   /// Add a reachable successor to a block, with the alternate variant that is
    635   /// unreachable.
    636   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
    637     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
    638                     cfg->getBumpVectorContext());
    639   }
    640 
    641   /// \brief Find a relational comparison with an expression evaluating to a
    642   /// boolean and a constant other than 0 and 1.
    643   /// e.g. if ((x < y) == 10)
    644   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
    645     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    646     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
    647 
    648     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    649     const Expr *BoolExpr = RHSExpr;
    650     bool IntFirst = true;
    651     if (!IntLiteral) {
    652       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
    653       BoolExpr = LHSExpr;
    654       IntFirst = false;
    655     }
    656 
    657     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
    658       return TryResult();
    659 
    660     llvm::APInt IntValue = IntLiteral->getValue();
    661     if ((IntValue == 1) || (IntValue == 0))
    662       return TryResult();
    663 
    664     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
    665                      !IntValue.isNegative();
    666 
    667     BinaryOperatorKind Bok = B->getOpcode();
    668     if (Bok == BO_GT || Bok == BO_GE) {
    669       // Always true for 10 > bool and bool > -1
    670       // Always false for -1 > bool and bool > 10
    671       return TryResult(IntFirst == IntLarger);
    672     } else {
    673       // Always true for -1 < bool and bool < 10
    674       // Always false for 10 < bool and bool < -1
    675       return TryResult(IntFirst != IntLarger);
    676     }
    677   }
    678 
    679   /// Find an incorrect equality comparison. Either with an expression
    680   /// evaluating to a boolean and a constant other than 0 and 1.
    681   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
    682   /// true/false e.q. (x & 8) == 4.
    683   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
    684     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    685     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
    686 
    687     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    688     const Expr *BoolExpr = RHSExpr;
    689 
    690     if (!IntLiteral) {
    691       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
    692       BoolExpr = LHSExpr;
    693     }
    694 
    695     if (!IntLiteral)
    696       return TryResult();
    697 
    698     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
    699     if (BitOp && (BitOp->getOpcode() == BO_And ||
    700                   BitOp->getOpcode() == BO_Or)) {
    701       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
    702       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
    703 
    704       const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
    705 
    706       if (!IntLiteral2)
    707         IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
    708 
    709       if (!IntLiteral2)
    710         return TryResult();
    711 
    712       llvm::APInt L1 = IntLiteral->getValue();
    713       llvm::APInt L2 = IntLiteral2->getValue();
    714       if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
    715           (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
    716         if (BuildOpts.Observer)
    717           BuildOpts.Observer->compareBitwiseEquality(B,
    718                                                      B->getOpcode() != BO_EQ);
    719         TryResult(B->getOpcode() != BO_EQ);
    720       }
    721     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
    722       llvm::APInt IntValue = IntLiteral->getValue();
    723       if ((IntValue == 1) || (IntValue == 0)) {
    724         return TryResult();
    725       }
    726       return TryResult(B->getOpcode() != BO_EQ);
    727     }
    728 
    729     return TryResult();
    730   }
    731 
    732   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
    733                                           const llvm::APSInt &Value1,
    734                                           const llvm::APSInt &Value2) {
    735     assert(Value1.isSigned() == Value2.isSigned());
    736     switch (Relation) {
    737       default:
    738         return TryResult();
    739       case BO_EQ:
    740         return TryResult(Value1 == Value2);
    741       case BO_NE:
    742         return TryResult(Value1 != Value2);
    743       case BO_LT:
    744         return TryResult(Value1 <  Value2);
    745       case BO_LE:
    746         return TryResult(Value1 <= Value2);
    747       case BO_GT:
    748         return TryResult(Value1 >  Value2);
    749       case BO_GE:
    750         return TryResult(Value1 >= Value2);
    751     }
    752   }
    753 
    754   /// \brief Find a pair of comparison expressions with or without parentheses
    755   /// with a shared variable and constants and a logical operator between them
    756   /// that always evaluates to either true or false.
    757   /// e.g. if (x != 3 || x != 4)
    758   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
    759     assert(B->isLogicalOp());
    760     const BinaryOperator *LHS =
    761         dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
    762     const BinaryOperator *RHS =
    763         dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
    764     if (!LHS || !RHS)
    765       return TryResult();
    766 
    767     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
    768       return TryResult();
    769 
    770     const DeclRefExpr *Decl1;
    771     const Expr *Expr1;
    772     BinaryOperatorKind BO1;
    773     std::tie(Decl1, BO1, Expr1) = tryNormalizeBinaryOperator(LHS);
    774 
    775     if (!Decl1 || !Expr1)
    776       return TryResult();
    777 
    778     const DeclRefExpr *Decl2;
    779     const Expr *Expr2;
    780     BinaryOperatorKind BO2;
    781     std::tie(Decl2, BO2, Expr2) = tryNormalizeBinaryOperator(RHS);
    782 
    783     if (!Decl2 || !Expr2)
    784       return TryResult();
    785 
    786     // Check that it is the same variable on both sides.
    787     if (Decl1->getDecl() != Decl2->getDecl())
    788       return TryResult();
    789 
    790     // Make sure the user's intent is clear (e.g. they're comparing against two
    791     // int literals, or two things from the same enum)
    792     if (!areExprTypesCompatible(Expr1, Expr2))
    793       return TryResult();
    794 
    795     llvm::APSInt L1, L2;
    796 
    797     if (!Expr1->EvaluateAsInt(L1, *Context) ||
    798         !Expr2->EvaluateAsInt(L2, *Context))
    799       return TryResult();
    800 
    801     // Can't compare signed with unsigned or with different bit width.
    802     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
    803       return TryResult();
    804 
    805     // Values that will be used to determine if result of logical
    806     // operator is always true/false
    807     const llvm::APSInt Values[] = {
    808       // Value less than both Value1 and Value2
    809       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
    810       // L1
    811       L1,
    812       // Value between Value1 and Value2
    813       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
    814                               L1.isUnsigned()),
    815       // L2
    816       L2,
    817       // Value greater than both Value1 and Value2
    818       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
    819     };
    820 
    821     // Check whether expression is always true/false by evaluating the following
    822     // * variable x is less than the smallest literal.
    823     // * variable x is equal to the smallest literal.
    824     // * Variable x is between smallest and largest literal.
    825     // * Variable x is equal to the largest literal.
    826     // * Variable x is greater than largest literal.
    827     bool AlwaysTrue = true, AlwaysFalse = true;
    828     for (const llvm::APSInt &Value : Values) {
    829       TryResult Res1, Res2;
    830       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
    831       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
    832 
    833       if (!Res1.isKnown() || !Res2.isKnown())
    834         return TryResult();
    835 
    836       if (B->getOpcode() == BO_LAnd) {
    837         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
    838         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
    839       } else {
    840         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
    841         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
    842       }
    843     }
    844 
    845     if (AlwaysTrue || AlwaysFalse) {
    846       if (BuildOpts.Observer)
    847         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
    848       return TryResult(AlwaysTrue);
    849     }
    850     return TryResult();
    851   }
    852 
    853   /// Try and evaluate an expression to an integer constant.
    854   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
    855     if (!BuildOpts.PruneTriviallyFalseEdges)
    856       return false;
    857     return !S->isTypeDependent() &&
    858            !S->isValueDependent() &&
    859            S->EvaluateAsRValue(outResult, *Context);
    860   }
    861 
    862   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
    863   /// if we can evaluate to a known value, otherwise return -1.
    864   TryResult tryEvaluateBool(Expr *S) {
    865     if (!BuildOpts.PruneTriviallyFalseEdges ||
    866         S->isTypeDependent() || S->isValueDependent())
    867       return TryResult();
    868 
    869     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
    870       if (Bop->isLogicalOp()) {
    871         // Check the cache first.
    872         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
    873         if (I != CachedBoolEvals.end())
    874           return I->second; // already in map;
    875 
    876         // Retrieve result at first, or the map might be updated.
    877         TryResult Result = evaluateAsBooleanConditionNoCache(S);
    878         CachedBoolEvals[S] = Result; // update or insert
    879         return Result;
    880       }
    881       else {
    882         switch (Bop->getOpcode()) {
    883           default: break;
    884           // For 'x & 0' and 'x * 0', we can determine that
    885           // the value is always false.
    886           case BO_Mul:
    887           case BO_And: {
    888             // If either operand is zero, we know the value
    889             // must be false.
    890             llvm::APSInt IntVal;
    891             if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
    892               if (!IntVal.getBoolValue()) {
    893                 return TryResult(false);
    894               }
    895             }
    896             if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
    897               if (!IntVal.getBoolValue()) {
    898                 return TryResult(false);
    899               }
    900             }
    901           }
    902           break;
    903         }
    904       }
    905     }
    906 
    907     return evaluateAsBooleanConditionNoCache(S);
    908   }
    909 
    910   /// \brief Evaluate as boolean \param E without using the cache.
    911   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
    912     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
    913       if (Bop->isLogicalOp()) {
    914         TryResult LHS = tryEvaluateBool(Bop->getLHS());
    915         if (LHS.isKnown()) {
    916           // We were able to evaluate the LHS, see if we can get away with not
    917           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
    918           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    919             return LHS.isTrue();
    920 
    921           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    922           if (RHS.isKnown()) {
    923             if (Bop->getOpcode() == BO_LOr)
    924               return LHS.isTrue() || RHS.isTrue();
    925             else
    926               return LHS.isTrue() && RHS.isTrue();
    927           }
    928         } else {
    929           TryResult RHS = tryEvaluateBool(Bop->getRHS());
    930           if (RHS.isKnown()) {
    931             // We can't evaluate the LHS; however, sometimes the result
    932             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
    933             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
    934               return RHS.isTrue();
    935           } else {
    936             TryResult BopRes = checkIncorrectLogicOperator(Bop);
    937             if (BopRes.isKnown())
    938               return BopRes.isTrue();
    939           }
    940         }
    941 
    942         return TryResult();
    943       } else if (Bop->isEqualityOp()) {
    944           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
    945           if (BopRes.isKnown())
    946             return BopRes.isTrue();
    947       } else if (Bop->isRelationalOp()) {
    948         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
    949         if (BopRes.isKnown())
    950           return BopRes.isTrue();
    951       }
    952     }
    953 
    954     bool Result;
    955     if (E->EvaluateAsBooleanCondition(Result, *Context))
    956       return Result;
    957 
    958     return TryResult();
    959   }
    960 
    961 };
    962 
    963 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
    964                                      const Stmt *stmt) const {
    965   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
    966 }
    967 
    968 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
    969   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
    970 
    971   if (!BuildOpts.forcedBlkExprs)
    972     return shouldAdd;
    973 
    974   if (lastLookup == stmt) {
    975     if (cachedEntry) {
    976       assert(cachedEntry->first == stmt);
    977       return true;
    978     }
    979     return shouldAdd;
    980   }
    981 
    982   lastLookup = stmt;
    983 
    984   // Perform the lookup!
    985   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
    986 
    987   if (!fb) {
    988     // No need to update 'cachedEntry', since it will always be null.
    989     assert(!cachedEntry);
    990     return shouldAdd;
    991   }
    992 
    993   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
    994   if (itr == fb->end()) {
    995     cachedEntry = nullptr;
    996     return shouldAdd;
    997   }
    998 
    999   cachedEntry = &*itr;
   1000   return true;
   1001 }
   1002 
   1003 // FIXME: Add support for dependent-sized array types in C++?
   1004 // Does it even make sense to build a CFG for an uninstantiated template?
   1005 static const VariableArrayType *FindVA(const Type *t) {
   1006   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
   1007     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
   1008       if (vat->getSizeExpr())
   1009         return vat;
   1010 
   1011     t = vt->getElementType().getTypePtr();
   1012   }
   1013 
   1014   return nullptr;
   1015 }
   1016 
   1017 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
   1018 ///  arbitrary statement.  Examples include a single expression or a function
   1019 ///  body (compound statement).  The ownership of the returned CFG is
   1020 ///  transferred to the caller.  If CFG construction fails, this method returns
   1021 ///  NULL.
   1022 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
   1023   assert(cfg.get());
   1024   if (!Statement)
   1025     return nullptr;
   1026 
   1027   // Create an empty block that will serve as the exit block for the CFG.  Since
   1028   // this is the first block added to the CFG, it will be implicitly registered
   1029   // as the exit block.
   1030   Succ = createBlock();
   1031   assert(Succ == &cfg->getExit());
   1032   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
   1033 
   1034   if (BuildOpts.AddImplicitDtors)
   1035     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
   1036       addImplicitDtorsForDestructor(DD);
   1037 
   1038   // Visit the statements and create the CFG.
   1039   CFGBlock *B = addStmt(Statement);
   1040 
   1041   if (badCFG)
   1042     return nullptr;
   1043 
   1044   // For C++ constructor add initializers to CFG.
   1045   if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
   1046     for (auto *I : llvm::reverse(CD->inits())) {
   1047       B = addInitializer(I);
   1048       if (badCFG)
   1049         return nullptr;
   1050     }
   1051   }
   1052 
   1053   if (B)
   1054     Succ = B;
   1055 
   1056   // Backpatch the gotos whose label -> block mappings we didn't know when we
   1057   // encountered them.
   1058   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
   1059                                    E = BackpatchBlocks.end(); I != E; ++I ) {
   1060 
   1061     CFGBlock *B = I->block;
   1062     const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
   1063     LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
   1064 
   1065     // If there is no target for the goto, then we are looking at an
   1066     // incomplete AST.  Handle this by not registering a successor.
   1067     if (LI == LabelMap.end()) continue;
   1068 
   1069     JumpTarget JT = LI->second;
   1070     prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
   1071                                            JT.scopePosition);
   1072     addSuccessor(B, JT.block);
   1073   }
   1074 
   1075   // Add successors to the Indirect Goto Dispatch block (if we have one).
   1076   if (CFGBlock *B = cfg->getIndirectGotoBlock())
   1077     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
   1078                               E = AddressTakenLabels.end(); I != E; ++I ) {
   1079 
   1080       // Lookup the target block.
   1081       LabelMapTy::iterator LI = LabelMap.find(*I);
   1082 
   1083       // If there is no target block that contains label, then we are looking
   1084       // at an incomplete AST.  Handle this by not registering a successor.
   1085       if (LI == LabelMap.end()) continue;
   1086 
   1087       addSuccessor(B, LI->second.block);
   1088     }
   1089 
   1090   // Create an empty entry block that has no predecessors.
   1091   cfg->setEntry(createBlock());
   1092 
   1093   return std::move(cfg);
   1094 }
   1095 
   1096 /// createBlock - Used to lazily create blocks that are connected
   1097 ///  to the current (global) succcessor.
   1098 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
   1099   CFGBlock *B = cfg->createBlock();
   1100   if (add_successor && Succ)
   1101     addSuccessor(B, Succ);
   1102   return B;
   1103 }
   1104 
   1105 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
   1106 /// CFG. It is *not* connected to the current (global) successor, and instead
   1107 /// directly tied to the exit block in order to be reachable.
   1108 CFGBlock *CFGBuilder::createNoReturnBlock() {
   1109   CFGBlock *B = createBlock(false);
   1110   B->setHasNoReturnElement();
   1111   addSuccessor(B, &cfg->getExit(), Succ);
   1112   return B;
   1113 }
   1114 
   1115 /// addInitializer - Add C++ base or member initializer element to CFG.
   1116 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
   1117   if (!BuildOpts.AddInitializers)
   1118     return Block;
   1119 
   1120   bool HasTemporaries = false;
   1121 
   1122   // Destructors of temporaries in initialization expression should be called
   1123   // after initialization finishes.
   1124   Expr *Init = I->getInit();
   1125   if (Init) {
   1126     HasTemporaries = isa<ExprWithCleanups>(Init);
   1127 
   1128     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
   1129       // Generate destructors for temporaries in initialization expression.
   1130       TempDtorContext Context;
   1131       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
   1132                              /*BindToTemporary=*/false, Context);
   1133     }
   1134   }
   1135 
   1136   autoCreateBlock();
   1137   appendInitializer(Block, I);
   1138 
   1139   if (Init) {
   1140     if (HasTemporaries) {
   1141       // For expression with temporaries go directly to subexpression to omit
   1142       // generating destructors for the second time.
   1143       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
   1144     }
   1145     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
   1146       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
   1147         // In general, appending the expression wrapped by a CXXDefaultInitExpr
   1148         // may cause the same Expr to appear more than once in the CFG. Doing it
   1149         // here is safe because there's only one initializer per field.
   1150         autoCreateBlock();
   1151         appendStmt(Block, Default);
   1152         if (Stmt *Child = Default->getExpr())
   1153           if (CFGBlock *R = Visit(Child))
   1154             Block = R;
   1155         return Block;
   1156       }
   1157     }
   1158     return Visit(Init);
   1159   }
   1160 
   1161   return Block;
   1162 }
   1163 
   1164 /// \brief Retrieve the type of the temporary object whose lifetime was
   1165 /// extended by a local reference with the given initializer.
   1166 static QualType getReferenceInitTemporaryType(ASTContext &Context,
   1167                                               const Expr *Init) {
   1168   while (true) {
   1169     // Skip parentheses.
   1170     Init = Init->IgnoreParens();
   1171 
   1172     // Skip through cleanups.
   1173     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
   1174       Init = EWC->getSubExpr();
   1175       continue;
   1176     }
   1177 
   1178     // Skip through the temporary-materialization expression.
   1179     if (const MaterializeTemporaryExpr *MTE
   1180           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
   1181       Init = MTE->GetTemporaryExpr();
   1182       continue;
   1183     }
   1184 
   1185     // Skip derived-to-base and no-op casts.
   1186     if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
   1187       if ((CE->getCastKind() == CK_DerivedToBase ||
   1188            CE->getCastKind() == CK_UncheckedDerivedToBase ||
   1189            CE->getCastKind() == CK_NoOp) &&
   1190           Init->getType()->isRecordType()) {
   1191         Init = CE->getSubExpr();
   1192         continue;
   1193       }
   1194     }
   1195 
   1196     // Skip member accesses into rvalues.
   1197     if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
   1198       if (!ME->isArrow() && ME->getBase()->isRValue()) {
   1199         Init = ME->getBase();
   1200         continue;
   1201       }
   1202     }
   1203 
   1204     break;
   1205   }
   1206 
   1207   return Init->getType();
   1208 }
   1209 
   1210 /// addAutomaticObjDtors - Add to current block automatic objects destructors
   1211 /// for objects in range of local scope positions. Use S as trigger statement
   1212 /// for destructors.
   1213 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
   1214                                       LocalScope::const_iterator E, Stmt *S) {
   1215   if (!BuildOpts.AddImplicitDtors)
   1216     return;
   1217 
   1218   if (B == E)
   1219     return;
   1220 
   1221   // We need to append the destructors in reverse order, but any one of them
   1222   // may be a no-return destructor which changes the CFG. As a result, buffer
   1223   // this sequence up and replay them in reverse order when appending onto the
   1224   // CFGBlock(s).
   1225   SmallVector<VarDecl*, 10> Decls;
   1226   Decls.reserve(B.distance(E));
   1227   for (LocalScope::const_iterator I = B; I != E; ++I)
   1228     Decls.push_back(*I);
   1229 
   1230   for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
   1231                                                    E = Decls.rend();
   1232        I != E; ++I) {
   1233     // If this destructor is marked as a no-return destructor, we need to
   1234     // create a new block for the destructor which does not have as a successor
   1235     // anything built thus far: control won't flow out of this block.
   1236     QualType Ty = (*I)->getType();
   1237     if (Ty->isReferenceType()) {
   1238       Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
   1239     }
   1240     Ty = Context->getBaseElementType(Ty);
   1241 
   1242     if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
   1243       Block = createNoReturnBlock();
   1244     else
   1245       autoCreateBlock();
   1246 
   1247     appendAutomaticObjDtor(Block, *I, S);
   1248   }
   1249 }
   1250 
   1251 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
   1252 /// base and member objects in destructor.
   1253 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
   1254   assert (BuildOpts.AddImplicitDtors
   1255       && "Can be called only when dtors should be added");
   1256   const CXXRecordDecl *RD = DD->getParent();
   1257 
   1258   // At the end destroy virtual base objects.
   1259   for (const auto &VI : RD->vbases()) {
   1260     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
   1261     if (!CD->hasTrivialDestructor()) {
   1262       autoCreateBlock();
   1263       appendBaseDtor(Block, &VI);
   1264     }
   1265   }
   1266 
   1267   // Before virtual bases destroy direct base objects.
   1268   for (const auto &BI : RD->bases()) {
   1269     if (!BI.isVirtual()) {
   1270       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
   1271       if (!CD->hasTrivialDestructor()) {
   1272         autoCreateBlock();
   1273         appendBaseDtor(Block, &BI);
   1274       }
   1275     }
   1276   }
   1277 
   1278   // First destroy member objects.
   1279   for (auto *FI : RD->fields()) {
   1280     // Check for constant size array. Set type to array element type.
   1281     QualType QT = FI->getType();
   1282     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
   1283       if (AT->getSize() == 0)
   1284         continue;
   1285       QT = AT->getElementType();
   1286     }
   1287 
   1288     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
   1289       if (!CD->hasTrivialDestructor()) {
   1290         autoCreateBlock();
   1291         appendMemberDtor(Block, FI);
   1292       }
   1293   }
   1294 }
   1295 
   1296 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
   1297 /// way return valid LocalScope object.
   1298 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
   1299   if (Scope)
   1300     return Scope;
   1301   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
   1302   return new (alloc.Allocate<LocalScope>())
   1303       LocalScope(BumpVectorContext(alloc), ScopePos);
   1304 }
   1305 
   1306 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
   1307 /// that should create implicit scope (e.g. if/else substatements).
   1308 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
   1309   if (!BuildOpts.AddImplicitDtors)
   1310     return;
   1311 
   1312   LocalScope *Scope = nullptr;
   1313 
   1314   // For compound statement we will be creating explicit scope.
   1315   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
   1316     for (auto *BI : CS->body()) {
   1317       Stmt *SI = BI->stripLabelLikeStatements();
   1318       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
   1319         Scope = addLocalScopeForDeclStmt(DS, Scope);
   1320     }
   1321     return;
   1322   }
   1323 
   1324   // For any other statement scope will be implicit and as such will be
   1325   // interesting only for DeclStmt.
   1326   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
   1327     addLocalScopeForDeclStmt(DS);
   1328 }
   1329 
   1330 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
   1331 /// reuse Scope if not NULL.
   1332 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
   1333                                                  LocalScope* Scope) {
   1334   if (!BuildOpts.AddImplicitDtors)
   1335     return Scope;
   1336 
   1337   for (auto *DI : DS->decls())
   1338     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
   1339       Scope = addLocalScopeForVarDecl(VD, Scope);
   1340   return Scope;
   1341 }
   1342 
   1343 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
   1344 /// create add scope for automatic objects and temporary objects bound to
   1345 /// const reference. Will reuse Scope if not NULL.
   1346 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
   1347                                                 LocalScope* Scope) {
   1348   if (!BuildOpts.AddImplicitDtors)
   1349     return Scope;
   1350 
   1351   // Check if variable is local.
   1352   switch (VD->getStorageClass()) {
   1353   case SC_None:
   1354   case SC_Auto:
   1355   case SC_Register:
   1356     break;
   1357   default: return Scope;
   1358   }
   1359 
   1360   // Check for const references bound to temporary. Set type to pointee.
   1361   QualType QT = VD->getType();
   1362   if (QT.getTypePtr()->isReferenceType()) {
   1363     // Attempt to determine whether this declaration lifetime-extends a
   1364     // temporary.
   1365     //
   1366     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
   1367     // temporaries, and a single declaration can extend multiple temporaries.
   1368     // We should look at the storage duration on each nested
   1369     // MaterializeTemporaryExpr instead.
   1370     const Expr *Init = VD->getInit();
   1371     if (!Init)
   1372       return Scope;
   1373     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
   1374       Init = EWC->getSubExpr();
   1375     if (!isa<MaterializeTemporaryExpr>(Init))
   1376       return Scope;
   1377 
   1378     // Lifetime-extending a temporary.
   1379     QT = getReferenceInitTemporaryType(*Context, Init);
   1380   }
   1381 
   1382   // Check for constant size array. Set type to array element type.
   1383   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
   1384     if (AT->getSize() == 0)
   1385       return Scope;
   1386     QT = AT->getElementType();
   1387   }
   1388 
   1389   // Check if type is a C++ class with non-trivial destructor.
   1390   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
   1391     if (!CD->hasTrivialDestructor()) {
   1392       // Add the variable to scope
   1393       Scope = createOrReuseLocalScope(Scope);
   1394       Scope->addVar(VD);
   1395       ScopePos = Scope->begin();
   1396     }
   1397   return Scope;
   1398 }
   1399 
   1400 /// addLocalScopeAndDtors - For given statement add local scope for it and
   1401 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
   1402 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
   1403   if (!BuildOpts.AddImplicitDtors)
   1404     return;
   1405 
   1406   LocalScope::const_iterator scopeBeginPos = ScopePos;
   1407   addLocalScopeForStmt(S);
   1408   addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
   1409 }
   1410 
   1411 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
   1412 /// variables with automatic storage duration to CFGBlock's elements vector.
   1413 /// Elements will be prepended to physical beginning of the vector which
   1414 /// happens to be logical end. Use blocks terminator as statement that specifies
   1415 /// destructors call site.
   1416 /// FIXME: This mechanism for adding automatic destructors doesn't handle
   1417 /// no-return destructors properly.
   1418 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
   1419     LocalScope::const_iterator B, LocalScope::const_iterator E) {
   1420   BumpVectorContext &C = cfg->getBumpVectorContext();
   1421   CFGBlock::iterator InsertPos
   1422     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
   1423   for (LocalScope::const_iterator I = B; I != E; ++I)
   1424     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
   1425                                             Blk->getTerminator());
   1426 }
   1427 
   1428 /// Visit - Walk the subtree of a statement and add extra
   1429 ///   blocks for ternary operators, &&, and ||.  We also process "," and
   1430 ///   DeclStmts (which may contain nested control-flow).
   1431 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
   1432   if (!S) {
   1433     badCFG = true;
   1434     return nullptr;
   1435   }
   1436 
   1437   if (Expr *E = dyn_cast<Expr>(S))
   1438     S = E->IgnoreParens();
   1439 
   1440   switch (S->getStmtClass()) {
   1441     default:
   1442       return VisitStmt(S, asc);
   1443 
   1444     case Stmt::AddrLabelExprClass:
   1445       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
   1446 
   1447     case Stmt::BinaryConditionalOperatorClass:
   1448       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
   1449 
   1450     case Stmt::BinaryOperatorClass:
   1451       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
   1452 
   1453     case Stmt::BlockExprClass:
   1454       return VisitBlockExpr(cast<BlockExpr>(S), asc);
   1455 
   1456     case Stmt::BreakStmtClass:
   1457       return VisitBreakStmt(cast<BreakStmt>(S));
   1458 
   1459     case Stmt::CallExprClass:
   1460     case Stmt::CXXOperatorCallExprClass:
   1461     case Stmt::CXXMemberCallExprClass:
   1462     case Stmt::UserDefinedLiteralClass:
   1463       return VisitCallExpr(cast<CallExpr>(S), asc);
   1464 
   1465     case Stmt::CaseStmtClass:
   1466       return VisitCaseStmt(cast<CaseStmt>(S));
   1467 
   1468     case Stmt::ChooseExprClass:
   1469       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
   1470 
   1471     case Stmt::CompoundStmtClass:
   1472       return VisitCompoundStmt(cast<CompoundStmt>(S));
   1473 
   1474     case Stmt::ConditionalOperatorClass:
   1475       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
   1476 
   1477     case Stmt::ContinueStmtClass:
   1478       return VisitContinueStmt(cast<ContinueStmt>(S));
   1479 
   1480     case Stmt::CXXCatchStmtClass:
   1481       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
   1482 
   1483     case Stmt::ExprWithCleanupsClass:
   1484       return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
   1485 
   1486     case Stmt::CXXDefaultArgExprClass:
   1487     case Stmt::CXXDefaultInitExprClass:
   1488       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
   1489       // called function's declaration, not by the caller. If we simply add
   1490       // this expression to the CFG, we could end up with the same Expr
   1491       // appearing multiple times.
   1492       // PR13385 / <rdar://problem/12156507>
   1493       //
   1494       // It's likewise possible for multiple CXXDefaultInitExprs for the same
   1495       // expression to be used in the same function (through aggregate
   1496       // initialization).
   1497       return VisitStmt(S, asc);
   1498 
   1499     case Stmt::CXXBindTemporaryExprClass:
   1500       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
   1501 
   1502     case Stmt::CXXConstructExprClass:
   1503       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
   1504 
   1505     case Stmt::CXXNewExprClass:
   1506       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
   1507 
   1508     case Stmt::CXXDeleteExprClass:
   1509       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
   1510 
   1511     case Stmt::CXXFunctionalCastExprClass:
   1512       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
   1513 
   1514     case Stmt::CXXTemporaryObjectExprClass:
   1515       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
   1516 
   1517     case Stmt::CXXThrowExprClass:
   1518       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
   1519 
   1520     case Stmt::CXXTryStmtClass:
   1521       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
   1522 
   1523     case Stmt::CXXForRangeStmtClass:
   1524       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
   1525 
   1526     case Stmt::DeclStmtClass:
   1527       return VisitDeclStmt(cast<DeclStmt>(S));
   1528 
   1529     case Stmt::DefaultStmtClass:
   1530       return VisitDefaultStmt(cast<DefaultStmt>(S));
   1531 
   1532     case Stmt::DoStmtClass:
   1533       return VisitDoStmt(cast<DoStmt>(S));
   1534 
   1535     case Stmt::ForStmtClass:
   1536       return VisitForStmt(cast<ForStmt>(S));
   1537 
   1538     case Stmt::GotoStmtClass:
   1539       return VisitGotoStmt(cast<GotoStmt>(S));
   1540 
   1541     case Stmt::IfStmtClass:
   1542       return VisitIfStmt(cast<IfStmt>(S));
   1543 
   1544     case Stmt::ImplicitCastExprClass:
   1545       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
   1546 
   1547     case Stmt::IndirectGotoStmtClass:
   1548       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
   1549 
   1550     case Stmt::LabelStmtClass:
   1551       return VisitLabelStmt(cast<LabelStmt>(S));
   1552 
   1553     case Stmt::LambdaExprClass:
   1554       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
   1555 
   1556     case Stmt::MemberExprClass:
   1557       return VisitMemberExpr(cast<MemberExpr>(S), asc);
   1558 
   1559     case Stmt::NullStmtClass:
   1560       return Block;
   1561 
   1562     case Stmt::ObjCAtCatchStmtClass:
   1563       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
   1564 
   1565     case Stmt::ObjCAutoreleasePoolStmtClass:
   1566     return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
   1567 
   1568     case Stmt::ObjCAtSynchronizedStmtClass:
   1569       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
   1570 
   1571     case Stmt::ObjCAtThrowStmtClass:
   1572       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
   1573 
   1574     case Stmt::ObjCAtTryStmtClass:
   1575       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
   1576 
   1577     case Stmt::ObjCForCollectionStmtClass:
   1578       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
   1579 
   1580     case Stmt::OpaqueValueExprClass:
   1581       return Block;
   1582 
   1583     case Stmt::PseudoObjectExprClass:
   1584       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
   1585 
   1586     case Stmt::ReturnStmtClass:
   1587       return VisitReturnStmt(cast<ReturnStmt>(S));
   1588 
   1589     case Stmt::UnaryExprOrTypeTraitExprClass:
   1590       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
   1591                                            asc);
   1592 
   1593     case Stmt::StmtExprClass:
   1594       return VisitStmtExpr(cast<StmtExpr>(S), asc);
   1595 
   1596     case Stmt::SwitchStmtClass:
   1597       return VisitSwitchStmt(cast<SwitchStmt>(S));
   1598 
   1599     case Stmt::UnaryOperatorClass:
   1600       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
   1601 
   1602     case Stmt::WhileStmtClass:
   1603       return VisitWhileStmt(cast<WhileStmt>(S));
   1604   }
   1605 }
   1606 
   1607 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
   1608   if (asc.alwaysAdd(*this, S)) {
   1609     autoCreateBlock();
   1610     appendStmt(Block, S);
   1611   }
   1612 
   1613   return VisitChildren(S);
   1614 }
   1615 
   1616 /// VisitChildren - Visit the children of a Stmt.
   1617 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
   1618   CFGBlock *B = Block;
   1619 
   1620   // Visit the children in their reverse order so that they appear in
   1621   // left-to-right (natural) order in the CFG.
   1622   reverse_children RChildren(S);
   1623   for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
   1624        I != E; ++I) {
   1625     if (Stmt *Child = *I)
   1626       if (CFGBlock *R = Visit(Child))
   1627         B = R;
   1628   }
   1629   return B;
   1630 }
   1631 
   1632 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
   1633                                          AddStmtChoice asc) {
   1634   AddressTakenLabels.insert(A->getLabel());
   1635 
   1636   if (asc.alwaysAdd(*this, A)) {
   1637     autoCreateBlock();
   1638     appendStmt(Block, A);
   1639   }
   1640 
   1641   return Block;
   1642 }
   1643 
   1644 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
   1645            AddStmtChoice asc) {
   1646   if (asc.alwaysAdd(*this, U)) {
   1647     autoCreateBlock();
   1648     appendStmt(Block, U);
   1649   }
   1650 
   1651   return Visit(U->getSubExpr(), AddStmtChoice());
   1652 }
   1653 
   1654 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
   1655   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1656   appendStmt(ConfluenceBlock, B);
   1657 
   1658   if (badCFG)
   1659     return nullptr;
   1660 
   1661   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
   1662                               ConfluenceBlock).first;
   1663 }
   1664 
   1665 std::pair<CFGBlock*, CFGBlock*>
   1666 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
   1667                                  Stmt *Term,
   1668                                  CFGBlock *TrueBlock,
   1669                                  CFGBlock *FalseBlock) {
   1670 
   1671   // Introspect the RHS.  If it is a nested logical operation, we recursively
   1672   // build the CFG using this function.  Otherwise, resort to default
   1673   // CFG construction behavior.
   1674   Expr *RHS = B->getRHS()->IgnoreParens();
   1675   CFGBlock *RHSBlock, *ExitBlock;
   1676 
   1677   do {
   1678     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
   1679       if (B_RHS->isLogicalOp()) {
   1680         std::tie(RHSBlock, ExitBlock) =
   1681           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
   1682         break;
   1683       }
   1684 
   1685     // The RHS is not a nested logical operation.  Don't push the terminator
   1686     // down further, but instead visit RHS and construct the respective
   1687     // pieces of the CFG, and link up the RHSBlock with the terminator
   1688     // we have been provided.
   1689     ExitBlock = RHSBlock = createBlock(false);
   1690 
   1691     if (!Term) {
   1692       assert(TrueBlock == FalseBlock);
   1693       addSuccessor(RHSBlock, TrueBlock);
   1694     }
   1695     else {
   1696       RHSBlock->setTerminator(Term);
   1697       TryResult KnownVal = tryEvaluateBool(RHS);
   1698       if (!KnownVal.isKnown())
   1699         KnownVal = tryEvaluateBool(B);
   1700       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
   1701       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
   1702     }
   1703 
   1704     Block = RHSBlock;
   1705     RHSBlock = addStmt(RHS);
   1706   }
   1707   while (false);
   1708 
   1709   if (badCFG)
   1710     return std::make_pair(nullptr, nullptr);
   1711 
   1712   // Generate the blocks for evaluating the LHS.
   1713   Expr *LHS = B->getLHS()->IgnoreParens();
   1714 
   1715   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
   1716     if (B_LHS->isLogicalOp()) {
   1717       if (B->getOpcode() == BO_LOr)
   1718         FalseBlock = RHSBlock;
   1719       else
   1720         TrueBlock = RHSBlock;
   1721 
   1722       // For the LHS, treat 'B' as the terminator that we want to sink
   1723       // into the nested branch.  The RHS always gets the top-most
   1724       // terminator.
   1725       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
   1726     }
   1727 
   1728   // Create the block evaluating the LHS.
   1729   // This contains the '&&' or '||' as the terminator.
   1730   CFGBlock *LHSBlock = createBlock(false);
   1731   LHSBlock->setTerminator(B);
   1732 
   1733   Block = LHSBlock;
   1734   CFGBlock *EntryLHSBlock = addStmt(LHS);
   1735 
   1736   if (badCFG)
   1737     return std::make_pair(nullptr, nullptr);
   1738 
   1739   // See if this is a known constant.
   1740   TryResult KnownVal = tryEvaluateBool(LHS);
   1741 
   1742   // Now link the LHSBlock with RHSBlock.
   1743   if (B->getOpcode() == BO_LOr) {
   1744     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
   1745     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
   1746   } else {
   1747     assert(B->getOpcode() == BO_LAnd);
   1748     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
   1749     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
   1750   }
   1751 
   1752   return std::make_pair(EntryLHSBlock, ExitBlock);
   1753 }
   1754 
   1755 
   1756 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
   1757                                           AddStmtChoice asc) {
   1758    // && or ||
   1759   if (B->isLogicalOp())
   1760     return VisitLogicalOperator(B);
   1761 
   1762   if (B->getOpcode() == BO_Comma) { // ,
   1763     autoCreateBlock();
   1764     appendStmt(Block, B);
   1765     addStmt(B->getRHS());
   1766     return addStmt(B->getLHS());
   1767   }
   1768 
   1769   if (B->isAssignmentOp()) {
   1770     if (asc.alwaysAdd(*this, B)) {
   1771       autoCreateBlock();
   1772       appendStmt(Block, B);
   1773     }
   1774     Visit(B->getLHS());
   1775     return Visit(B->getRHS());
   1776   }
   1777 
   1778   if (asc.alwaysAdd(*this, B)) {
   1779     autoCreateBlock();
   1780     appendStmt(Block, B);
   1781   }
   1782 
   1783   CFGBlock *RBlock = Visit(B->getRHS());
   1784   CFGBlock *LBlock = Visit(B->getLHS());
   1785   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
   1786   // containing a DoStmt, and the LHS doesn't create a new block, then we should
   1787   // return RBlock.  Otherwise we'll incorrectly return NULL.
   1788   return (LBlock ? LBlock : RBlock);
   1789 }
   1790 
   1791 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
   1792   if (asc.alwaysAdd(*this, E)) {
   1793     autoCreateBlock();
   1794     appendStmt(Block, E);
   1795   }
   1796   return Block;
   1797 }
   1798 
   1799 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
   1800   // "break" is a control-flow statement.  Thus we stop processing the current
   1801   // block.
   1802   if (badCFG)
   1803     return nullptr;
   1804 
   1805   // Now create a new block that ends with the break statement.
   1806   Block = createBlock(false);
   1807   Block->setTerminator(B);
   1808 
   1809   // If there is no target for the break, then we are looking at an incomplete
   1810   // AST.  This means that the CFG cannot be constructed.
   1811   if (BreakJumpTarget.block) {
   1812     addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
   1813     addSuccessor(Block, BreakJumpTarget.block);
   1814   } else
   1815     badCFG = true;
   1816 
   1817 
   1818   return Block;
   1819 }
   1820 
   1821 static bool CanThrow(Expr *E, ASTContext &Ctx) {
   1822   QualType Ty = E->getType();
   1823   if (Ty->isFunctionPointerType())
   1824     Ty = Ty->getAs<PointerType>()->getPointeeType();
   1825   else if (Ty->isBlockPointerType())
   1826     Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
   1827 
   1828   const FunctionType *FT = Ty->getAs<FunctionType>();
   1829   if (FT) {
   1830     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
   1831       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
   1832           Proto->isNothrow(Ctx))
   1833         return false;
   1834   }
   1835   return true;
   1836 }
   1837 
   1838 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
   1839   // Compute the callee type.
   1840   QualType calleeType = C->getCallee()->getType();
   1841   if (calleeType == Context->BoundMemberTy) {
   1842     QualType boundType = Expr::findBoundMemberType(C->getCallee());
   1843 
   1844     // We should only get a null bound type if processing a dependent
   1845     // CFG.  Recover by assuming nothing.
   1846     if (!boundType.isNull()) calleeType = boundType;
   1847   }
   1848 
   1849   // If this is a call to a no-return function, this stops the block here.
   1850   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
   1851 
   1852   bool AddEHEdge = false;
   1853 
   1854   // Languages without exceptions are assumed to not throw.
   1855   if (Context->getLangOpts().Exceptions) {
   1856     if (BuildOpts.AddEHEdges)
   1857       AddEHEdge = true;
   1858   }
   1859 
   1860   // If this is a call to a builtin function, it might not actually evaluate
   1861   // its arguments. Don't add them to the CFG if this is the case.
   1862   bool OmitArguments = false;
   1863 
   1864   if (FunctionDecl *FD = C->getDirectCallee()) {
   1865     if (FD->isNoReturn())
   1866       NoReturn = true;
   1867     if (FD->hasAttr<NoThrowAttr>())
   1868       AddEHEdge = false;
   1869     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
   1870       OmitArguments = true;
   1871   }
   1872 
   1873   if (!CanThrow(C->getCallee(), *Context))
   1874     AddEHEdge = false;
   1875 
   1876   if (OmitArguments) {
   1877     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
   1878     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
   1879     autoCreateBlock();
   1880     appendStmt(Block, C);
   1881     return Visit(C->getCallee());
   1882   }
   1883 
   1884   if (!NoReturn && !AddEHEdge) {
   1885     return VisitStmt(C, asc.withAlwaysAdd(true));
   1886   }
   1887 
   1888   if (Block) {
   1889     Succ = Block;
   1890     if (badCFG)
   1891       return nullptr;
   1892   }
   1893 
   1894   if (NoReturn)
   1895     Block = createNoReturnBlock();
   1896   else
   1897     Block = createBlock();
   1898 
   1899   appendStmt(Block, C);
   1900 
   1901   if (AddEHEdge) {
   1902     // Add exceptional edges.
   1903     if (TryTerminatedBlock)
   1904       addSuccessor(Block, TryTerminatedBlock);
   1905     else
   1906       addSuccessor(Block, &cfg->getExit());
   1907   }
   1908 
   1909   return VisitChildren(C);
   1910 }
   1911 
   1912 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
   1913                                       AddStmtChoice asc) {
   1914   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1915   appendStmt(ConfluenceBlock, C);
   1916   if (badCFG)
   1917     return nullptr;
   1918 
   1919   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1920   Succ = ConfluenceBlock;
   1921   Block = nullptr;
   1922   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
   1923   if (badCFG)
   1924     return nullptr;
   1925 
   1926   Succ = ConfluenceBlock;
   1927   Block = nullptr;
   1928   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
   1929   if (badCFG)
   1930     return nullptr;
   1931 
   1932   Block = createBlock(false);
   1933   // See if this is a known constant.
   1934   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   1935   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
   1936   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
   1937   Block->setTerminator(C);
   1938   return addStmt(C->getCond());
   1939 }
   1940 
   1941 
   1942 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
   1943   LocalScope::const_iterator scopeBeginPos = ScopePos;
   1944   if (BuildOpts.AddImplicitDtors) {
   1945     addLocalScopeForStmt(C);
   1946   }
   1947   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
   1948     // If the body ends with a ReturnStmt, the dtors will be added in
   1949     // VisitReturnStmt.
   1950     addAutomaticObjDtors(ScopePos, scopeBeginPos, C);
   1951   }
   1952 
   1953   CFGBlock *LastBlock = Block;
   1954 
   1955   for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
   1956        I != E; ++I ) {
   1957     // If we hit a segment of code just containing ';' (NullStmts), we can
   1958     // get a null block back.  In such cases, just use the LastBlock
   1959     if (CFGBlock *newBlock = addStmt(*I))
   1960       LastBlock = newBlock;
   1961 
   1962     if (badCFG)
   1963       return nullptr;
   1964   }
   1965 
   1966   return LastBlock;
   1967 }
   1968 
   1969 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
   1970                                                AddStmtChoice asc) {
   1971   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
   1972   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
   1973 
   1974   // Create the confluence block that will "merge" the results of the ternary
   1975   // expression.
   1976   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
   1977   appendStmt(ConfluenceBlock, C);
   1978   if (badCFG)
   1979     return nullptr;
   1980 
   1981   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
   1982 
   1983   // Create a block for the LHS expression if there is an LHS expression.  A
   1984   // GCC extension allows LHS to be NULL, causing the condition to be the
   1985   // value that is returned instead.
   1986   //  e.g: x ?: y is shorthand for: x ? x : y;
   1987   Succ = ConfluenceBlock;
   1988   Block = nullptr;
   1989   CFGBlock *LHSBlock = nullptr;
   1990   const Expr *trueExpr = C->getTrueExpr();
   1991   if (trueExpr != opaqueValue) {
   1992     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
   1993     if (badCFG)
   1994       return nullptr;
   1995     Block = nullptr;
   1996   }
   1997   else
   1998     LHSBlock = ConfluenceBlock;
   1999 
   2000   // Create the block for the RHS expression.
   2001   Succ = ConfluenceBlock;
   2002   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
   2003   if (badCFG)
   2004     return nullptr;
   2005 
   2006   // If the condition is a logical '&&' or '||', build a more accurate CFG.
   2007   if (BinaryOperator *Cond =
   2008         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
   2009     if (Cond->isLogicalOp())
   2010       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
   2011 
   2012   // Create the block that will contain the condition.
   2013   Block = createBlock(false);
   2014 
   2015   // See if this is a known constant.
   2016   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
   2017   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
   2018   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
   2019   Block->setTerminator(C);
   2020   Expr *condExpr = C->getCond();
   2021 
   2022   if (opaqueValue) {
   2023     // Run the condition expression if it's not trivially expressed in
   2024     // terms of the opaque value (or if there is no opaque value).
   2025     if (condExpr != opaqueValue)
   2026       addStmt(condExpr);
   2027 
   2028     // Before that, run the common subexpression if there was one.
   2029     // At least one of this or the above will be run.
   2030     return addStmt(BCO->getCommon());
   2031   }
   2032 
   2033   return addStmt(condExpr);
   2034 }
   2035 
   2036 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
   2037   // Check if the Decl is for an __label__.  If so, elide it from the
   2038   // CFG entirely.
   2039   if (isa<LabelDecl>(*DS->decl_begin()))
   2040     return Block;
   2041 
   2042   // This case also handles static_asserts.
   2043   if (DS->isSingleDecl())
   2044     return VisitDeclSubExpr(DS);
   2045 
   2046   CFGBlock *B = nullptr;
   2047 
   2048   // Build an individual DeclStmt for each decl.
   2049   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
   2050                                        E = DS->decl_rend();
   2051        I != E; ++I) {
   2052     // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
   2053     unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
   2054                ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
   2055 
   2056     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
   2057     // automatically freed with the CFG.
   2058     DeclGroupRef DG(*I);
   2059     Decl *D = *I;
   2060     void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
   2061     DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
   2062     cfg->addSyntheticDeclStmt(DSNew, DS);
   2063 
   2064     // Append the fake DeclStmt to block.
   2065     B = VisitDeclSubExpr(DSNew);
   2066   }
   2067 
   2068   return B;
   2069 }
   2070 
   2071 /// VisitDeclSubExpr - Utility method to add block-level expressions for
   2072 /// DeclStmts and initializers in them.
   2073 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
   2074   assert(DS->isSingleDecl() && "Can handle single declarations only.");
   2075   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
   2076 
   2077   if (!VD) {
   2078     // Of everything that can be declared in a DeclStmt, only VarDecls impact
   2079     // runtime semantics.
   2080     return Block;
   2081   }
   2082 
   2083   bool HasTemporaries = false;
   2084 
   2085   // Guard static initializers under a branch.
   2086   CFGBlock *blockAfterStaticInit = nullptr;
   2087 
   2088   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
   2089     // For static variables, we need to create a branch to track
   2090     // whether or not they are initialized.
   2091     if (Block) {
   2092       Succ = Block;
   2093       Block = nullptr;
   2094       if (badCFG)
   2095         return nullptr;
   2096     }
   2097     blockAfterStaticInit = Succ;
   2098   }
   2099 
   2100   // Destructors of temporaries in initialization expression should be called
   2101   // after initialization finishes.
   2102   Expr *Init = VD->getInit();
   2103   if (Init) {
   2104     HasTemporaries = isa<ExprWithCleanups>(Init);
   2105 
   2106     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
   2107       // Generate destructors for temporaries in initialization expression.
   2108       TempDtorContext Context;
   2109       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
   2110                              /*BindToTemporary=*/false, Context);
   2111     }
   2112   }
   2113 
   2114   autoCreateBlock();
   2115   appendStmt(Block, DS);
   2116 
   2117   // Keep track of the last non-null block, as 'Block' can be nulled out
   2118   // if the initializer expression is something like a 'while' in a
   2119   // statement-expression.
   2120   CFGBlock *LastBlock = Block;
   2121 
   2122   if (Init) {
   2123     if (HasTemporaries) {
   2124       // For expression with temporaries go directly to subexpression to omit
   2125       // generating destructors for the second time.
   2126       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
   2127       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
   2128         LastBlock = newBlock;
   2129     }
   2130     else {
   2131       if (CFGBlock *newBlock = Visit(Init))
   2132         LastBlock = newBlock;
   2133     }
   2134   }
   2135 
   2136   // If the type of VD is a VLA, then we must process its size expressions.
   2137   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
   2138        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
   2139     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
   2140       LastBlock = newBlock;
   2141   }
   2142 
   2143   // Remove variable from local scope.
   2144   if (ScopePos && VD == *ScopePos)
   2145     ++ScopePos;
   2146 
   2147   CFGBlock *B = LastBlock;
   2148   if (blockAfterStaticInit) {
   2149     Succ = B;
   2150     Block = createBlock(false);
   2151     Block->setTerminator(DS);
   2152     addSuccessor(Block, blockAfterStaticInit);
   2153     addSuccessor(Block, B);
   2154     B = Block;
   2155   }
   2156 
   2157   return B;
   2158 }
   2159 
   2160 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
   2161   // We may see an if statement in the middle of a basic block, or it may be the
   2162   // first statement we are processing.  In either case, we create a new basic
   2163   // block.  First, we create the blocks for the then...else statements, and
   2164   // then we create the block containing the if statement.  If we were in the
   2165   // middle of a block, we stop processing that block.  That block is then the
   2166   // implicit successor for the "then" and "else" clauses.
   2167 
   2168   // Save local scope position because in case of condition variable ScopePos
   2169   // won't be restored when traversing AST.
   2170   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2171 
   2172   // Create local scope for C++17 if init-stmt if one exists.
   2173   if (Stmt *Init = I->getInit()) {
   2174     LocalScope::const_iterator BeginScopePos = ScopePos;
   2175     addLocalScopeForStmt(Init);
   2176     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
   2177   }
   2178 
   2179   // Create local scope for possible condition variable.
   2180   // Store scope position. Add implicit destructor.
   2181   if (VarDecl *VD = I->getConditionVariable()) {
   2182     LocalScope::const_iterator BeginScopePos = ScopePos;
   2183     addLocalScopeForVarDecl(VD);
   2184     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
   2185   }
   2186 
   2187   // The block we were processing is now finished.  Make it the successor
   2188   // block.
   2189   if (Block) {
   2190     Succ = Block;
   2191     if (badCFG)
   2192       return nullptr;
   2193   }
   2194 
   2195   // Process the false branch.
   2196   CFGBlock *ElseBlock = Succ;
   2197 
   2198   if (Stmt *Else = I->getElse()) {
   2199     SaveAndRestore<CFGBlock*> sv(Succ);
   2200 
   2201     // NULL out Block so that the recursive call to Visit will
   2202     // create a new basic block.
   2203     Block = nullptr;
   2204 
   2205     // If branch is not a compound statement create implicit scope
   2206     // and add destructors.
   2207     if (!isa<CompoundStmt>(Else))
   2208       addLocalScopeAndDtors(Else);
   2209 
   2210     ElseBlock = addStmt(Else);
   2211 
   2212     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
   2213       ElseBlock = sv.get();
   2214     else if (Block) {
   2215       if (badCFG)
   2216         return nullptr;
   2217     }
   2218   }
   2219 
   2220   // Process the true branch.
   2221   CFGBlock *ThenBlock;
   2222   {
   2223     Stmt *Then = I->getThen();
   2224     assert(Then);
   2225     SaveAndRestore<CFGBlock*> sv(Succ);
   2226     Block = nullptr;
   2227 
   2228     // If branch is not a compound statement create implicit scope
   2229     // and add destructors.
   2230     if (!isa<CompoundStmt>(Then))
   2231       addLocalScopeAndDtors(Then);
   2232 
   2233     ThenBlock = addStmt(Then);
   2234 
   2235     if (!ThenBlock) {
   2236       // We can reach here if the "then" body has all NullStmts.
   2237       // Create an empty block so we can distinguish between true and false
   2238       // branches in path-sensitive analyses.
   2239       ThenBlock = createBlock(false);
   2240       addSuccessor(ThenBlock, sv.get());
   2241     } else if (Block) {
   2242       if (badCFG)
   2243         return nullptr;
   2244     }
   2245   }
   2246 
   2247   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
   2248   // having these handle the actual control-flow jump.  Note that
   2249   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
   2250   // we resort to the old control-flow behavior.  This special handling
   2251   // removes infeasible paths from the control-flow graph by having the
   2252   // control-flow transfer of '&&' or '||' go directly into the then/else
   2253   // blocks directly.
   2254   if (!I->getConditionVariable())
   2255     if (BinaryOperator *Cond =
   2256             dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
   2257       if (Cond->isLogicalOp())
   2258         return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
   2259 
   2260   // Now create a new block containing the if statement.
   2261   Block = createBlock(false);
   2262 
   2263   // Set the terminator of the new block to the If statement.
   2264   Block->setTerminator(I);
   2265 
   2266   // See if this is a known constant.
   2267   const TryResult &KnownVal = tryEvaluateBool(I->getCond());
   2268 
   2269   // Add the successors.  If we know that specific branches are
   2270   // unreachable, inform addSuccessor() of that knowledge.
   2271   addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
   2272   addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
   2273 
   2274   // Add the condition as the last statement in the new block.  This may create
   2275   // new blocks as the condition may contain control-flow.  Any newly created
   2276   // blocks will be pointed to be "Block".
   2277   CFGBlock *LastBlock = addStmt(I->getCond());
   2278 
   2279   // If the IfStmt contains a condition variable, add it and its
   2280   // initializer to the CFG.
   2281   if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
   2282     autoCreateBlock();
   2283     LastBlock = addStmt(const_cast<DeclStmt *>(DS));
   2284   }
   2285 
   2286   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
   2287   if (Stmt *Init = I->getInit()) {
   2288     autoCreateBlock();
   2289     LastBlock = addStmt(Init);
   2290   }
   2291 
   2292   return LastBlock;
   2293 }
   2294 
   2295 
   2296 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
   2297   // If we were in the middle of a block we stop processing that block.
   2298   //
   2299   // NOTE: If a "return" appears in the middle of a block, this means that the
   2300   //       code afterwards is DEAD (unreachable).  We still keep a basic block
   2301   //       for that code; a simple "mark-and-sweep" from the entry block will be
   2302   //       able to report such dead blocks.
   2303 
   2304   // Create the new block.
   2305   Block = createBlock(false);
   2306 
   2307   addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
   2308 
   2309   // If the one of the destructors does not return, we already have the Exit
   2310   // block as a successor.
   2311   if (!Block->hasNoReturnElement())
   2312     addSuccessor(Block, &cfg->getExit());
   2313 
   2314   // Add the return statement to the block.  This may create new blocks if R
   2315   // contains control-flow (short-circuit operations).
   2316   return VisitStmt(R, AddStmtChoice::AlwaysAdd);
   2317 }
   2318 
   2319 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
   2320   // Get the block of the labeled statement.  Add it to our map.
   2321   addStmt(L->getSubStmt());
   2322   CFGBlock *LabelBlock = Block;
   2323 
   2324   if (!LabelBlock)              // This can happen when the body is empty, i.e.
   2325     LabelBlock = createBlock(); // scopes that only contains NullStmts.
   2326 
   2327   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
   2328          "label already in map");
   2329   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
   2330 
   2331   // Labels partition blocks, so this is the end of the basic block we were
   2332   // processing (L is the block's label).  Because this is label (and we have
   2333   // already processed the substatement) there is no extra control-flow to worry
   2334   // about.
   2335   LabelBlock->setLabel(L);
   2336   if (badCFG)
   2337     return nullptr;
   2338 
   2339   // We set Block to NULL to allow lazy creation of a new block (if necessary);
   2340   Block = nullptr;
   2341 
   2342   // This block is now the implicit successor of other blocks.
   2343   Succ = LabelBlock;
   2344 
   2345   return LabelBlock;
   2346 }
   2347 
   2348 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
   2349   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
   2350   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
   2351     if (Expr *CopyExpr = CI.getCopyExpr()) {
   2352       CFGBlock *Tmp = Visit(CopyExpr);
   2353       if (Tmp)
   2354         LastBlock = Tmp;
   2355     }
   2356   }
   2357   return LastBlock;
   2358 }
   2359 
   2360 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
   2361   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
   2362   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
   2363        et = E->capture_init_end(); it != et; ++it) {
   2364     if (Expr *Init = *it) {
   2365       CFGBlock *Tmp = Visit(Init);
   2366       if (Tmp)
   2367         LastBlock = Tmp;
   2368     }
   2369   }
   2370   return LastBlock;
   2371 }
   2372 
   2373 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
   2374   // Goto is a control-flow statement.  Thus we stop processing the current
   2375   // block and create a new one.
   2376 
   2377   Block = createBlock(false);
   2378   Block->setTerminator(G);
   2379 
   2380   // If we already know the mapping to the label block add the successor now.
   2381   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
   2382 
   2383   if (I == LabelMap.end())
   2384     // We will need to backpatch this block later.
   2385     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
   2386   else {
   2387     JumpTarget JT = I->second;
   2388     addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
   2389     addSuccessor(Block, JT.block);
   2390   }
   2391 
   2392   return Block;
   2393 }
   2394 
   2395 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
   2396   CFGBlock *LoopSuccessor = nullptr;
   2397 
   2398   // Save local scope position because in case of condition variable ScopePos
   2399   // won't be restored when traversing AST.
   2400   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2401 
   2402   // Create local scope for init statement and possible condition variable.
   2403   // Add destructor for init statement and condition variable.
   2404   // Store scope position for continue statement.
   2405   if (Stmt *Init = F->getInit())
   2406     addLocalScopeForStmt(Init);
   2407   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   2408 
   2409   if (VarDecl *VD = F->getConditionVariable())
   2410     addLocalScopeForVarDecl(VD);
   2411   LocalScope::const_iterator ContinueScopePos = ScopePos;
   2412 
   2413   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
   2414 
   2415   // "for" is a control-flow statement.  Thus we stop processing the current
   2416   // block.
   2417   if (Block) {
   2418     if (badCFG)
   2419       return nullptr;
   2420     LoopSuccessor = Block;
   2421   } else
   2422     LoopSuccessor = Succ;
   2423 
   2424   // Save the current value for the break targets.
   2425   // All breaks should go to the code following the loop.
   2426   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   2427   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2428 
   2429   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
   2430 
   2431   // Now create the loop body.
   2432   {
   2433     assert(F->getBody());
   2434 
   2435     // Save the current values for Block, Succ, continue and break targets.
   2436     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2437     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   2438 
   2439     // Create an empty block to represent the transition block for looping back
   2440     // to the head of the loop.  If we have increment code, it will
   2441     // go in this block as well.
   2442     Block = Succ = TransitionBlock = createBlock(false);
   2443     TransitionBlock->setLoopTarget(F);
   2444 
   2445     if (Stmt *I = F->getInc()) {
   2446       // Generate increment code in its own basic block.  This is the target of
   2447       // continue statements.
   2448       Succ = addStmt(I);
   2449     }
   2450 
   2451     // Finish up the increment (or empty) block if it hasn't been already.
   2452     if (Block) {
   2453       assert(Block == Succ);
   2454       if (badCFG)
   2455         return nullptr;
   2456       Block = nullptr;
   2457     }
   2458 
   2459    // The starting block for the loop increment is the block that should
   2460    // represent the 'loop target' for looping back to the start of the loop.
   2461    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   2462    ContinueJumpTarget.block->setLoopTarget(F);
   2463 
   2464     // Loop body should end with destructor of Condition variable (if any).
   2465     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
   2466 
   2467     // If body is not a compound statement create implicit scope
   2468     // and add destructors.
   2469     if (!isa<CompoundStmt>(F->getBody()))
   2470       addLocalScopeAndDtors(F->getBody());
   2471 
   2472     // Now populate the body block, and in the process create new blocks as we
   2473     // walk the body of the loop.
   2474     BodyBlock = addStmt(F->getBody());
   2475 
   2476     if (!BodyBlock) {
   2477       // In the case of "for (...;...;...);" we can have a null BodyBlock.
   2478       // Use the continue jump target as the proxy for the body.
   2479       BodyBlock = ContinueJumpTarget.block;
   2480     }
   2481     else if (badCFG)
   2482       return nullptr;
   2483   }
   2484 
   2485   // Because of short-circuit evaluation, the condition of the loop can span
   2486   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2487   // evaluate the condition.
   2488   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
   2489 
   2490   do {
   2491     Expr *C = F->getCond();
   2492 
   2493     // Specially handle logical operators, which have a slightly
   2494     // more optimal CFG representation.
   2495     if (BinaryOperator *Cond =
   2496             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
   2497       if (Cond->isLogicalOp()) {
   2498         std::tie(EntryConditionBlock, ExitConditionBlock) =
   2499           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
   2500         break;
   2501       }
   2502 
   2503     // The default case when not handling logical operators.
   2504     EntryConditionBlock = ExitConditionBlock = createBlock(false);
   2505     ExitConditionBlock->setTerminator(F);
   2506 
   2507     // See if this is a known constant.
   2508     TryResult KnownVal(true);
   2509 
   2510     if (C) {
   2511       // Now add the actual condition to the condition block.
   2512       // Because the condition itself may contain control-flow, new blocks may
   2513       // be created.  Thus we update "Succ" after adding the condition.
   2514       Block = ExitConditionBlock;
   2515       EntryConditionBlock = addStmt(C);
   2516 
   2517       // If this block contains a condition variable, add both the condition
   2518       // variable and initializer to the CFG.
   2519       if (VarDecl *VD = F->getConditionVariable()) {
   2520         if (Expr *Init = VD->getInit()) {
   2521           autoCreateBlock();
   2522           appendStmt(Block, F->getConditionVariableDeclStmt());
   2523           EntryConditionBlock = addStmt(Init);
   2524           assert(Block == EntryConditionBlock);
   2525         }
   2526       }
   2527 
   2528       if (Block && badCFG)
   2529         return nullptr;
   2530 
   2531       KnownVal = tryEvaluateBool(C);
   2532     }
   2533 
   2534     // Add the loop body entry as a successor to the condition.
   2535     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
   2536     // Link up the condition block with the code that follows the loop.  (the
   2537     // false branch).
   2538     addSuccessor(ExitConditionBlock,
   2539                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
   2540 
   2541   } while (false);
   2542 
   2543   // Link up the loop-back block to the entry condition block.
   2544   addSuccessor(TransitionBlock, EntryConditionBlock);
   2545 
   2546   // The condition block is the implicit successor for any code above the loop.
   2547   Succ = EntryConditionBlock;
   2548 
   2549   // If the loop contains initialization, create a new block for those
   2550   // statements.  This block can also contain statements that precede the loop.
   2551   if (Stmt *I = F->getInit()) {
   2552     Block = createBlock();
   2553     return addStmt(I);
   2554   }
   2555 
   2556   // There is no loop initialization.  We are thus basically a while loop.
   2557   // NULL out Block to force lazy block construction.
   2558   Block = nullptr;
   2559   Succ = EntryConditionBlock;
   2560   return EntryConditionBlock;
   2561 }
   2562 
   2563 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
   2564   if (asc.alwaysAdd(*this, M)) {
   2565     autoCreateBlock();
   2566     appendStmt(Block, M);
   2567   }
   2568   return Visit(M->getBase());
   2569 }
   2570 
   2571 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
   2572   // Objective-C fast enumeration 'for' statements:
   2573   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
   2574   //
   2575   //  for ( Type newVariable in collection_expression ) { statements }
   2576   //
   2577   //  becomes:
   2578   //
   2579   //   prologue:
   2580   //     1. collection_expression
   2581   //     T. jump to loop_entry
   2582   //   loop_entry:
   2583   //     1. side-effects of element expression
   2584   //     1. ObjCForCollectionStmt [performs binding to newVariable]
   2585   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
   2586   //   TB:
   2587   //     statements
   2588   //     T. jump to loop_entry
   2589   //   FB:
   2590   //     what comes after
   2591   //
   2592   //  and
   2593   //
   2594   //  Type existingItem;
   2595   //  for ( existingItem in expression ) { statements }
   2596   //
   2597   //  becomes:
   2598   //
   2599   //   the same with newVariable replaced with existingItem; the binding works
   2600   //   the same except that for one ObjCForCollectionStmt::getElement() returns
   2601   //   a DeclStmt and the other returns a DeclRefExpr.
   2602   //
   2603 
   2604   CFGBlock *LoopSuccessor = nullptr;
   2605 
   2606   if (Block) {
   2607     if (badCFG)
   2608       return nullptr;
   2609     LoopSuccessor = Block;
   2610     Block = nullptr;
   2611   } else
   2612     LoopSuccessor = Succ;
   2613 
   2614   // Build the condition blocks.
   2615   CFGBlock *ExitConditionBlock = createBlock(false);
   2616 
   2617   // Set the terminator for the "exit" condition block.
   2618   ExitConditionBlock->setTerminator(S);
   2619 
   2620   // The last statement in the block should be the ObjCForCollectionStmt, which
   2621   // performs the actual binding to 'element' and determines if there are any
   2622   // more items in the collection.
   2623   appendStmt(ExitConditionBlock, S);
   2624   Block = ExitConditionBlock;
   2625 
   2626   // Walk the 'element' expression to see if there are any side-effects.  We
   2627   // generate new blocks as necessary.  We DON'T add the statement by default to
   2628   // the CFG unless it contains control-flow.
   2629   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
   2630                                         AddStmtChoice::NotAlwaysAdd);
   2631   if (Block) {
   2632     if (badCFG)
   2633       return nullptr;
   2634     Block = nullptr;
   2635   }
   2636 
   2637   // The condition block is the implicit successor for the loop body as well as
   2638   // any code above the loop.
   2639   Succ = EntryConditionBlock;
   2640 
   2641   // Now create the true branch.
   2642   {
   2643     // Save the current values for Succ, continue and break targets.
   2644     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2645     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2646                                save_break(BreakJumpTarget);
   2647 
   2648     // Add an intermediate block between the BodyBlock and the
   2649     // EntryConditionBlock to represent the "loop back" transition, for looping
   2650     // back to the head of the loop.
   2651     CFGBlock *LoopBackBlock = nullptr;
   2652     Succ = LoopBackBlock = createBlock();
   2653     LoopBackBlock->setLoopTarget(S);
   2654 
   2655     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2656     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
   2657 
   2658     CFGBlock *BodyBlock = addStmt(S->getBody());
   2659 
   2660     if (!BodyBlock)
   2661       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
   2662     else if (Block) {
   2663       if (badCFG)
   2664         return nullptr;
   2665     }
   2666 
   2667     // This new body block is a successor to our "exit" condition block.
   2668     addSuccessor(ExitConditionBlock, BodyBlock);
   2669   }
   2670 
   2671   // Link up the condition block with the code that follows the loop.
   2672   // (the false branch).
   2673   addSuccessor(ExitConditionBlock, LoopSuccessor);
   2674 
   2675   // Now create a prologue block to contain the collection expression.
   2676   Block = createBlock();
   2677   return addStmt(S->getCollection());
   2678 }
   2679 
   2680 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
   2681   // Inline the body.
   2682   return addStmt(S->getSubStmt());
   2683   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
   2684 }
   2685 
   2686 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
   2687   // FIXME: Add locking 'primitives' to CFG for @synchronized.
   2688 
   2689   // Inline the body.
   2690   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
   2691 
   2692   // The sync body starts its own basic block.  This makes it a little easier
   2693   // for diagnostic clients.
   2694   if (SyncBlock) {
   2695     if (badCFG)
   2696       return nullptr;
   2697 
   2698     Block = nullptr;
   2699     Succ = SyncBlock;
   2700   }
   2701 
   2702   // Add the @synchronized to the CFG.
   2703   autoCreateBlock();
   2704   appendStmt(Block, S);
   2705 
   2706   // Inline the sync expression.
   2707   return addStmt(S->getSynchExpr());
   2708 }
   2709 
   2710 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
   2711   // FIXME
   2712   return NYS();
   2713 }
   2714 
   2715 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
   2716   autoCreateBlock();
   2717 
   2718   // Add the PseudoObject as the last thing.
   2719   appendStmt(Block, E);
   2720 
   2721   CFGBlock *lastBlock = Block;
   2722 
   2723   // Before that, evaluate all of the semantics in order.  In
   2724   // CFG-land, that means appending them in reverse order.
   2725   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
   2726     Expr *Semantic = E->getSemanticExpr(--i);
   2727 
   2728     // If the semantic is an opaque value, we're being asked to bind
   2729     // it to its source expression.
   2730     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
   2731       Semantic = OVE->getSourceExpr();
   2732 
   2733     if (CFGBlock *B = Visit(Semantic))
   2734       lastBlock = B;
   2735   }
   2736 
   2737   return lastBlock;
   2738 }
   2739 
   2740 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
   2741   CFGBlock *LoopSuccessor = nullptr;
   2742 
   2743   // Save local scope position because in case of condition variable ScopePos
   2744   // won't be restored when traversing AST.
   2745   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   2746 
   2747   // Create local scope for possible condition variable.
   2748   // Store scope position for continue statement.
   2749   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
   2750   if (VarDecl *VD = W->getConditionVariable()) {
   2751     addLocalScopeForVarDecl(VD);
   2752     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2753   }
   2754 
   2755   // "while" is a control-flow statement.  Thus we stop processing the current
   2756   // block.
   2757   if (Block) {
   2758     if (badCFG)
   2759       return nullptr;
   2760     LoopSuccessor = Block;
   2761     Block = nullptr;
   2762   } else {
   2763     LoopSuccessor = Succ;
   2764   }
   2765 
   2766   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
   2767 
   2768   // Process the loop body.
   2769   {
   2770     assert(W->getBody());
   2771 
   2772     // Save the current values for Block, Succ, continue and break targets.
   2773     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2774     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2775                                save_break(BreakJumpTarget);
   2776 
   2777     // Create an empty block to represent the transition block for looping back
   2778     // to the head of the loop.
   2779     Succ = TransitionBlock = createBlock(false);
   2780     TransitionBlock->setLoopTarget(W);
   2781     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
   2782 
   2783     // All breaks should go to the code following the loop.
   2784     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2785 
   2786     // Loop body should end with destructor of Condition variable (if any).
   2787     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
   2788 
   2789     // If body is not a compound statement create implicit scope
   2790     // and add destructors.
   2791     if (!isa<CompoundStmt>(W->getBody()))
   2792       addLocalScopeAndDtors(W->getBody());
   2793 
   2794     // Create the body.  The returned block is the entry to the loop body.
   2795     BodyBlock = addStmt(W->getBody());
   2796 
   2797     if (!BodyBlock)
   2798       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
   2799     else if (Block && badCFG)
   2800       return nullptr;
   2801   }
   2802 
   2803   // Because of short-circuit evaluation, the condition of the loop can span
   2804   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2805   // evaluate the condition.
   2806   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
   2807 
   2808   do {
   2809     Expr *C = W->getCond();
   2810 
   2811     // Specially handle logical operators, which have a slightly
   2812     // more optimal CFG representation.
   2813     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
   2814       if (Cond->isLogicalOp()) {
   2815         std::tie(EntryConditionBlock, ExitConditionBlock) =
   2816             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
   2817         break;
   2818       }
   2819 
   2820     // The default case when not handling logical operators.
   2821     ExitConditionBlock = createBlock(false);
   2822     ExitConditionBlock->setTerminator(W);
   2823 
   2824     // Now add the actual condition to the condition block.
   2825     // Because the condition itself may contain control-flow, new blocks may
   2826     // be created.  Thus we update "Succ" after adding the condition.
   2827     Block = ExitConditionBlock;
   2828     Block = EntryConditionBlock = addStmt(C);
   2829 
   2830     // If this block contains a condition variable, add both the condition
   2831     // variable and initializer to the CFG.
   2832     if (VarDecl *VD = W->getConditionVariable()) {
   2833       if (Expr *Init = VD->getInit()) {
   2834         autoCreateBlock();
   2835         appendStmt(Block, W->getConditionVariableDeclStmt());
   2836         EntryConditionBlock = addStmt(Init);
   2837         assert(Block == EntryConditionBlock);
   2838       }
   2839     }
   2840 
   2841     if (Block && badCFG)
   2842       return nullptr;
   2843 
   2844     // See if this is a known constant.
   2845     const TryResult& KnownVal = tryEvaluateBool(C);
   2846 
   2847     // Add the loop body entry as a successor to the condition.
   2848     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
   2849     // Link up the condition block with the code that follows the loop.  (the
   2850     // false branch).
   2851     addSuccessor(ExitConditionBlock,
   2852                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
   2853 
   2854   } while(false);
   2855 
   2856   // Link up the loop-back block to the entry condition block.
   2857   addSuccessor(TransitionBlock, EntryConditionBlock);
   2858 
   2859   // There can be no more statements in the condition block since we loop back
   2860   // to this block.  NULL out Block to force lazy creation of another block.
   2861   Block = nullptr;
   2862 
   2863   // Return the condition block, which is the dominating block for the loop.
   2864   Succ = EntryConditionBlock;
   2865   return EntryConditionBlock;
   2866 }
   2867 
   2868 
   2869 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
   2870   // FIXME: For now we pretend that @catch and the code it contains does not
   2871   //  exit.
   2872   return Block;
   2873 }
   2874 
   2875 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
   2876   // FIXME: This isn't complete.  We basically treat @throw like a return
   2877   //  statement.
   2878 
   2879   // If we were in the middle of a block we stop processing that block.
   2880   if (badCFG)
   2881     return nullptr;
   2882 
   2883   // Create the new block.
   2884   Block = createBlock(false);
   2885 
   2886   // The Exit block is the only successor.
   2887   addSuccessor(Block, &cfg->getExit());
   2888 
   2889   // Add the statement to the block.  This may create new blocks if S contains
   2890   // control-flow (short-circuit operations).
   2891   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
   2892 }
   2893 
   2894 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
   2895   // If we were in the middle of a block we stop processing that block.
   2896   if (badCFG)
   2897     return nullptr;
   2898 
   2899   // Create the new block.
   2900   Block = createBlock(false);
   2901 
   2902   if (TryTerminatedBlock)
   2903     // The current try statement is the only successor.
   2904     addSuccessor(Block, TryTerminatedBlock);
   2905   else
   2906     // otherwise the Exit block is the only successor.
   2907     addSuccessor(Block, &cfg->getExit());
   2908 
   2909   // Add the statement to the block.  This may create new blocks if S contains
   2910   // control-flow (short-circuit operations).
   2911   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
   2912 }
   2913 
   2914 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
   2915   CFGBlock *LoopSuccessor = nullptr;
   2916 
   2917   // "do...while" is a control-flow statement.  Thus we stop processing the
   2918   // current block.
   2919   if (Block) {
   2920     if (badCFG)
   2921       return nullptr;
   2922     LoopSuccessor = Block;
   2923   } else
   2924     LoopSuccessor = Succ;
   2925 
   2926   // Because of short-circuit evaluation, the condition of the loop can span
   2927   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
   2928   // evaluate the condition.
   2929   CFGBlock *ExitConditionBlock = createBlock(false);
   2930   CFGBlock *EntryConditionBlock = ExitConditionBlock;
   2931 
   2932   // Set the terminator for the "exit" condition block.
   2933   ExitConditionBlock->setTerminator(D);
   2934 
   2935   // Now add the actual condition to the condition block.  Because the condition
   2936   // itself may contain control-flow, new blocks may be created.
   2937   if (Stmt *C = D->getCond()) {
   2938     Block = ExitConditionBlock;
   2939     EntryConditionBlock = addStmt(C);
   2940     if (Block) {
   2941       if (badCFG)
   2942         return nullptr;
   2943     }
   2944   }
   2945 
   2946   // The condition block is the implicit successor for the loop body.
   2947   Succ = EntryConditionBlock;
   2948 
   2949   // See if this is a known constant.
   2950   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
   2951 
   2952   // Process the loop body.
   2953   CFGBlock *BodyBlock = nullptr;
   2954   {
   2955     assert(D->getBody());
   2956 
   2957     // Save the current values for Block, Succ, and continue and break targets
   2958     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   2959     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
   2960         save_break(BreakJumpTarget);
   2961 
   2962     // All continues within this loop should go to the condition block
   2963     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
   2964 
   2965     // All breaks should go to the code following the loop.
   2966     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   2967 
   2968     // NULL out Block to force lazy instantiation of blocks for the body.
   2969     Block = nullptr;
   2970 
   2971     // If body is not a compound statement create implicit scope
   2972     // and add destructors.
   2973     if (!isa<CompoundStmt>(D->getBody()))
   2974       addLocalScopeAndDtors(D->getBody());
   2975 
   2976     // Create the body.  The returned block is the entry to the loop body.
   2977     BodyBlock = addStmt(D->getBody());
   2978 
   2979     if (!BodyBlock)
   2980       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
   2981     else if (Block) {
   2982       if (badCFG)
   2983         return nullptr;
   2984     }
   2985 
   2986     if (!KnownVal.isFalse()) {
   2987       // Add an intermediate block between the BodyBlock and the
   2988       // ExitConditionBlock to represent the "loop back" transition.  Create an
   2989       // empty block to represent the transition block for looping back to the
   2990       // head of the loop.
   2991       // FIXME: Can we do this more efficiently without adding another block?
   2992       Block = nullptr;
   2993       Succ = BodyBlock;
   2994       CFGBlock *LoopBackBlock = createBlock();
   2995       LoopBackBlock->setLoopTarget(D);
   2996 
   2997       // Add the loop body entry as a successor to the condition.
   2998       addSuccessor(ExitConditionBlock, LoopBackBlock);
   2999     }
   3000     else
   3001       addSuccessor(ExitConditionBlock, nullptr);
   3002   }
   3003 
   3004   // Link up the condition block with the code that follows the loop.
   3005   // (the false branch).
   3006   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
   3007 
   3008   // There can be no more statements in the body block(s) since we loop back to
   3009   // the body.  NULL out Block to force lazy creation of another block.
   3010   Block = nullptr;
   3011 
   3012   // Return the loop body, which is the dominating block for the loop.
   3013   Succ = BodyBlock;
   3014   return BodyBlock;
   3015 }
   3016 
   3017 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
   3018   // "continue" is a control-flow statement.  Thus we stop processing the
   3019   // current block.
   3020   if (badCFG)
   3021     return nullptr;
   3022 
   3023   // Now create a new block that ends with the continue statement.
   3024   Block = createBlock(false);
   3025   Block->setTerminator(C);
   3026 
   3027   // If there is no target for the continue, then we are looking at an
   3028   // incomplete AST.  This means the CFG cannot be constructed.
   3029   if (ContinueJumpTarget.block) {
   3030     addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
   3031     addSuccessor(Block, ContinueJumpTarget.block);
   3032   } else
   3033     badCFG = true;
   3034 
   3035   return Block;
   3036 }
   3037 
   3038 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
   3039                                                     AddStmtChoice asc) {
   3040 
   3041   if (asc.alwaysAdd(*this, E)) {
   3042     autoCreateBlock();
   3043     appendStmt(Block, E);
   3044   }
   3045 
   3046   // VLA types have expressions that must be evaluated.
   3047   CFGBlock *lastBlock = Block;
   3048 
   3049   if (E->isArgumentType()) {
   3050     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
   3051          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
   3052       lastBlock = addStmt(VA->getSizeExpr());
   3053   }
   3054   return lastBlock;
   3055 }
   3056 
   3057 /// VisitStmtExpr - Utility method to handle (nested) statement
   3058 ///  expressions (a GCC extension).
   3059 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
   3060   if (asc.alwaysAdd(*this, SE)) {
   3061     autoCreateBlock();
   3062     appendStmt(Block, SE);
   3063   }
   3064   return VisitCompoundStmt(SE->getSubStmt());
   3065 }
   3066 
   3067 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
   3068   // "switch" is a control-flow statement.  Thus we stop processing the current
   3069   // block.
   3070   CFGBlock *SwitchSuccessor = nullptr;
   3071 
   3072   // Save local scope position because in case of condition variable ScopePos
   3073   // won't be restored when traversing AST.
   3074   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3075 
   3076   // Create local scope for C++17 switch init-stmt if one exists.
   3077   if (Stmt *Init = Terminator->getInit()) {
   3078     LocalScope::const_iterator BeginScopePos = ScopePos;
   3079     addLocalScopeForStmt(Init);
   3080     addAutomaticObjDtors(ScopePos, BeginScopePos, Terminator);
   3081   }
   3082 
   3083   // Create local scope for possible condition variable.
   3084   // Store scope position. Add implicit destructor.
   3085   if (VarDecl *VD = Terminator->getConditionVariable()) {
   3086     LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
   3087     addLocalScopeForVarDecl(VD);
   3088     addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
   3089   }
   3090 
   3091   if (Block) {
   3092     if (badCFG)
   3093       return nullptr;
   3094     SwitchSuccessor = Block;
   3095   } else SwitchSuccessor = Succ;
   3096 
   3097   // Save the current "switch" context.
   3098   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
   3099                             save_default(DefaultCaseBlock);
   3100   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   3101 
   3102   // Set the "default" case to be the block after the switch statement.  If the
   3103   // switch statement contains a "default:", this value will be overwritten with
   3104   // the block for that code.
   3105   DefaultCaseBlock = SwitchSuccessor;
   3106 
   3107   // Create a new block that will contain the switch statement.
   3108   SwitchTerminatedBlock = createBlock(false);
   3109 
   3110   // Now process the switch body.  The code after the switch is the implicit
   3111   // successor.
   3112   Succ = SwitchSuccessor;
   3113   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
   3114 
   3115   // When visiting the body, the case statements should automatically get linked
   3116   // up to the switch.  We also don't keep a pointer to the body, since all
   3117   // control-flow from the switch goes to case/default statements.
   3118   assert(Terminator->getBody() && "switch must contain a non-NULL body");
   3119   Block = nullptr;
   3120 
   3121   // For pruning unreachable case statements, save the current state
   3122   // for tracking the condition value.
   3123   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
   3124                                                      false);
   3125 
   3126   // Determine if the switch condition can be explicitly evaluated.
   3127   assert(Terminator->getCond() && "switch condition must be non-NULL");
   3128   Expr::EvalResult result;
   3129   bool b = tryEvaluate(Terminator->getCond(), result);
   3130   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
   3131                                                     b ? &result : nullptr);
   3132 
   3133   // If body is not a compound statement create implicit scope
   3134   // and add destructors.
   3135   if (!isa<CompoundStmt>(Terminator->getBody()))
   3136     addLocalScopeAndDtors(Terminator->getBody());
   3137 
   3138   addStmt(Terminator->getBody());
   3139   if (Block) {
   3140     if (badCFG)
   3141       return nullptr;
   3142   }
   3143 
   3144   // If we have no "default:" case, the default transition is to the code
   3145   // following the switch body.  Moreover, take into account if all the
   3146   // cases of a switch are covered (e.g., switching on an enum value).
   3147   //
   3148   // Note: We add a successor to a switch that is considered covered yet has no
   3149   //       case statements if the enumeration has no enumerators.
   3150   bool SwitchAlwaysHasSuccessor = false;
   3151   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
   3152   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
   3153                               Terminator->getSwitchCaseList();
   3154   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
   3155                !SwitchAlwaysHasSuccessor);
   3156 
   3157   // Add the terminator and condition in the switch block.
   3158   SwitchTerminatedBlock->setTerminator(Terminator);
   3159   Block = SwitchTerminatedBlock;
   3160   CFGBlock *LastBlock = addStmt(Terminator->getCond());
   3161 
   3162   // If the SwitchStmt contains a condition variable, add both the
   3163   // SwitchStmt and the condition variable initialization to the CFG.
   3164   if (VarDecl *VD = Terminator->getConditionVariable()) {
   3165     if (Expr *Init = VD->getInit()) {
   3166       autoCreateBlock();
   3167       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
   3168       LastBlock = addStmt(Init);
   3169     }
   3170   }
   3171 
   3172   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
   3173   if (Stmt *Init = Terminator->getInit()) {
   3174     autoCreateBlock();
   3175     LastBlock = addStmt(Init);
   3176   }
   3177 
   3178   return LastBlock;
   3179 }
   3180 
   3181 static bool shouldAddCase(bool &switchExclusivelyCovered,
   3182                           const Expr::EvalResult *switchCond,
   3183                           const CaseStmt *CS,
   3184                           ASTContext &Ctx) {
   3185   if (!switchCond)
   3186     return true;
   3187 
   3188   bool addCase = false;
   3189 
   3190   if (!switchExclusivelyCovered) {
   3191     if (switchCond->Val.isInt()) {
   3192       // Evaluate the LHS of the case value.
   3193       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
   3194       const llvm::APSInt &condInt = switchCond->Val.getInt();
   3195 
   3196       if (condInt == lhsInt) {
   3197         addCase = true;
   3198         switchExclusivelyCovered = true;
   3199       }
   3200       else if (condInt > lhsInt) {
   3201         if (const Expr *RHS = CS->getRHS()) {
   3202           // Evaluate the RHS of the case value.
   3203           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
   3204           if (V2 >= condInt) {
   3205             addCase = true;
   3206             switchExclusivelyCovered = true;
   3207           }
   3208         }
   3209       }
   3210     }
   3211     else
   3212       addCase = true;
   3213   }
   3214   return addCase;
   3215 }
   3216 
   3217 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
   3218   // CaseStmts are essentially labels, so they are the first statement in a
   3219   // block.
   3220   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
   3221 
   3222   if (Stmt *Sub = CS->getSubStmt()) {
   3223     // For deeply nested chains of CaseStmts, instead of doing a recursion
   3224     // (which can blow out the stack), manually unroll and create blocks
   3225     // along the way.
   3226     while (isa<CaseStmt>(Sub)) {
   3227       CFGBlock *currentBlock = createBlock(false);
   3228       currentBlock->setLabel(CS);
   3229 
   3230       if (TopBlock)
   3231         addSuccessor(LastBlock, currentBlock);
   3232       else
   3233         TopBlock = currentBlock;
   3234 
   3235       addSuccessor(SwitchTerminatedBlock,
   3236                    shouldAddCase(switchExclusivelyCovered, switchCond,
   3237                                  CS, *Context)
   3238                    ? currentBlock : nullptr);
   3239 
   3240       LastBlock = currentBlock;
   3241       CS = cast<CaseStmt>(Sub);
   3242       Sub = CS->getSubStmt();
   3243     }
   3244 
   3245     addStmt(Sub);
   3246   }
   3247 
   3248   CFGBlock *CaseBlock = Block;
   3249   if (!CaseBlock)
   3250     CaseBlock = createBlock();
   3251 
   3252   // Cases statements partition blocks, so this is the top of the basic block we
   3253   // were processing (the "case XXX:" is the label).
   3254   CaseBlock->setLabel(CS);
   3255 
   3256   if (badCFG)
   3257     return nullptr;
   3258 
   3259   // Add this block to the list of successors for the block with the switch
   3260   // statement.
   3261   assert(SwitchTerminatedBlock);
   3262   addSuccessor(SwitchTerminatedBlock, CaseBlock,
   3263                shouldAddCase(switchExclusivelyCovered, switchCond,
   3264                              CS, *Context));
   3265 
   3266   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3267   Block = nullptr;
   3268 
   3269   if (TopBlock) {
   3270     addSuccessor(LastBlock, CaseBlock);
   3271     Succ = TopBlock;
   3272   } else {
   3273     // This block is now the implicit successor of other blocks.
   3274     Succ = CaseBlock;
   3275   }
   3276 
   3277   return Succ;
   3278 }
   3279 
   3280 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
   3281   if (Terminator->getSubStmt())
   3282     addStmt(Terminator->getSubStmt());
   3283 
   3284   DefaultCaseBlock = Block;
   3285 
   3286   if (!DefaultCaseBlock)
   3287     DefaultCaseBlock = createBlock();
   3288 
   3289   // Default statements partition blocks, so this is the top of the basic block
   3290   // we were processing (the "default:" is the label).
   3291   DefaultCaseBlock->setLabel(Terminator);
   3292 
   3293   if (badCFG)
   3294     return nullptr;
   3295 
   3296   // Unlike case statements, we don't add the default block to the successors
   3297   // for the switch statement immediately.  This is done when we finish
   3298   // processing the switch statement.  This allows for the default case
   3299   // (including a fall-through to the code after the switch statement) to always
   3300   // be the last successor of a switch-terminated block.
   3301 
   3302   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3303   Block = nullptr;
   3304 
   3305   // This block is now the implicit successor of other blocks.
   3306   Succ = DefaultCaseBlock;
   3307 
   3308   return DefaultCaseBlock;
   3309 }
   3310 
   3311 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
   3312   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
   3313   // current block.
   3314   CFGBlock *TrySuccessor = nullptr;
   3315 
   3316   if (Block) {
   3317     if (badCFG)
   3318       return nullptr;
   3319     TrySuccessor = Block;
   3320   } else TrySuccessor = Succ;
   3321 
   3322   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
   3323 
   3324   // Create a new block that will contain the try statement.
   3325   CFGBlock *NewTryTerminatedBlock = createBlock(false);
   3326   // Add the terminator in the try block.
   3327   NewTryTerminatedBlock->setTerminator(Terminator);
   3328 
   3329   bool HasCatchAll = false;
   3330   for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
   3331     // The code after the try is the implicit successor.
   3332     Succ = TrySuccessor;
   3333     CXXCatchStmt *CS = Terminator->getHandler(h);
   3334     if (CS->getExceptionDecl() == nullptr) {
   3335       HasCatchAll = true;
   3336     }
   3337     Block = nullptr;
   3338     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
   3339     if (!CatchBlock)
   3340       return nullptr;
   3341     // Add this block to the list of successors for the block with the try
   3342     // statement.
   3343     addSuccessor(NewTryTerminatedBlock, CatchBlock);
   3344   }
   3345   if (!HasCatchAll) {
   3346     if (PrevTryTerminatedBlock)
   3347       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
   3348     else
   3349       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
   3350   }
   3351 
   3352   // The code after the try is the implicit successor.
   3353   Succ = TrySuccessor;
   3354 
   3355   // Save the current "try" context.
   3356   SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
   3357   cfg->addTryDispatchBlock(TryTerminatedBlock);
   3358 
   3359   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
   3360   Block = nullptr;
   3361   return addStmt(Terminator->getTryBlock());
   3362 }
   3363 
   3364 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
   3365   // CXXCatchStmt are treated like labels, so they are the first statement in a
   3366   // block.
   3367 
   3368   // Save local scope position because in case of exception variable ScopePos
   3369   // won't be restored when traversing AST.
   3370   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3371 
   3372   // Create local scope for possible exception variable.
   3373   // Store scope position. Add implicit destructor.
   3374   if (VarDecl *VD = CS->getExceptionDecl()) {
   3375     LocalScope::const_iterator BeginScopePos = ScopePos;
   3376     addLocalScopeForVarDecl(VD);
   3377     addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
   3378   }
   3379 
   3380   if (CS->getHandlerBlock())
   3381     addStmt(CS->getHandlerBlock());
   3382 
   3383   CFGBlock *CatchBlock = Block;
   3384   if (!CatchBlock)
   3385     CatchBlock = createBlock();
   3386 
   3387   // CXXCatchStmt is more than just a label.  They have semantic meaning
   3388   // as well, as they implicitly "initialize" the catch variable.  Add
   3389   // it to the CFG as a CFGElement so that the control-flow of these
   3390   // semantics gets captured.
   3391   appendStmt(CatchBlock, CS);
   3392 
   3393   // Also add the CXXCatchStmt as a label, to mirror handling of regular
   3394   // labels.
   3395   CatchBlock->setLabel(CS);
   3396 
   3397   // Bail out if the CFG is bad.
   3398   if (badCFG)
   3399     return nullptr;
   3400 
   3401   // We set Block to NULL to allow lazy creation of a new block (if necessary)
   3402   Block = nullptr;
   3403 
   3404   return CatchBlock;
   3405 }
   3406 
   3407 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
   3408   // C++0x for-range statements are specified as [stmt.ranged]:
   3409   //
   3410   // {
   3411   //   auto && __range = range-init;
   3412   //   for ( auto __begin = begin-expr,
   3413   //         __end = end-expr;
   3414   //         __begin != __end;
   3415   //         ++__begin ) {
   3416   //     for-range-declaration = *__begin;
   3417   //     statement
   3418   //   }
   3419   // }
   3420 
   3421   // Save local scope position before the addition of the implicit variables.
   3422   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
   3423 
   3424   // Create local scopes and destructors for range, begin and end variables.
   3425   if (Stmt *Range = S->getRangeStmt())
   3426     addLocalScopeForStmt(Range);
   3427   if (Stmt *Begin = S->getBeginStmt())
   3428     addLocalScopeForStmt(Begin);
   3429   if (Stmt *End = S->getEndStmt())
   3430     addLocalScopeForStmt(End);
   3431   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
   3432 
   3433   LocalScope::const_iterator ContinueScopePos = ScopePos;
   3434 
   3435   // "for" is a control-flow statement.  Thus we stop processing the current
   3436   // block.
   3437   CFGBlock *LoopSuccessor = nullptr;
   3438   if (Block) {
   3439     if (badCFG)
   3440       return nullptr;
   3441     LoopSuccessor = Block;
   3442   } else
   3443     LoopSuccessor = Succ;
   3444 
   3445   // Save the current value for the break targets.
   3446   // All breaks should go to the code following the loop.
   3447   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
   3448   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
   3449 
   3450   // The block for the __begin != __end expression.
   3451   CFGBlock *ConditionBlock = createBlock(false);
   3452   ConditionBlock->setTerminator(S);
   3453 
   3454   // Now add the actual condition to the condition block.
   3455   if (Expr *C = S->getCond()) {
   3456     Block = ConditionBlock;
   3457     CFGBlock *BeginConditionBlock = addStmt(C);
   3458     if (badCFG)
   3459       return nullptr;
   3460     assert(BeginConditionBlock == ConditionBlock &&
   3461            "condition block in for-range was unexpectedly complex");
   3462     (void)BeginConditionBlock;
   3463   }
   3464 
   3465   // The condition block is the implicit successor for the loop body as well as
   3466   // any code above the loop.
   3467   Succ = ConditionBlock;
   3468 
   3469   // See if this is a known constant.
   3470   TryResult KnownVal(true);
   3471 
   3472   if (S->getCond())
   3473     KnownVal = tryEvaluateBool(S->getCond());
   3474 
   3475   // Now create the loop body.
   3476   {
   3477     assert(S->getBody());
   3478 
   3479     // Save the current values for Block, Succ, and continue targets.
   3480     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
   3481     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
   3482 
   3483     // Generate increment code in its own basic block.  This is the target of
   3484     // continue statements.
   3485     Block = nullptr;
   3486     Succ = addStmt(S->getInc());
   3487     if (badCFG)
   3488       return nullptr;
   3489     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   3490 
   3491     // The starting block for the loop increment is the block that should
   3492     // represent the 'loop target' for looping back to the start of the loop.
   3493     ContinueJumpTarget.block->setLoopTarget(S);
   3494 
   3495     // Finish up the increment block and prepare to start the loop body.
   3496     assert(Block);
   3497     if (badCFG)
   3498       return nullptr;
   3499     Block = nullptr;
   3500 
   3501     // Add implicit scope and dtors for loop variable.
   3502     addLocalScopeAndDtors(S->getLoopVarStmt());
   3503 
   3504     // Populate a new block to contain the loop body and loop variable.
   3505     addStmt(S->getBody());
   3506     if (badCFG)
   3507       return nullptr;
   3508     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
   3509     if (badCFG)
   3510       return nullptr;
   3511 
   3512     // This new body block is a successor to our condition block.
   3513     addSuccessor(ConditionBlock,
   3514                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
   3515   }
   3516 
   3517   // Link up the condition block with the code that follows the loop (the
   3518   // false branch).
   3519   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
   3520 
   3521   // Add the initialization statements.
   3522   Block = createBlock();
   3523   addStmt(S->getBeginStmt());
   3524   addStmt(S->getEndStmt());
   3525   return addStmt(S->getRangeStmt());
   3526 }
   3527 
   3528 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
   3529     AddStmtChoice asc) {
   3530   if (BuildOpts.AddTemporaryDtors) {
   3531     // If adding implicit destructors visit the full expression for adding
   3532     // destructors of temporaries.
   3533     TempDtorContext Context;
   3534     VisitForTemporaryDtors(E->getSubExpr(), false, Context);
   3535 
   3536     // Full expression has to be added as CFGStmt so it will be sequenced
   3537     // before destructors of it's temporaries.
   3538     asc = asc.withAlwaysAdd(true);
   3539   }
   3540   return Visit(E->getSubExpr(), asc);
   3541 }
   3542 
   3543 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
   3544                                                 AddStmtChoice asc) {
   3545   if (asc.alwaysAdd(*this, E)) {
   3546     autoCreateBlock();
   3547     appendStmt(Block, E);
   3548 
   3549     // We do not want to propagate the AlwaysAdd property.
   3550     asc = asc.withAlwaysAdd(false);
   3551   }
   3552   return Visit(E->getSubExpr(), asc);
   3553 }
   3554 
   3555 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
   3556                                             AddStmtChoice asc) {
   3557   autoCreateBlock();
   3558   appendStmt(Block, C);
   3559 
   3560   return VisitChildren(C);
   3561 }
   3562 
   3563 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
   3564                                       AddStmtChoice asc) {
   3565 
   3566   autoCreateBlock();
   3567   appendStmt(Block, NE);
   3568 
   3569   if (NE->getInitializer())
   3570     Block = Visit(NE->getInitializer());
   3571   if (BuildOpts.AddCXXNewAllocator)
   3572     appendNewAllocator(Block, NE);
   3573   if (NE->isArray())
   3574     Block = Visit(NE->getArraySize());
   3575   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
   3576        E = NE->placement_arg_end(); I != E; ++I)
   3577     Block = Visit(*I);
   3578   return Block;
   3579 }
   3580 
   3581 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
   3582                                          AddStmtChoice asc) {
   3583   autoCreateBlock();
   3584   appendStmt(Block, DE);
   3585   QualType DTy = DE->getDestroyedType();
   3586   DTy = DTy.getNonReferenceType();
   3587   CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
   3588   if (RD) {
   3589     if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
   3590       appendDeleteDtor(Block, RD, DE);
   3591   }
   3592 
   3593   return VisitChildren(DE);
   3594 }
   3595 
   3596 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
   3597                                                  AddStmtChoice asc) {
   3598   if (asc.alwaysAdd(*this, E)) {
   3599     autoCreateBlock();
   3600     appendStmt(Block, E);
   3601     // We do not want to propagate the AlwaysAdd property.
   3602     asc = asc.withAlwaysAdd(false);
   3603   }
   3604   return Visit(E->getSubExpr(), asc);
   3605 }
   3606 
   3607 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
   3608                                                   AddStmtChoice asc) {
   3609   autoCreateBlock();
   3610   appendStmt(Block, C);
   3611   return VisitChildren(C);
   3612 }
   3613 
   3614 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
   3615                                             AddStmtChoice asc) {
   3616   if (asc.alwaysAdd(*this, E)) {
   3617     autoCreateBlock();
   3618     appendStmt(Block, E);
   3619   }
   3620   return Visit(E->getSubExpr(), AddStmtChoice());
   3621 }
   3622 
   3623 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   3624   // Lazily create the indirect-goto dispatch block if there isn't one already.
   3625   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
   3626 
   3627   if (!IBlock) {
   3628     IBlock = createBlock(false);
   3629     cfg->setIndirectGotoBlock(IBlock);
   3630   }
   3631 
   3632   // IndirectGoto is a control-flow statement.  Thus we stop processing the
   3633   // current block and create a new one.
   3634   if (badCFG)
   3635     return nullptr;
   3636 
   3637   Block = createBlock(false);
   3638   Block->setTerminator(I);
   3639   addSuccessor(Block, IBlock);
   3640   return addStmt(I->getTarget());
   3641 }
   3642 
   3643 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
   3644                                              TempDtorContext &Context) {
   3645   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
   3646 
   3647 tryAgain:
   3648   if (!E) {
   3649     badCFG = true;
   3650     return nullptr;
   3651   }
   3652   switch (E->getStmtClass()) {
   3653     default:
   3654       return VisitChildrenForTemporaryDtors(E, Context);
   3655 
   3656     case Stmt::BinaryOperatorClass:
   3657       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
   3658                                                   Context);
   3659 
   3660     case Stmt::CXXBindTemporaryExprClass:
   3661       return VisitCXXBindTemporaryExprForTemporaryDtors(
   3662           cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
   3663 
   3664     case Stmt::BinaryConditionalOperatorClass:
   3665     case Stmt::ConditionalOperatorClass:
   3666       return VisitConditionalOperatorForTemporaryDtors(
   3667           cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
   3668 
   3669     case Stmt::ImplicitCastExprClass:
   3670       // For implicit cast we want BindToTemporary to be passed further.
   3671       E = cast<CastExpr>(E)->getSubExpr();
   3672       goto tryAgain;
   3673 
   3674     case Stmt::CXXFunctionalCastExprClass:
   3675       // For functional cast we want BindToTemporary to be passed further.
   3676       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
   3677       goto tryAgain;
   3678 
   3679     case Stmt::ParenExprClass:
   3680       E = cast<ParenExpr>(E)->getSubExpr();
   3681       goto tryAgain;
   3682 
   3683     case Stmt::MaterializeTemporaryExprClass: {
   3684       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
   3685       BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
   3686       SmallVector<const Expr *, 2> CommaLHSs;
   3687       SmallVector<SubobjectAdjustment, 2> Adjustments;
   3688       // Find the expression whose lifetime needs to be extended.
   3689       E = const_cast<Expr *>(
   3690           cast<MaterializeTemporaryExpr>(E)
   3691               ->GetTemporaryExpr()
   3692               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
   3693       // Visit the skipped comma operator left-hand sides for other temporaries.
   3694       for (const Expr *CommaLHS : CommaLHSs) {
   3695         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
   3696                                /*BindToTemporary=*/false, Context);
   3697       }
   3698       goto tryAgain;
   3699     }
   3700 
   3701     case Stmt::BlockExprClass:
   3702       // Don't recurse into blocks; their subexpressions don't get evaluated
   3703       // here.
   3704       return Block;
   3705 
   3706     case Stmt::LambdaExprClass: {
   3707       // For lambda expressions, only recurse into the capture initializers,
   3708       // and not the body.
   3709       auto *LE = cast<LambdaExpr>(E);
   3710       CFGBlock *B = Block;
   3711       for (Expr *Init : LE->capture_inits()) {
   3712         if (CFGBlock *R = VisitForTemporaryDtors(
   3713                 Init, /*BindToTemporary=*/false, Context))
   3714           B = R;
   3715       }
   3716       return B;
   3717     }
   3718 
   3719     case Stmt::CXXDefaultArgExprClass:
   3720       E = cast<CXXDefaultArgExpr>(E)->getExpr();
   3721       goto tryAgain;
   3722 
   3723     case Stmt::CXXDefaultInitExprClass:
   3724       E = cast<CXXDefaultInitExpr>(E)->getExpr();
   3725       goto tryAgain;
   3726   }
   3727 }
   3728 
   3729 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
   3730                                                      TempDtorContext &Context) {
   3731   if (isa<LambdaExpr>(E)) {
   3732     // Do not visit the children of lambdas; they have their own CFGs.
   3733     return Block;
   3734   }
   3735 
   3736   // When visiting children for destructors we want to visit them in reverse
   3737   // order that they will appear in the CFG.  Because the CFG is built
   3738   // bottom-up, this means we visit them in their natural order, which
   3739   // reverses them in the CFG.
   3740   CFGBlock *B = Block;
   3741   for (Stmt *Child : E->children())
   3742     if (Child)
   3743       if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
   3744         B = R;
   3745 
   3746   return B;
   3747 }
   3748 
   3749 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
   3750     BinaryOperator *E, TempDtorContext &Context) {
   3751   if (E->isLogicalOp()) {
   3752     VisitForTemporaryDtors(E->getLHS(), false, Context);
   3753     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
   3754     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
   3755       RHSExecuted.negate();
   3756 
   3757     // We do not know at CFG-construction time whether the right-hand-side was
   3758     // executed, thus we add a branch node that depends on the temporary
   3759     // constructor call.
   3760     TempDtorContext RHSContext(
   3761         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
   3762     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
   3763     InsertTempDtorDecisionBlock(RHSContext);
   3764 
   3765     return Block;
   3766   }
   3767 
   3768   if (E->isAssignmentOp()) {
   3769     // For assignment operator (=) LHS expression is visited
   3770     // before RHS expression. For destructors visit them in reverse order.
   3771     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
   3772     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
   3773     return LHSBlock ? LHSBlock : RHSBlock;
   3774   }
   3775 
   3776   // For any other binary operator RHS expression is visited before
   3777   // LHS expression (order of children). For destructors visit them in reverse
   3778   // order.
   3779   CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
   3780   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
   3781   return RHSBlock ? RHSBlock : LHSBlock;
   3782 }
   3783 
   3784 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
   3785     CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
   3786   // First add destructors for temporaries in subexpression.
   3787   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
   3788   if (!BindToTemporary) {
   3789     // If lifetime of temporary is not prolonged (by assigning to constant
   3790     // reference) add destructor for it.
   3791 
   3792     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
   3793 
   3794     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
   3795       // If the destructor is marked as a no-return destructor, we need to
   3796       // create a new block for the destructor which does not have as a
   3797       // successor anything built thus far. Control won't flow out of this
   3798       // block.
   3799       if (B) Succ = B;
   3800       Block = createNoReturnBlock();
   3801     } else if (Context.needsTempDtorBranch()) {
   3802       // If we need to introduce a branch, we add a new block that we will hook
   3803       // up to a decision block later.
   3804       if (B) Succ = B;
   3805       Block = createBlock();
   3806     } else {
   3807       autoCreateBlock();
   3808     }
   3809     if (Context.needsTempDtorBranch()) {
   3810       Context.setDecisionPoint(Succ, E);
   3811     }
   3812     appendTemporaryDtor(Block, E);
   3813 
   3814     B = Block;
   3815   }
   3816   return B;
   3817 }
   3818 
   3819 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
   3820                                              CFGBlock *FalseSucc) {
   3821   if (!Context.TerminatorExpr) {
   3822     // If no temporary was found, we do not need to insert a decision point.
   3823     return;
   3824   }
   3825   assert(Context.TerminatorExpr);
   3826   CFGBlock *Decision = createBlock(false);
   3827   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
   3828   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
   3829   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
   3830                !Context.KnownExecuted.isTrue());
   3831   Block = Decision;
   3832 }
   3833 
   3834 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
   3835     AbstractConditionalOperator *E, bool BindToTemporary,
   3836     TempDtorContext &Context) {
   3837   VisitForTemporaryDtors(E->getCond(), false, Context);
   3838   CFGBlock *ConditionBlock = Block;
   3839   CFGBlock *ConditionSucc = Succ;
   3840   TryResult ConditionVal = tryEvaluateBool(E->getCond());
   3841   TryResult NegatedVal = ConditionVal;
   3842   if (NegatedVal.isKnown()) NegatedVal.negate();
   3843 
   3844   TempDtorContext TrueContext(
   3845       bothKnownTrue(Context.KnownExecuted, ConditionVal));
   3846   VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
   3847   CFGBlock *TrueBlock = Block;
   3848 
   3849   Block = ConditionBlock;
   3850   Succ = ConditionSucc;
   3851   TempDtorContext FalseContext(
   3852       bothKnownTrue(Context.KnownExecuted, NegatedVal));
   3853   VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
   3854 
   3855   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
   3856     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
   3857   } else if (TrueContext.TerminatorExpr) {
   3858     Block = TrueBlock;
   3859     InsertTempDtorDecisionBlock(TrueContext);
   3860   } else {
   3861     InsertTempDtorDecisionBlock(FalseContext);
   3862   }
   3863   return Block;
   3864 }
   3865 
   3866 } // end anonymous namespace
   3867 
   3868 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
   3869 ///  no successors or predecessors.  If this is the first block created in the
   3870 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
   3871 CFGBlock *CFG::createBlock() {
   3872   bool first_block = begin() == end();
   3873 
   3874   // Create the block.
   3875   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
   3876   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
   3877   Blocks.push_back(Mem, BlkBVC);
   3878 
   3879   // If this is the first block, set it as the Entry and Exit.
   3880   if (first_block)
   3881     Entry = Exit = &back();
   3882 
   3883   // Return the block.
   3884   return &back();
   3885 }
   3886 
   3887 /// buildCFG - Constructs a CFG from an AST.
   3888 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
   3889                                    ASTContext *C, const BuildOptions &BO) {
   3890   CFGBuilder Builder(C, BO);
   3891   return Builder.buildCFG(D, Statement);
   3892 }
   3893 
   3894 const CXXDestructorDecl *
   3895 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
   3896   switch (getKind()) {
   3897     case CFGElement::Statement:
   3898     case CFGElement::Initializer:
   3899     case CFGElement::NewAllocator:
   3900       llvm_unreachable("getDestructorDecl should only be used with "
   3901                        "ImplicitDtors");
   3902     case CFGElement::AutomaticObjectDtor: {
   3903       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
   3904       QualType ty = var->getType();
   3905       ty = ty.getNonReferenceType();
   3906       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
   3907         ty = arrayType->getElementType();
   3908       }
   3909       const RecordType *recordType = ty->getAs<RecordType>();
   3910       const CXXRecordDecl *classDecl =
   3911       cast<CXXRecordDecl>(recordType->getDecl());
   3912       return classDecl->getDestructor();
   3913     }
   3914     case CFGElement::DeleteDtor: {
   3915       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
   3916       QualType DTy = DE->getDestroyedType();
   3917       DTy = DTy.getNonReferenceType();
   3918       const CXXRecordDecl *classDecl =
   3919           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
   3920       return classDecl->getDestructor();
   3921     }
   3922     case CFGElement::TemporaryDtor: {
   3923       const CXXBindTemporaryExpr *bindExpr =
   3924         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
   3925       const CXXTemporary *temp = bindExpr->getTemporary();
   3926       return temp->getDestructor();
   3927     }
   3928     case CFGElement::BaseDtor:
   3929     case CFGElement::MemberDtor:
   3930 
   3931       // Not yet supported.
   3932       return nullptr;
   3933   }
   3934   llvm_unreachable("getKind() returned bogus value");
   3935 }
   3936 
   3937 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
   3938   if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
   3939     return DD->isNoReturn();
   3940   return false;
   3941 }
   3942 
   3943 //===----------------------------------------------------------------------===//
   3944 // CFGBlock operations.
   3945 //===----------------------------------------------------------------------===//
   3946 
   3947 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
   3948   : ReachableBlock(IsReachable ? B : nullptr),
   3949     UnreachableBlock(!IsReachable ? B : nullptr,
   3950                      B && IsReachable ? AB_Normal : AB_Unreachable) {}
   3951 
   3952 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
   3953   : ReachableBlock(B),
   3954     UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
   3955                      B == AlternateBlock ? AB_Alternate : AB_Normal) {}
   3956 
   3957 void CFGBlock::addSuccessor(AdjacentBlock Succ,
   3958                             BumpVectorContext &C) {
   3959   if (CFGBlock *B = Succ.getReachableBlock())
   3960     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
   3961 
   3962   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
   3963     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
   3964 
   3965   Succs.push_back(Succ, C);
   3966 }
   3967 
   3968 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
   3969         const CFGBlock *From, const CFGBlock *To) {
   3970 
   3971   if (F.IgnoreNullPredecessors && !From)
   3972     return true;
   3973 
   3974   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
   3975     // If the 'To' has no label or is labeled but the label isn't a
   3976     // CaseStmt then filter this edge.
   3977     if (const SwitchStmt *S =
   3978         dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
   3979       if (S->isAllEnumCasesCovered()) {
   3980         const Stmt *L = To->getLabel();
   3981         if (!L || !isa<CaseStmt>(L))
   3982           return true;
   3983       }
   3984     }
   3985   }
   3986 
   3987   return false;
   3988 }
   3989 
   3990 //===----------------------------------------------------------------------===//
   3991 // CFG pretty printing
   3992 //===----------------------------------------------------------------------===//
   3993 
   3994 namespace {
   3995 
   3996 class StmtPrinterHelper : public PrinterHelper  {
   3997   typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
   3998   typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
   3999   StmtMapTy StmtMap;
   4000   DeclMapTy DeclMap;
   4001   signed currentBlock;
   4002   unsigned currStmt;
   4003   const LangOptions &LangOpts;
   4004 public:
   4005 
   4006   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
   4007     : currentBlock(0), currStmt(0), LangOpts(LO)
   4008   {
   4009     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
   4010       unsigned j = 1;
   4011       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
   4012            BI != BEnd; ++BI, ++j ) {
   4013         if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
   4014           const Stmt *stmt= SE->getStmt();
   4015           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
   4016           StmtMap[stmt] = P;
   4017 
   4018           switch (stmt->getStmtClass()) {
   4019             case Stmt::DeclStmtClass:
   4020                 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
   4021                 break;
   4022             case Stmt::IfStmtClass: {
   4023               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
   4024               if (var)
   4025                 DeclMap[var] = P;
   4026               break;
   4027             }
   4028             case Stmt::ForStmtClass: {
   4029               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
   4030               if (var)
   4031                 DeclMap[var] = P;
   4032               break;
   4033             }
   4034             case Stmt::WhileStmtClass: {
   4035               const VarDecl *var =
   4036                 cast<WhileStmt>(stmt)->getConditionVariable();
   4037               if (var)
   4038                 DeclMap[var] = P;
   4039               break;
   4040             }
   4041             case Stmt::SwitchStmtClass: {
   4042               const VarDecl *var =
   4043                 cast<SwitchStmt>(stmt)->getConditionVariable();
   4044               if (var)
   4045                 DeclMap[var] = P;
   4046               break;
   4047             }
   4048             case Stmt::CXXCatchStmtClass: {
   4049               const VarDecl *var =
   4050                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
   4051               if (var)
   4052                 DeclMap[var] = P;
   4053               break;
   4054             }
   4055             default:
   4056               break;
   4057           }
   4058         }
   4059       }
   4060     }
   4061   }
   4062 
   4063   ~StmtPrinterHelper() override {}
   4064 
   4065   const LangOptions &getLangOpts() const { return LangOpts; }
   4066   void setBlockID(signed i) { currentBlock = i; }
   4067   void setStmtID(unsigned i) { currStmt = i; }
   4068 
   4069   bool handledStmt(Stmt *S, raw_ostream &OS) override {
   4070     StmtMapTy::iterator I = StmtMap.find(S);
   4071 
   4072     if (I == StmtMap.end())
   4073       return false;
   4074 
   4075     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   4076                           && I->second.second == currStmt) {
   4077       return false;
   4078     }
   4079 
   4080     OS << "[B" << I->second.first << "." << I->second.second << "]";
   4081     return true;
   4082   }
   4083 
   4084   bool handleDecl(const Decl *D, raw_ostream &OS) {
   4085     DeclMapTy::iterator I = DeclMap.find(D);
   4086 
   4087     if (I == DeclMap.end())
   4088       return false;
   4089 
   4090     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
   4091                           && I->second.second == currStmt) {
   4092       return false;
   4093     }
   4094 
   4095     OS << "[B" << I->second.first << "." << I->second.second << "]";
   4096     return true;
   4097   }
   4098 };
   4099 } // end anonymous namespace
   4100 
   4101 
   4102 namespace {
   4103 class CFGBlockTerminatorPrint
   4104   : public StmtVisitor<CFGBlockTerminatorPrint,void> {
   4105 
   4106   raw_ostream &OS;
   4107   StmtPrinterHelper* Helper;
   4108   PrintingPolicy Policy;
   4109 public:
   4110   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
   4111                           const PrintingPolicy &Policy)
   4112     : OS(os), Helper(helper), Policy(Policy) {
   4113     this->Policy.IncludeNewlines = false;
   4114   }
   4115 
   4116   void VisitIfStmt(IfStmt *I) {
   4117     OS << "if ";
   4118     if (Stmt *C = I->getCond())
   4119       C->printPretty(OS, Helper, Policy);
   4120   }
   4121 
   4122   // Default case.
   4123   void VisitStmt(Stmt *Terminator) {
   4124     Terminator->printPretty(OS, Helper, Policy);
   4125   }
   4126 
   4127   void VisitDeclStmt(DeclStmt *DS) {
   4128     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
   4129     OS << "static init " << VD->getName();
   4130   }
   4131 
   4132   void VisitForStmt(ForStmt *F) {
   4133     OS << "for (" ;
   4134     if (F->getInit())
   4135       OS << "...";
   4136     OS << "; ";
   4137     if (Stmt *C = F->getCond())
   4138       C->printPretty(OS, Helper, Policy);
   4139     OS << "; ";
   4140     if (F->getInc())
   4141       OS << "...";
   4142     OS << ")";
   4143   }
   4144 
   4145   void VisitWhileStmt(WhileStmt *W) {
   4146     OS << "while " ;
   4147     if (Stmt *C = W->getCond())
   4148       C->printPretty(OS, Helper, Policy);
   4149   }
   4150 
   4151   void VisitDoStmt(DoStmt *D) {
   4152     OS << "do ... while ";
   4153     if (Stmt *C = D->getCond())
   4154       C->printPretty(OS, Helper, Policy);
   4155   }
   4156 
   4157   void VisitSwitchStmt(SwitchStmt *Terminator) {
   4158     OS << "switch ";
   4159     Terminator->getCond()->printPretty(OS, Helper, Policy);
   4160   }
   4161 
   4162   void VisitCXXTryStmt(CXXTryStmt *CS) {
   4163     OS << "try ...";
   4164   }
   4165 
   4166   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
   4167     if (Stmt *Cond = C->getCond())
   4168       Cond->printPretty(OS, Helper, Policy);
   4169     OS << " ? ... : ...";
   4170   }
   4171 
   4172   void VisitChooseExpr(ChooseExpr *C) {
   4173     OS << "__builtin_choose_expr( ";
   4174     if (Stmt *Cond = C->getCond())
   4175       Cond->printPretty(OS, Helper, Policy);
   4176     OS << " )";
   4177   }
   4178 
   4179   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
   4180     OS << "goto *";
   4181     if (Stmt *T = I->getTarget())
   4182       T->printPretty(OS, Helper, Policy);
   4183   }
   4184 
   4185   void VisitBinaryOperator(BinaryOperator* B) {
   4186     if (!B->isLogicalOp()) {
   4187       VisitExpr(B);
   4188       return;
   4189     }
   4190 
   4191     if (B->getLHS())
   4192       B->getLHS()->printPretty(OS, Helper, Policy);
   4193 
   4194     switch (B->getOpcode()) {
   4195       case BO_LOr:
   4196         OS << " || ...";
   4197         return;
   4198       case BO_LAnd:
   4199         OS << " && ...";
   4200         return;
   4201       default:
   4202         llvm_unreachable("Invalid logical operator.");
   4203     }
   4204   }
   4205 
   4206   void VisitExpr(Expr *E) {
   4207     E->printPretty(OS, Helper, Policy);
   4208   }
   4209 
   4210 public:
   4211   void print(CFGTerminator T) {
   4212     if (T.isTemporaryDtorsBranch())
   4213       OS << "(Temp Dtor) ";
   4214     Visit(T.getStmt());
   4215   }
   4216 };
   4217 } // end anonymous namespace
   4218 
   4219 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
   4220                        const CFGElement &E) {
   4221   if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
   4222     const Stmt *S = CS->getStmt();
   4223     assert(S != nullptr && "Expecting non-null Stmt");
   4224 
   4225     // special printing for statement-expressions.
   4226     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
   4227       const CompoundStmt *Sub = SE->getSubStmt();
   4228 
   4229       auto Children = Sub->children();
   4230       if (Children.begin() != Children.end()) {
   4231         OS << "({ ... ; ";
   4232         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
   4233         OS << " })\n";
   4234         return;
   4235       }
   4236     }
   4237     // special printing for comma expressions.
   4238     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
   4239       if (B->getOpcode() == BO_Comma) {
   4240         OS << "... , ";
   4241         Helper.handledStmt(B->getRHS(),OS);
   4242         OS << '\n';
   4243         return;
   4244       }
   4245     }
   4246     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
   4247 
   4248     if (isa<CXXOperatorCallExpr>(S)) {
   4249       OS << " (OperatorCall)";
   4250     }
   4251     else if (isa<CXXBindTemporaryExpr>(S)) {
   4252       OS << " (BindTemporary)";
   4253     }
   4254     else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
   4255       OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
   4256     }
   4257     else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
   4258       OS << " (" << CE->getStmtClassName() << ", "
   4259          << CE->getCastKindName()
   4260          << ", " << CE->getType().getAsString()
   4261          << ")";
   4262     }
   4263 
   4264     // Expressions need a newline.
   4265     if (isa<Expr>(S))
   4266       OS << '\n';
   4267 
   4268   } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
   4269     const CXXCtorInitializer *I = IE->getInitializer();
   4270     if (I->isBaseInitializer())
   4271       OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
   4272     else if (I->isDelegatingInitializer())
   4273       OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
   4274     else OS << I->getAnyMember()->getName();
   4275 
   4276     OS << "(";
   4277     if (Expr *IE = I->getInit())
   4278       IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
   4279     OS << ")";
   4280 
   4281     if (I->isBaseInitializer())
   4282       OS << " (Base initializer)\n";
   4283     else if (I->isDelegatingInitializer())
   4284       OS << " (Delegating initializer)\n";
   4285     else OS << " (Member initializer)\n";
   4286 
   4287   } else if (Optional<CFGAutomaticObjDtor> DE =
   4288                  E.getAs<CFGAutomaticObjDtor>()) {
   4289     const VarDecl *VD = DE->getVarDecl();
   4290     Helper.handleDecl(VD, OS);
   4291 
   4292     const Type* T = VD->getType().getTypePtr();
   4293     if (const ReferenceType* RT = T->getAs<ReferenceType>())
   4294       T = RT->getPointeeType().getTypePtr();
   4295     T = T->getBaseElementTypeUnsafe();
   4296 
   4297     OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
   4298     OS << " (Implicit destructor)\n";
   4299 
   4300   } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
   4301     OS << "CFGNewAllocator(";
   4302     if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
   4303       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
   4304     OS << ")\n";
   4305   } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
   4306     const CXXRecordDecl *RD = DE->getCXXRecordDecl();
   4307     if (!RD)
   4308       return;
   4309     CXXDeleteExpr *DelExpr =
   4310         const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
   4311     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
   4312     OS << "->~" << RD->getName().str() << "()";
   4313     OS << " (Implicit destructor)\n";
   4314   } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
   4315     const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
   4316     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
   4317     OS << " (Base object destructor)\n";
   4318 
   4319   } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
   4320     const FieldDecl *FD = ME->getFieldDecl();
   4321     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
   4322     OS << "this->" << FD->getName();
   4323     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
   4324     OS << " (Member object destructor)\n";
   4325 
   4326   } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
   4327     const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
   4328     OS << "~";
   4329     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
   4330     OS << "() (Temporary object destructor)\n";
   4331   }
   4332 }
   4333 
   4334 static void print_block(raw_ostream &OS, const CFG* cfg,
   4335                         const CFGBlock &B,
   4336                         StmtPrinterHelper &Helper, bool print_edges,
   4337                         bool ShowColors) {
   4338 
   4339   Helper.setBlockID(B.getBlockID());
   4340 
   4341   // Print the header.
   4342   if (ShowColors)
   4343     OS.changeColor(raw_ostream::YELLOW, true);
   4344 
   4345   OS << "\n [B" << B.getBlockID();
   4346 
   4347   if (&B == &cfg->getEntry())
   4348     OS << " (ENTRY)]\n";
   4349   else if (&B == &cfg->getExit())
   4350     OS << " (EXIT)]\n";
   4351   else if (&B == cfg->getIndirectGotoBlock())
   4352     OS << " (INDIRECT GOTO DISPATCH)]\n";
   4353   else if (B.hasNoReturnElement())
   4354     OS << " (NORETURN)]\n";
   4355   else
   4356     OS << "]\n";
   4357 
   4358   if (ShowColors)
   4359     OS.resetColor();
   4360 
   4361   // Print the label of this block.
   4362   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
   4363 
   4364     if (print_edges)
   4365       OS << "  ";
   4366 
   4367     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
   4368       OS << L->getName();
   4369     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
   4370       OS << "case ";
   4371       if (C->getLHS())
   4372         C->getLHS()->printPretty(OS, &Helper,
   4373                                  PrintingPolicy(Helper.getLangOpts()));
   4374       if (C->getRHS()) {
   4375         OS << " ... ";
   4376         C->getRHS()->printPretty(OS, &Helper,
   4377                                  PrintingPolicy(Helper.getLangOpts()));
   4378       }
   4379     } else if (isa<DefaultStmt>(Label))
   4380       OS << "default";
   4381     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
   4382       OS << "catch (";
   4383       if (CS->getExceptionDecl())
   4384         CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
   4385                                       0);
   4386       else
   4387         OS << "...";
   4388       OS << ")";
   4389 
   4390     } else
   4391       llvm_unreachable("Invalid label statement in CFGBlock.");
   4392 
   4393     OS << ":\n";
   4394   }
   4395 
   4396   // Iterate through the statements in the block and print them.
   4397   unsigned j = 1;
   4398 
   4399   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
   4400        I != E ; ++I, ++j ) {
   4401 
   4402     // Print the statement # in the basic block and the statement itself.
   4403     if (print_edges)
   4404       OS << " ";
   4405 
   4406     OS << llvm::format("%3d", j) << ": ";
   4407 
   4408     Helper.setStmtID(j);
   4409 
   4410     print_elem(OS, Helper, *I);
   4411   }
   4412 
   4413   // Print the terminator of this block.
   4414   if (B.getTerminator()) {
   4415     if (ShowColors)
   4416       OS.changeColor(raw_ostream::GREEN);
   4417 
   4418     OS << "   T: ";
   4419 
   4420     Helper.setBlockID(-1);
   4421 
   4422     PrintingPolicy PP(Helper.getLangOpts());
   4423     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
   4424     TPrinter.print(B.getTerminator());
   4425     OS << '\n';
   4426 
   4427     if (ShowColors)
   4428       OS.resetColor();
   4429   }
   4430 
   4431   if (print_edges) {
   4432     // Print the predecessors of this block.
   4433     if (!B.pred_empty()) {
   4434       const raw_ostream::Colors Color = raw_ostream::BLUE;
   4435       if (ShowColors)
   4436         OS.changeColor(Color);
   4437       OS << "   Preds " ;
   4438       if (ShowColors)
   4439         OS.resetColor();
   4440       OS << '(' << B.pred_size() << "):";
   4441       unsigned i = 0;
   4442 
   4443       if (ShowColors)
   4444         OS.changeColor(Color);
   4445 
   4446       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
   4447            I != E; ++I, ++i) {
   4448 
   4449         if (i % 10 == 8)
   4450           OS << "\n     ";
   4451 
   4452         CFGBlock *B = *I;
   4453         bool Reachable = true;
   4454         if (!B) {
   4455           Reachable = false;
   4456           B = I->getPossiblyUnreachableBlock();
   4457         }
   4458 
   4459         OS << " B" << B->getBlockID();
   4460         if (!Reachable)
   4461           OS << "(Unreachable)";
   4462       }
   4463 
   4464       if (ShowColors)
   4465         OS.resetColor();
   4466 
   4467       OS << '\n';
   4468     }
   4469 
   4470     // Print the successors of this block.
   4471     if (!B.succ_empty()) {
   4472       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
   4473       if (ShowColors)
   4474         OS.changeColor(Color);
   4475       OS << "   Succs ";
   4476       if (ShowColors)
   4477         OS.resetColor();
   4478       OS << '(' << B.succ_size() << "):";
   4479       unsigned i = 0;
   4480 
   4481       if (ShowColors)
   4482         OS.changeColor(Color);
   4483 
   4484       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
   4485            I != E; ++I, ++i) {
   4486 
   4487         if (i % 10 == 8)
   4488           OS << "\n    ";
   4489 
   4490         CFGBlock *B = *I;
   4491 
   4492         bool Reachable = true;
   4493         if (!B) {
   4494           Reachable = false;
   4495           B = I->getPossiblyUnreachableBlock();
   4496         }
   4497 
   4498         if (B) {
   4499           OS << " B" << B->getBlockID();
   4500           if (!Reachable)
   4501             OS << "(Unreachable)";
   4502         }
   4503         else {
   4504           OS << " NULL";
   4505         }
   4506       }
   4507 
   4508       if (ShowColors)
   4509         OS.resetColor();
   4510       OS << '\n';
   4511     }
   4512   }
   4513 }
   4514 
   4515 
   4516 /// dump - A simple pretty printer of a CFG that outputs to stderr.
   4517 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
   4518   print(llvm::errs(), LO, ShowColors);
   4519 }
   4520 
   4521 /// print - A simple pretty printer of a CFG that outputs to an ostream.
   4522 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
   4523   StmtPrinterHelper Helper(this, LO);
   4524 
   4525   // Print the entry block.
   4526   print_block(OS, this, getEntry(), Helper, true, ShowColors);
   4527 
   4528   // Iterate through the CFGBlocks and print them one by one.
   4529   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
   4530     // Skip the entry block, because we already printed it.
   4531     if (&(**I) == &getEntry() || &(**I) == &getExit())
   4532       continue;
   4533 
   4534     print_block(OS, this, **I, Helper, true, ShowColors);
   4535   }
   4536 
   4537   // Print the exit block.
   4538   print_block(OS, this, getExit(), Helper, true, ShowColors);
   4539   OS << '\n';
   4540   OS.flush();
   4541 }
   4542 
   4543 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
   4544 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
   4545                     bool ShowColors) const {
   4546   print(llvm::errs(), cfg, LO, ShowColors);
   4547 }
   4548 
   4549 LLVM_DUMP_METHOD void CFGBlock::dump() const {
   4550   dump(getParent(), LangOptions(), false);
   4551 }
   4552 
   4553 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
   4554 ///   Generally this will only be called from CFG::print.
   4555 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
   4556                      const LangOptions &LO, bool ShowColors) const {
   4557   StmtPrinterHelper Helper(cfg, LO);
   4558   print_block(OS, cfg, *this, Helper, true, ShowColors);
   4559   OS << '\n';
   4560 }
   4561 
   4562 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
   4563 void CFGBlock::printTerminator(raw_ostream &OS,
   4564                                const LangOptions &LO) const {
   4565   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
   4566   TPrinter.print(getTerminator());
   4567 }
   4568 
   4569 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
   4570   Stmt *Terminator = this->Terminator;
   4571   if (!Terminator)
   4572     return nullptr;
   4573 
   4574   Expr *E = nullptr;
   4575 
   4576   switch (Terminator->getStmtClass()) {
   4577     default:
   4578       break;
   4579 
   4580     case Stmt::CXXForRangeStmtClass:
   4581       E = cast<CXXForRangeStmt>(Terminator)->getCond();
   4582       break;
   4583 
   4584     case Stmt::ForStmtClass:
   4585       E = cast<ForStmt>(Terminator)->getCond();
   4586       break;
   4587 
   4588     case Stmt::WhileStmtClass:
   4589       E = cast<WhileStmt>(Terminator)->getCond();
   4590       break;
   4591 
   4592     case Stmt::DoStmtClass:
   4593       E = cast<DoStmt>(Terminator)->getCond();
   4594       break;
   4595 
   4596     case Stmt::IfStmtClass:
   4597       E = cast<IfStmt>(Terminator)->getCond();
   4598       break;
   4599 
   4600     case Stmt::ChooseExprClass:
   4601       E = cast<ChooseExpr>(Terminator)->getCond();
   4602       break;
   4603 
   4604     case Stmt::IndirectGotoStmtClass:
   4605       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
   4606       break;
   4607 
   4608     case Stmt::SwitchStmtClass:
   4609       E = cast<SwitchStmt>(Terminator)->getCond();
   4610       break;
   4611 
   4612     case Stmt::BinaryConditionalOperatorClass:
   4613       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
   4614       break;
   4615 
   4616     case Stmt::ConditionalOperatorClass:
   4617       E = cast<ConditionalOperator>(Terminator)->getCond();
   4618       break;
   4619 
   4620     case Stmt::BinaryOperatorClass: // '&&' and '||'
   4621       E = cast<BinaryOperator>(Terminator)->getLHS();
   4622       break;
   4623 
   4624     case Stmt::ObjCForCollectionStmtClass:
   4625       return Terminator;
   4626   }
   4627 
   4628   if (!StripParens)
   4629     return E;
   4630 
   4631   return E ? E->IgnoreParens() : nullptr;
   4632 }
   4633 
   4634 //===----------------------------------------------------------------------===//
   4635 // CFG Graphviz Visualization
   4636 //===----------------------------------------------------------------------===//
   4637 
   4638 
   4639 #ifndef NDEBUG
   4640 static StmtPrinterHelper* GraphHelper;
   4641 #endif
   4642 
   4643 void CFG::viewCFG(const LangOptions &LO) const {
   4644 #ifndef NDEBUG
   4645   StmtPrinterHelper H(this, LO);
   4646   GraphHelper = &H;
   4647   llvm::ViewGraph(this,"CFG");
   4648   GraphHelper = nullptr;
   4649 #endif
   4650 }
   4651 
   4652 namespace llvm {
   4653 template<>
   4654 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
   4655 
   4656   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
   4657 
   4658   static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
   4659 
   4660 #ifndef NDEBUG
   4661     std::string OutSStr;
   4662     llvm::raw_string_ostream Out(OutSStr);
   4663     print_block(Out,Graph, *Node, *GraphHelper, false, false);
   4664     std::string& OutStr = Out.str();
   4665 
   4666     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
   4667 
   4668     // Process string output to make it nicer...
   4669     for (unsigned i = 0; i != OutStr.length(); ++i)
   4670       if (OutStr[i] == '\n') {                            // Left justify
   4671         OutStr[i] = '\\';
   4672         OutStr.insert(OutStr.begin()+i+1, 'l');
   4673       }
   4674 
   4675     return OutStr;
   4676 #else
   4677     return "";
   4678 #endif
   4679   }
   4680 };
   4681 } // end namespace llvm
   4682