Home | History | Annotate | Download | only in radeon
      1 /*
      2  * Copyright 2013 Advanced Micro Devices, Inc.
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21  * SOFTWARE.
     22  *
     23  * Authors: Marek Olk <maraeo (at) gmail.com>
     24  *
     25  */
     26 
     27 #include "r600_pipe_common.h"
     28 #include "r600_cs.h"
     29 #include "tgsi/tgsi_parse.h"
     30 #include "util/list.h"
     31 #include "util/u_draw_quad.h"
     32 #include "util/u_memory.h"
     33 #include "util/u_format_s3tc.h"
     34 #include "util/u_upload_mgr.h"
     35 #include "os/os_time.h"
     36 #include "vl/vl_decoder.h"
     37 #include "vl/vl_video_buffer.h"
     38 #include "radeon/radeon_video.h"
     39 #include <inttypes.h>
     40 #include <sys/utsname.h>
     41 
     42 #ifndef HAVE_LLVM
     43 #define HAVE_LLVM 0
     44 #endif
     45 
     46 #ifndef MESA_LLVM_VERSION_PATCH
     47 #define MESA_LLVM_VERSION_PATCH 0
     48 #endif
     49 
     50 struct r600_multi_fence {
     51 	struct pipe_reference reference;
     52 	struct pipe_fence_handle *gfx;
     53 	struct pipe_fence_handle *sdma;
     54 
     55 	/* If the context wasn't flushed at fence creation, this is non-NULL. */
     56 	struct {
     57 		struct r600_common_context *ctx;
     58 		unsigned ib_index;
     59 	} gfx_unflushed;
     60 };
     61 
     62 /*
     63  * shader binary helpers.
     64  */
     65 void radeon_shader_binary_init(struct radeon_shader_binary *b)
     66 {
     67 	memset(b, 0, sizeof(*b));
     68 }
     69 
     70 void radeon_shader_binary_clean(struct radeon_shader_binary *b)
     71 {
     72 	if (!b)
     73 		return;
     74 	FREE(b->code);
     75 	FREE(b->config);
     76 	FREE(b->rodata);
     77 	FREE(b->global_symbol_offsets);
     78 	FREE(b->relocs);
     79 	FREE(b->disasm_string);
     80 	FREE(b->llvm_ir_string);
     81 }
     82 
     83 /*
     84  * pipe_context
     85  */
     86 
     87 /**
     88  * Write an EOP event.
     89  *
     90  * \param event		EVENT_TYPE_*
     91  * \param event_flags	Optional cache flush flags (TC)
     92  * \param data_sel	1 = fence, 3 = timestamp
     93  * \param buf		Buffer
     94  * \param va		GPU address
     95  * \param old_value	Previous fence value (for a bug workaround)
     96  * \param new_value	Fence value to write for this event.
     97  */
     98 void r600_gfx_write_event_eop(struct r600_common_context *ctx,
     99 			      unsigned event, unsigned event_flags,
    100 			      unsigned data_sel,
    101 			      struct r600_resource *buf, uint64_t va,
    102 			      uint32_t old_fence, uint32_t new_fence)
    103 {
    104 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
    105 	unsigned op = EVENT_TYPE(event) |
    106 		      EVENT_INDEX(5) |
    107 		      event_flags;
    108 
    109 	if (ctx->chip_class == CIK ||
    110 	    ctx->chip_class == VI) {
    111 		/* Two EOP events are required to make all engines go idle
    112 		 * (and optional cache flushes executed) before the timestamp
    113 		 * is written.
    114 		 */
    115 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
    116 		radeon_emit(cs, op);
    117 		radeon_emit(cs, va);
    118 		radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
    119 		radeon_emit(cs, old_fence); /* immediate data */
    120 		radeon_emit(cs, 0); /* unused */
    121 	}
    122 
    123 	radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
    124 	radeon_emit(cs, op);
    125 	radeon_emit(cs, va);
    126 	radeon_emit(cs, ((va >> 32) & 0xffff) | EOP_DATA_SEL(data_sel));
    127 	radeon_emit(cs, new_fence); /* immediate data */
    128 	radeon_emit(cs, 0); /* unused */
    129 
    130 	if (buf)
    131 		r600_emit_reloc(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
    132 				RADEON_PRIO_QUERY);
    133 }
    134 
    135 unsigned r600_gfx_write_fence_dwords(struct r600_common_screen *screen)
    136 {
    137 	unsigned dwords = 6;
    138 
    139 	if (screen->chip_class == CIK ||
    140 	    screen->chip_class == VI)
    141 		dwords *= 2;
    142 
    143 	if (!screen->info.has_virtual_memory)
    144 		dwords += 2;
    145 
    146 	return dwords;
    147 }
    148 
    149 void r600_gfx_wait_fence(struct r600_common_context *ctx,
    150 			 uint64_t va, uint32_t ref, uint32_t mask)
    151 {
    152 	struct radeon_winsys_cs *cs = ctx->gfx.cs;
    153 
    154 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
    155 	radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
    156 	radeon_emit(cs, va);
    157 	radeon_emit(cs, va >> 32);
    158 	radeon_emit(cs, ref); /* reference value */
    159 	radeon_emit(cs, mask); /* mask */
    160 	radeon_emit(cs, 4); /* poll interval */
    161 }
    162 
    163 void r600_draw_rectangle(struct blitter_context *blitter,
    164 			 int x1, int y1, int x2, int y2, float depth,
    165 			 enum blitter_attrib_type type,
    166 			 const union pipe_color_union *attrib)
    167 {
    168 	struct r600_common_context *rctx =
    169 		(struct r600_common_context*)util_blitter_get_pipe(blitter);
    170 	struct pipe_viewport_state viewport;
    171 	struct pipe_resource *buf = NULL;
    172 	unsigned offset = 0;
    173 	float *vb;
    174 
    175 	if (type == UTIL_BLITTER_ATTRIB_TEXCOORD) {
    176 		util_blitter_draw_rectangle(blitter, x1, y1, x2, y2, depth, type, attrib);
    177 		return;
    178 	}
    179 
    180 	/* Some operations (like color resolve on r6xx) don't work
    181 	 * with the conventional primitive types.
    182 	 * One that works is PT_RECTLIST, which we use here. */
    183 
    184 	/* setup viewport */
    185 	viewport.scale[0] = 1.0f;
    186 	viewport.scale[1] = 1.0f;
    187 	viewport.scale[2] = 1.0f;
    188 	viewport.translate[0] = 0.0f;
    189 	viewport.translate[1] = 0.0f;
    190 	viewport.translate[2] = 0.0f;
    191 	rctx->b.set_viewport_states(&rctx->b, 0, 1, &viewport);
    192 
    193 	/* Upload vertices. The hw rectangle has only 3 vertices,
    194 	 * I guess the 4th one is derived from the first 3.
    195 	 * The vertex specification should match u_blitter's vertex element state. */
    196 	u_upload_alloc(rctx->uploader, 0, sizeof(float) * 24, 256, &offset, &buf, (void**)&vb);
    197 	if (!buf)
    198 		return;
    199 
    200 	vb[0] = x1;
    201 	vb[1] = y1;
    202 	vb[2] = depth;
    203 	vb[3] = 1;
    204 
    205 	vb[8] = x1;
    206 	vb[9] = y2;
    207 	vb[10] = depth;
    208 	vb[11] = 1;
    209 
    210 	vb[16] = x2;
    211 	vb[17] = y1;
    212 	vb[18] = depth;
    213 	vb[19] = 1;
    214 
    215 	if (attrib) {
    216 		memcpy(vb+4, attrib->f, sizeof(float)*4);
    217 		memcpy(vb+12, attrib->f, sizeof(float)*4);
    218 		memcpy(vb+20, attrib->f, sizeof(float)*4);
    219 	}
    220 
    221 	/* draw */
    222 	util_draw_vertex_buffer(&rctx->b, NULL, buf, blitter->vb_slot, offset,
    223 				R600_PRIM_RECTANGLE_LIST, 3, 2);
    224 	pipe_resource_reference(&buf, NULL);
    225 }
    226 
    227 static void r600_dma_emit_wait_idle(struct r600_common_context *rctx)
    228 {
    229 	struct radeon_winsys_cs *cs = rctx->dma.cs;
    230 
    231 	/* NOP waits for idle on Evergreen and later. */
    232 	if (rctx->chip_class >= CIK)
    233 		radeon_emit(cs, 0x00000000); /* NOP */
    234 	else if (rctx->chip_class >= EVERGREEN)
    235 		radeon_emit(cs, 0xf0000000); /* NOP */
    236 	else {
    237 		/* TODO: R600-R700 should use the FENCE packet.
    238 		 * CS checker support is required. */
    239 	}
    240 }
    241 
    242 void r600_need_dma_space(struct r600_common_context *ctx, unsigned num_dw,
    243                          struct r600_resource *dst, struct r600_resource *src)
    244 {
    245 	uint64_t vram = ctx->dma.cs->used_vram;
    246 	uint64_t gtt = ctx->dma.cs->used_gart;
    247 
    248 	if (dst) {
    249 		vram += dst->vram_usage;
    250 		gtt += dst->gart_usage;
    251 	}
    252 	if (src) {
    253 		vram += src->vram_usage;
    254 		gtt += src->gart_usage;
    255 	}
    256 
    257 	/* Flush the GFX IB if DMA depends on it. */
    258 	if (radeon_emitted(ctx->gfx.cs, ctx->initial_gfx_cs_size) &&
    259 	    ((dst &&
    260 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, dst->buf,
    261 					       RADEON_USAGE_READWRITE)) ||
    262 	     (src &&
    263 	      ctx->ws->cs_is_buffer_referenced(ctx->gfx.cs, src->buf,
    264 					       RADEON_USAGE_WRITE))))
    265 		ctx->gfx.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
    266 
    267 	/* Flush if there's not enough space, or if the memory usage per IB
    268 	 * is too large.
    269 	 *
    270 	 * IBs using too little memory are limited by the IB submission overhead.
    271 	 * IBs using too much memory are limited by the kernel/TTM overhead.
    272 	 * Too long IBs create CPU-GPU pipeline bubbles and add latency.
    273 	 *
    274 	 * This heuristic makes sure that DMA requests are executed
    275 	 * very soon after the call is made and lowers memory usage.
    276 	 * It improves texture upload performance by keeping the DMA
    277 	 * engine busy while uploads are being submitted.
    278 	 */
    279 	num_dw++; /* for emit_wait_idle below */
    280 	if (!ctx->ws->cs_check_space(ctx->dma.cs, num_dw) ||
    281 	    ctx->dma.cs->used_vram + ctx->dma.cs->used_gart > 64 * 1024 * 1024 ||
    282 	    !radeon_cs_memory_below_limit(ctx->screen, ctx->dma.cs, vram, gtt)) {
    283 		ctx->dma.flush(ctx, RADEON_FLUSH_ASYNC, NULL);
    284 		assert((num_dw + ctx->dma.cs->current.cdw) <= ctx->dma.cs->current.max_dw);
    285 	}
    286 
    287 	/* Wait for idle if either buffer has been used in the IB before to
    288 	 * prevent read-after-write hazards.
    289 	 */
    290 	if ((dst &&
    291 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, dst->buf,
    292 					      RADEON_USAGE_READWRITE)) ||
    293 	    (src &&
    294 	     ctx->ws->cs_is_buffer_referenced(ctx->dma.cs, src->buf,
    295 					      RADEON_USAGE_WRITE)))
    296 		r600_dma_emit_wait_idle(ctx);
    297 
    298 	/* If GPUVM is not supported, the CS checker needs 2 entries
    299 	 * in the buffer list per packet, which has to be done manually.
    300 	 */
    301 	if (ctx->screen->info.has_virtual_memory) {
    302 		if (dst)
    303 			radeon_add_to_buffer_list(ctx, &ctx->dma, dst,
    304 						  RADEON_USAGE_WRITE,
    305 						  RADEON_PRIO_SDMA_BUFFER);
    306 		if (src)
    307 			radeon_add_to_buffer_list(ctx, &ctx->dma, src,
    308 						  RADEON_USAGE_READ,
    309 						  RADEON_PRIO_SDMA_BUFFER);
    310 	}
    311 
    312 	/* this function is called before all DMA calls, so increment this. */
    313 	ctx->num_dma_calls++;
    314 }
    315 
    316 static void r600_memory_barrier(struct pipe_context *ctx, unsigned flags)
    317 {
    318 }
    319 
    320 void r600_preflush_suspend_features(struct r600_common_context *ctx)
    321 {
    322 	/* suspend queries */
    323 	if (!LIST_IS_EMPTY(&ctx->active_queries))
    324 		r600_suspend_queries(ctx);
    325 
    326 	ctx->streamout.suspended = false;
    327 	if (ctx->streamout.begin_emitted) {
    328 		r600_emit_streamout_end(ctx);
    329 		ctx->streamout.suspended = true;
    330 	}
    331 }
    332 
    333 void r600_postflush_resume_features(struct r600_common_context *ctx)
    334 {
    335 	if (ctx->streamout.suspended) {
    336 		ctx->streamout.append_bitmask = ctx->streamout.enabled_mask;
    337 		r600_streamout_buffers_dirty(ctx);
    338 	}
    339 
    340 	/* resume queries */
    341 	if (!LIST_IS_EMPTY(&ctx->active_queries))
    342 		r600_resume_queries(ctx);
    343 }
    344 
    345 static void r600_flush_from_st(struct pipe_context *ctx,
    346 			       struct pipe_fence_handle **fence,
    347 			       unsigned flags)
    348 {
    349 	struct pipe_screen *screen = ctx->screen;
    350 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    351 	struct radeon_winsys *ws = rctx->ws;
    352 	unsigned rflags = 0;
    353 	struct pipe_fence_handle *gfx_fence = NULL;
    354 	struct pipe_fence_handle *sdma_fence = NULL;
    355 	bool deferred_fence = false;
    356 
    357 	if (flags & PIPE_FLUSH_END_OF_FRAME)
    358 		rflags |= RADEON_FLUSH_END_OF_FRAME;
    359 	if (flags & PIPE_FLUSH_DEFERRED)
    360 		rflags |= RADEON_FLUSH_ASYNC;
    361 
    362 	/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
    363 	if (rctx->dma.cs)
    364 		rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
    365 
    366 	if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
    367 		if (fence)
    368 			ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
    369 		if (!(rflags & RADEON_FLUSH_ASYNC))
    370 			ws->cs_sync_flush(rctx->gfx.cs);
    371 	} else {
    372 		/* Instead of flushing, create a deferred fence. Constraints:
    373 		 * - The state tracker must allow a deferred flush.
    374 		 * - The state tracker must request a fence.
    375 		 * Thread safety in fence_finish must be ensured by the state tracker.
    376 		 */
    377 		if (flags & PIPE_FLUSH_DEFERRED && fence) {
    378 			gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
    379 			deferred_fence = true;
    380 		} else {
    381 			rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
    382 		}
    383 	}
    384 
    385 	/* Both engines can signal out of order, so we need to keep both fences. */
    386 	if (fence) {
    387 		struct r600_multi_fence *multi_fence =
    388 			CALLOC_STRUCT(r600_multi_fence);
    389 		if (!multi_fence)
    390 			return;
    391 
    392 		multi_fence->reference.count = 1;
    393 		/* If both fences are NULL, fence_finish will always return true. */
    394 		multi_fence->gfx = gfx_fence;
    395 		multi_fence->sdma = sdma_fence;
    396 
    397 		if (deferred_fence) {
    398 			multi_fence->gfx_unflushed.ctx = rctx;
    399 			multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
    400 		}
    401 
    402 		screen->fence_reference(screen, fence, NULL);
    403 		*fence = (struct pipe_fence_handle*)multi_fence;
    404 	}
    405 }
    406 
    407 static void r600_flush_dma_ring(void *ctx, unsigned flags,
    408 				struct pipe_fence_handle **fence)
    409 {
    410 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    411 	struct radeon_winsys_cs *cs = rctx->dma.cs;
    412 	struct radeon_saved_cs saved;
    413 	bool check_vm =
    414 		(rctx->screen->debug_flags & DBG_CHECK_VM) &&
    415 		rctx->check_vm_faults;
    416 
    417 	if (!radeon_emitted(cs, 0)) {
    418 		if (fence)
    419 			rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
    420 		return;
    421 	}
    422 
    423 	if (check_vm)
    424 		radeon_save_cs(rctx->ws, cs, &saved);
    425 
    426 	rctx->ws->cs_flush(cs, flags, &rctx->last_sdma_fence);
    427 	if (fence)
    428 		rctx->ws->fence_reference(fence, rctx->last_sdma_fence);
    429 
    430 	if (check_vm) {
    431 		/* Use conservative timeout 800ms, after which we won't wait any
    432 		 * longer and assume the GPU is hung.
    433 		 */
    434 		rctx->ws->fence_wait(rctx->ws, rctx->last_sdma_fence, 800*1000*1000);
    435 
    436 		rctx->check_vm_faults(rctx, &saved, RING_DMA);
    437 		radeon_clear_saved_cs(&saved);
    438 	}
    439 }
    440 
    441 /**
    442  * Store a linearized copy of all chunks of \p cs together with the buffer
    443  * list in \p saved.
    444  */
    445 void radeon_save_cs(struct radeon_winsys *ws, struct radeon_winsys_cs *cs,
    446 		    struct radeon_saved_cs *saved)
    447 {
    448 	void *buf;
    449 	unsigned i;
    450 
    451 	/* Save the IB chunks. */
    452 	saved->num_dw = cs->prev_dw + cs->current.cdw;
    453 	saved->ib = MALLOC(4 * saved->num_dw);
    454 	if (!saved->ib)
    455 		goto oom;
    456 
    457 	buf = saved->ib;
    458 	for (i = 0; i < cs->num_prev; ++i) {
    459 		memcpy(buf, cs->prev[i].buf, cs->prev[i].cdw * 4);
    460 		buf += cs->prev[i].cdw;
    461 	}
    462 	memcpy(buf, cs->current.buf, cs->current.cdw * 4);
    463 
    464 	/* Save the buffer list. */
    465 	saved->bo_count = ws->cs_get_buffer_list(cs, NULL);
    466 	saved->bo_list = CALLOC(saved->bo_count,
    467 				sizeof(saved->bo_list[0]));
    468 	if (!saved->bo_list) {
    469 		FREE(saved->ib);
    470 		goto oom;
    471 	}
    472 	ws->cs_get_buffer_list(cs, saved->bo_list);
    473 
    474 	return;
    475 
    476 oom:
    477 	fprintf(stderr, "%s: out of memory\n", __func__);
    478 	memset(saved, 0, sizeof(*saved));
    479 }
    480 
    481 void radeon_clear_saved_cs(struct radeon_saved_cs *saved)
    482 {
    483 	FREE(saved->ib);
    484 	FREE(saved->bo_list);
    485 
    486 	memset(saved, 0, sizeof(*saved));
    487 }
    488 
    489 static enum pipe_reset_status r600_get_reset_status(struct pipe_context *ctx)
    490 {
    491 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    492 	unsigned latest = rctx->ws->query_value(rctx->ws,
    493 						RADEON_GPU_RESET_COUNTER);
    494 
    495 	if (rctx->gpu_reset_counter == latest)
    496 		return PIPE_NO_RESET;
    497 
    498 	rctx->gpu_reset_counter = latest;
    499 	return PIPE_UNKNOWN_CONTEXT_RESET;
    500 }
    501 
    502 static void r600_set_debug_callback(struct pipe_context *ctx,
    503 				    const struct pipe_debug_callback *cb)
    504 {
    505 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    506 
    507 	if (cb)
    508 		rctx->debug = *cb;
    509 	else
    510 		memset(&rctx->debug, 0, sizeof(rctx->debug));
    511 }
    512 
    513 static void r600_set_device_reset_callback(struct pipe_context *ctx,
    514 					   const struct pipe_device_reset_callback *cb)
    515 {
    516 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    517 
    518 	if (cb)
    519 		rctx->device_reset_callback = *cb;
    520 	else
    521 		memset(&rctx->device_reset_callback, 0,
    522 		       sizeof(rctx->device_reset_callback));
    523 }
    524 
    525 bool r600_check_device_reset(struct r600_common_context *rctx)
    526 {
    527 	enum pipe_reset_status status;
    528 
    529 	if (!rctx->device_reset_callback.reset)
    530 		return false;
    531 
    532 	if (!rctx->b.get_device_reset_status)
    533 		return false;
    534 
    535 	status = rctx->b.get_device_reset_status(&rctx->b);
    536 	if (status == PIPE_NO_RESET)
    537 		return false;
    538 
    539 	rctx->device_reset_callback.reset(rctx->device_reset_callback.data, status);
    540 	return true;
    541 }
    542 
    543 static void r600_dma_clear_buffer_fallback(struct pipe_context *ctx,
    544 					   struct pipe_resource *dst,
    545 					   uint64_t offset, uint64_t size,
    546 					   unsigned value)
    547 {
    548 	struct r600_common_context *rctx = (struct r600_common_context *)ctx;
    549 
    550 	rctx->clear_buffer(ctx, dst, offset, size, value, R600_COHERENCY_NONE);
    551 }
    552 
    553 bool r600_common_context_init(struct r600_common_context *rctx,
    554 			      struct r600_common_screen *rscreen,
    555 			      unsigned context_flags)
    556 {
    557 	slab_create_child(&rctx->pool_transfers, &rscreen->pool_transfers);
    558 
    559 	rctx->screen = rscreen;
    560 	rctx->ws = rscreen->ws;
    561 	rctx->family = rscreen->family;
    562 	rctx->chip_class = rscreen->chip_class;
    563 
    564 	if (rscreen->chip_class >= CIK)
    565 		rctx->max_db = MAX2(8, rscreen->info.num_render_backends);
    566 	else if (rscreen->chip_class >= EVERGREEN)
    567 		rctx->max_db = 8;
    568 	else
    569 		rctx->max_db = 4;
    570 
    571 	rctx->b.invalidate_resource = r600_invalidate_resource;
    572 	rctx->b.transfer_map = u_transfer_map_vtbl;
    573 	rctx->b.transfer_flush_region = u_transfer_flush_region_vtbl;
    574 	rctx->b.transfer_unmap = u_transfer_unmap_vtbl;
    575 	rctx->b.texture_subdata = u_default_texture_subdata;
    576 	rctx->b.memory_barrier = r600_memory_barrier;
    577 	rctx->b.flush = r600_flush_from_st;
    578 	rctx->b.set_debug_callback = r600_set_debug_callback;
    579 	rctx->dma_clear_buffer = r600_dma_clear_buffer_fallback;
    580 
    581 	/* evergreen_compute.c has a special codepath for global buffers.
    582 	 * Everything else can use the direct path.
    583 	 */
    584 	if ((rscreen->chip_class == EVERGREEN || rscreen->chip_class == CAYMAN) &&
    585 	    (context_flags & PIPE_CONTEXT_COMPUTE_ONLY))
    586 		rctx->b.buffer_subdata = u_default_buffer_subdata;
    587 	else
    588 		rctx->b.buffer_subdata = r600_buffer_subdata;
    589 
    590 	if (rscreen->info.drm_major == 2 && rscreen->info.drm_minor >= 43) {
    591 		rctx->b.get_device_reset_status = r600_get_reset_status;
    592 		rctx->gpu_reset_counter =
    593 			rctx->ws->query_value(rctx->ws,
    594 					      RADEON_GPU_RESET_COUNTER);
    595 	}
    596 
    597 	rctx->b.set_device_reset_callback = r600_set_device_reset_callback;
    598 
    599 	r600_init_context_texture_functions(rctx);
    600 	r600_init_viewport_functions(rctx);
    601 	r600_streamout_init(rctx);
    602 	r600_query_init(rctx);
    603 	cayman_init_msaa(&rctx->b);
    604 
    605 	rctx->allocator_zeroed_memory =
    606 		u_suballocator_create(&rctx->b, rscreen->info.gart_page_size,
    607 				      0, PIPE_USAGE_DEFAULT, true);
    608 	if (!rctx->allocator_zeroed_memory)
    609 		return false;
    610 
    611 	rctx->uploader = u_upload_create(&rctx->b, 1024 * 1024,
    612 					PIPE_BIND_INDEX_BUFFER |
    613 					PIPE_BIND_CONSTANT_BUFFER, PIPE_USAGE_STREAM);
    614 	if (!rctx->uploader)
    615 		return false;
    616 
    617 	rctx->ctx = rctx->ws->ctx_create(rctx->ws);
    618 	if (!rctx->ctx)
    619 		return false;
    620 
    621 	if (rscreen->info.has_sdma && !(rscreen->debug_flags & DBG_NO_ASYNC_DMA)) {
    622 		rctx->dma.cs = rctx->ws->cs_create(rctx->ctx, RING_DMA,
    623 						   r600_flush_dma_ring,
    624 						   rctx);
    625 		rctx->dma.flush = r600_flush_dma_ring;
    626 	}
    627 
    628 	return true;
    629 }
    630 
    631 void r600_common_context_cleanup(struct r600_common_context *rctx)
    632 {
    633 	unsigned i,j;
    634 
    635 	/* Release DCC stats. */
    636 	for (i = 0; i < ARRAY_SIZE(rctx->dcc_stats); i++) {
    637 		assert(!rctx->dcc_stats[i].query_active);
    638 
    639 		for (j = 0; j < ARRAY_SIZE(rctx->dcc_stats[i].ps_stats); j++)
    640 			if (rctx->dcc_stats[i].ps_stats[j])
    641 				rctx->b.destroy_query(&rctx->b,
    642 						      rctx->dcc_stats[i].ps_stats[j]);
    643 
    644 		r600_texture_reference(&rctx->dcc_stats[i].tex, NULL);
    645 	}
    646 
    647 	if (rctx->query_result_shader)
    648 		rctx->b.delete_compute_state(&rctx->b, rctx->query_result_shader);
    649 
    650 	if (rctx->gfx.cs)
    651 		rctx->ws->cs_destroy(rctx->gfx.cs);
    652 	if (rctx->dma.cs)
    653 		rctx->ws->cs_destroy(rctx->dma.cs);
    654 	if (rctx->ctx)
    655 		rctx->ws->ctx_destroy(rctx->ctx);
    656 
    657 	if (rctx->uploader) {
    658 		u_upload_destroy(rctx->uploader);
    659 	}
    660 
    661 	slab_destroy_child(&rctx->pool_transfers);
    662 
    663 	if (rctx->allocator_zeroed_memory) {
    664 		u_suballocator_destroy(rctx->allocator_zeroed_memory);
    665 	}
    666 	rctx->ws->fence_reference(&rctx->last_gfx_fence, NULL);
    667 	rctx->ws->fence_reference(&rctx->last_sdma_fence, NULL);
    668 }
    669 
    670 /*
    671  * pipe_screen
    672  */
    673 
    674 static const struct debug_named_value common_debug_options[] = {
    675 	/* logging */
    676 	{ "tex", DBG_TEX, "Print texture info" },
    677 	{ "compute", DBG_COMPUTE, "Print compute info" },
    678 	{ "vm", DBG_VM, "Print virtual addresses when creating resources" },
    679 	{ "info", DBG_INFO, "Print driver information" },
    680 
    681 	/* shaders */
    682 	{ "fs", DBG_FS, "Print fetch shaders" },
    683 	{ "vs", DBG_VS, "Print vertex shaders" },
    684 	{ "gs", DBG_GS, "Print geometry shaders" },
    685 	{ "ps", DBG_PS, "Print pixel shaders" },
    686 	{ "cs", DBG_CS, "Print compute shaders" },
    687 	{ "tcs", DBG_TCS, "Print tessellation control shaders" },
    688 	{ "tes", DBG_TES, "Print tessellation evaluation shaders" },
    689 	{ "noir", DBG_NO_IR, "Don't print the LLVM IR"},
    690 	{ "notgsi", DBG_NO_TGSI, "Don't print the TGSI"},
    691 	{ "noasm", DBG_NO_ASM, "Don't print disassembled shaders"},
    692 	{ "preoptir", DBG_PREOPT_IR, "Print the LLVM IR before initial optimizations" },
    693 	{ "checkir", DBG_CHECK_IR, "Enable additional sanity checks on shader IR" },
    694 	{ "nooptvariant", DBG_NO_OPT_VARIANT, "Disable compiling optimized shader variants." },
    695 
    696 	{ "testdma", DBG_TEST_DMA, "Invoke SDMA tests and exit." },
    697 
    698 	/* features */
    699 	{ "nodma", DBG_NO_ASYNC_DMA, "Disable asynchronous DMA" },
    700 	{ "nohyperz", DBG_NO_HYPERZ, "Disable Hyper-Z" },
    701 	/* GL uses the word INVALIDATE, gallium uses the word DISCARD */
    702 	{ "noinvalrange", DBG_NO_DISCARD_RANGE, "Disable handling of INVALIDATE_RANGE map flags" },
    703 	{ "no2d", DBG_NO_2D_TILING, "Disable 2D tiling" },
    704 	{ "notiling", DBG_NO_TILING, "Disable tiling" },
    705 	{ "switch_on_eop", DBG_SWITCH_ON_EOP, "Program WD/IA to switch on end-of-packet." },
    706 	{ "forcedma", DBG_FORCE_DMA, "Use asynchronous DMA for all operations when possible." },
    707 	{ "precompile", DBG_PRECOMPILE, "Compile one shader variant at shader creation." },
    708 	{ "nowc", DBG_NO_WC, "Disable GTT write combining" },
    709 	{ "check_vm", DBG_CHECK_VM, "Check VM faults and dump debug info." },
    710 	{ "nodcc", DBG_NO_DCC, "Disable DCC." },
    711 	{ "nodccclear", DBG_NO_DCC_CLEAR, "Disable DCC fast clear." },
    712 	{ "norbplus", DBG_NO_RB_PLUS, "Disable RB+ on Stoney." },
    713 	{ "sisched", DBG_SI_SCHED, "Enable LLVM SI Machine Instruction Scheduler." },
    714 	{ "mono", DBG_MONOLITHIC_SHADERS, "Use old-style monolithic shaders compiled on demand" },
    715 	{ "noce", DBG_NO_CE, "Disable the constant engine"},
    716 	{ "unsafemath", DBG_UNSAFE_MATH, "Enable unsafe math shader optimizations" },
    717 	{ "nodccfb", DBG_NO_DCC_FB, "Disable separate DCC on the main framebuffer" },
    718 
    719 	DEBUG_NAMED_VALUE_END /* must be last */
    720 };
    721 
    722 static const char* r600_get_vendor(struct pipe_screen* pscreen)
    723 {
    724 	return "X.Org";
    725 }
    726 
    727 static const char* r600_get_device_vendor(struct pipe_screen* pscreen)
    728 {
    729 	return "AMD";
    730 }
    731 
    732 static const char* r600_get_chip_name(struct r600_common_screen *rscreen)
    733 {
    734 	switch (rscreen->info.family) {
    735 	case CHIP_R600: return "AMD R600";
    736 	case CHIP_RV610: return "AMD RV610";
    737 	case CHIP_RV630: return "AMD RV630";
    738 	case CHIP_RV670: return "AMD RV670";
    739 	case CHIP_RV620: return "AMD RV620";
    740 	case CHIP_RV635: return "AMD RV635";
    741 	case CHIP_RS780: return "AMD RS780";
    742 	case CHIP_RS880: return "AMD RS880";
    743 	case CHIP_RV770: return "AMD RV770";
    744 	case CHIP_RV730: return "AMD RV730";
    745 	case CHIP_RV710: return "AMD RV710";
    746 	case CHIP_RV740: return "AMD RV740";
    747 	case CHIP_CEDAR: return "AMD CEDAR";
    748 	case CHIP_REDWOOD: return "AMD REDWOOD";
    749 	case CHIP_JUNIPER: return "AMD JUNIPER";
    750 	case CHIP_CYPRESS: return "AMD CYPRESS";
    751 	case CHIP_HEMLOCK: return "AMD HEMLOCK";
    752 	case CHIP_PALM: return "AMD PALM";
    753 	case CHIP_SUMO: return "AMD SUMO";
    754 	case CHIP_SUMO2: return "AMD SUMO2";
    755 	case CHIP_BARTS: return "AMD BARTS";
    756 	case CHIP_TURKS: return "AMD TURKS";
    757 	case CHIP_CAICOS: return "AMD CAICOS";
    758 	case CHIP_CAYMAN: return "AMD CAYMAN";
    759 	case CHIP_ARUBA: return "AMD ARUBA";
    760 	case CHIP_TAHITI: return "AMD TAHITI";
    761 	case CHIP_PITCAIRN: return "AMD PITCAIRN";
    762 	case CHIP_VERDE: return "AMD CAPE VERDE";
    763 	case CHIP_OLAND: return "AMD OLAND";
    764 	case CHIP_HAINAN: return "AMD HAINAN";
    765 	case CHIP_BONAIRE: return "AMD BONAIRE";
    766 	case CHIP_KAVERI: return "AMD KAVERI";
    767 	case CHIP_KABINI: return "AMD KABINI";
    768 	case CHIP_HAWAII: return "AMD HAWAII";
    769 	case CHIP_MULLINS: return "AMD MULLINS";
    770 	case CHIP_TONGA: return "AMD TONGA";
    771 	case CHIP_ICELAND: return "AMD ICELAND";
    772 	case CHIP_CARRIZO: return "AMD CARRIZO";
    773 	case CHIP_FIJI: return "AMD FIJI";
    774 	case CHIP_POLARIS10: return "AMD POLARIS10";
    775 	case CHIP_POLARIS11: return "AMD POLARIS11";
    776 	case CHIP_POLARIS12: return "AMD POLARIS12";
    777 	case CHIP_STONEY: return "AMD STONEY";
    778 	default: return "AMD unknown";
    779 	}
    780 }
    781 
    782 static const char* r600_get_name(struct pipe_screen* pscreen)
    783 {
    784 	struct r600_common_screen *rscreen = (struct r600_common_screen*)pscreen;
    785 
    786 	return rscreen->renderer_string;
    787 }
    788 
    789 static float r600_get_paramf(struct pipe_screen* pscreen,
    790 			     enum pipe_capf param)
    791 {
    792 	struct r600_common_screen *rscreen = (struct r600_common_screen *)pscreen;
    793 
    794 	switch (param) {
    795 	case PIPE_CAPF_MAX_LINE_WIDTH:
    796 	case PIPE_CAPF_MAX_LINE_WIDTH_AA:
    797 	case PIPE_CAPF_MAX_POINT_WIDTH:
    798 	case PIPE_CAPF_MAX_POINT_WIDTH_AA:
    799 		if (rscreen->family >= CHIP_CEDAR)
    800 			return 16384.0f;
    801 		else
    802 			return 8192.0f;
    803 	case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
    804 		return 16.0f;
    805 	case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
    806 		return 16.0f;
    807 	case PIPE_CAPF_GUARD_BAND_LEFT:
    808 	case PIPE_CAPF_GUARD_BAND_TOP:
    809 	case PIPE_CAPF_GUARD_BAND_RIGHT:
    810 	case PIPE_CAPF_GUARD_BAND_BOTTOM:
    811 		return 0.0f;
    812 	}
    813 	return 0.0f;
    814 }
    815 
    816 static int r600_get_video_param(struct pipe_screen *screen,
    817 				enum pipe_video_profile profile,
    818 				enum pipe_video_entrypoint entrypoint,
    819 				enum pipe_video_cap param)
    820 {
    821 	switch (param) {
    822 	case PIPE_VIDEO_CAP_SUPPORTED:
    823 		return vl_profile_supported(screen, profile, entrypoint);
    824 	case PIPE_VIDEO_CAP_NPOT_TEXTURES:
    825 		return 1;
    826 	case PIPE_VIDEO_CAP_MAX_WIDTH:
    827 	case PIPE_VIDEO_CAP_MAX_HEIGHT:
    828 		return vl_video_buffer_max_size(screen);
    829 	case PIPE_VIDEO_CAP_PREFERED_FORMAT:
    830 		return PIPE_FORMAT_NV12;
    831 	case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
    832 		return false;
    833 	case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
    834 		return false;
    835 	case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
    836 		return true;
    837 	case PIPE_VIDEO_CAP_MAX_LEVEL:
    838 		return vl_level_supported(screen, profile);
    839 	default:
    840 		return 0;
    841 	}
    842 }
    843 
    844 const char *r600_get_llvm_processor_name(enum radeon_family family)
    845 {
    846 	switch (family) {
    847 	case CHIP_R600:
    848 	case CHIP_RV630:
    849 	case CHIP_RV635:
    850 	case CHIP_RV670:
    851 		return "r600";
    852 	case CHIP_RV610:
    853 	case CHIP_RV620:
    854 	case CHIP_RS780:
    855 	case CHIP_RS880:
    856 		return "rs880";
    857 	case CHIP_RV710:
    858 		return "rv710";
    859 	case CHIP_RV730:
    860 		return "rv730";
    861 	case CHIP_RV740:
    862 	case CHIP_RV770:
    863 		return "rv770";
    864 	case CHIP_PALM:
    865 	case CHIP_CEDAR:
    866 		return "cedar";
    867 	case CHIP_SUMO:
    868 	case CHIP_SUMO2:
    869 		return "sumo";
    870 	case CHIP_REDWOOD:
    871 		return "redwood";
    872 	case CHIP_JUNIPER:
    873 		return "juniper";
    874 	case CHIP_HEMLOCK:
    875 	case CHIP_CYPRESS:
    876 		return "cypress";
    877 	case CHIP_BARTS:
    878 		return "barts";
    879 	case CHIP_TURKS:
    880 		return "turks";
    881 	case CHIP_CAICOS:
    882 		return "caicos";
    883 	case CHIP_CAYMAN:
    884         case CHIP_ARUBA:
    885 		return "cayman";
    886 
    887 	case CHIP_TAHITI: return "tahiti";
    888 	case CHIP_PITCAIRN: return "pitcairn";
    889 	case CHIP_VERDE: return "verde";
    890 	case CHIP_OLAND: return "oland";
    891 	case CHIP_HAINAN: return "hainan";
    892 	case CHIP_BONAIRE: return "bonaire";
    893 	case CHIP_KABINI: return "kabini";
    894 	case CHIP_KAVERI: return "kaveri";
    895 	case CHIP_HAWAII: return "hawaii";
    896 	case CHIP_MULLINS:
    897 		return "mullins";
    898 	case CHIP_TONGA: return "tonga";
    899 	case CHIP_ICELAND: return "iceland";
    900 	case CHIP_CARRIZO: return "carrizo";
    901 	case CHIP_FIJI:
    902 		return HAVE_LLVM >= 0x0308 ? "fiji" : "carrizo";
    903 	case CHIP_STONEY:
    904 		return HAVE_LLVM >= 0x0308 ? "stoney" : "carrizo";
    905 	case CHIP_POLARIS10:
    906 		return HAVE_LLVM >= 0x0309 ? "polaris10" : "carrizo";
    907 	case CHIP_POLARIS11:
    908 	case CHIP_POLARIS12: /* same as polaris11 */
    909 		return HAVE_LLVM >= 0x0309 ? "polaris11" : "carrizo";
    910 	default:
    911 		return "";
    912 	}
    913 }
    914 
    915 static int r600_get_compute_param(struct pipe_screen *screen,
    916         enum pipe_shader_ir ir_type,
    917         enum pipe_compute_cap param,
    918         void *ret)
    919 {
    920 	struct r600_common_screen *rscreen = (struct r600_common_screen *)screen;
    921 
    922 	//TODO: select these params by asic
    923 	switch (param) {
    924 	case PIPE_COMPUTE_CAP_IR_TARGET: {
    925 		const char *gpu;
    926 		const char *triple;
    927 		if (rscreen->family <= CHIP_ARUBA) {
    928 			triple = "r600--";
    929 		} else {
    930 			if (HAVE_LLVM < 0x0400) {
    931 				triple = "amdgcn--";
    932 			} else {
    933 				triple = "amdgcn-mesa-mesa3d";
    934 			}
    935 		}
    936 		switch(rscreen->family) {
    937 		/* Clang < 3.6 is missing Hainan in its list of
    938 		 * GPUs, so we need to use the name of a similar GPU.
    939 		 */
    940 		default:
    941 			gpu = r600_get_llvm_processor_name(rscreen->family);
    942 			break;
    943 		}
    944 		if (ret) {
    945 			sprintf(ret, "%s-%s", gpu, triple);
    946 		}
    947 		/* +2 for dash and terminating NIL byte */
    948 		return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
    949 	}
    950 	case PIPE_COMPUTE_CAP_GRID_DIMENSION:
    951 		if (ret) {
    952 			uint64_t *grid_dimension = ret;
    953 			grid_dimension[0] = 3;
    954 		}
    955 		return 1 * sizeof(uint64_t);
    956 
    957 	case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
    958 		if (ret) {
    959 			uint64_t *grid_size = ret;
    960 			grid_size[0] = 65535;
    961 			grid_size[1] = 65535;
    962 			grid_size[2] = 65535;
    963 		}
    964 		return 3 * sizeof(uint64_t) ;
    965 
    966 	case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
    967 		if (ret) {
    968 			uint64_t *block_size = ret;
    969 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
    970 			    ir_type == PIPE_SHADER_IR_TGSI) {
    971 				block_size[0] = 2048;
    972 				block_size[1] = 2048;
    973 				block_size[2] = 2048;
    974 			} else {
    975 				block_size[0] = 256;
    976 				block_size[1] = 256;
    977 				block_size[2] = 256;
    978 			}
    979 		}
    980 		return 3 * sizeof(uint64_t);
    981 
    982 	case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
    983 		if (ret) {
    984 			uint64_t *max_threads_per_block = ret;
    985 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
    986 			    ir_type == PIPE_SHADER_IR_TGSI)
    987 				*max_threads_per_block = 2048;
    988 			else
    989 				*max_threads_per_block = 256;
    990 		}
    991 		return sizeof(uint64_t);
    992 	case PIPE_COMPUTE_CAP_ADDRESS_BITS:
    993 		if (ret) {
    994 			uint32_t *address_bits = ret;
    995 			address_bits[0] = 32;
    996 			if (rscreen->chip_class >= SI)
    997 				address_bits[0] = 64;
    998 		}
    999 		return 1 * sizeof(uint32_t);
   1000 
   1001 	case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
   1002 		if (ret) {
   1003 			uint64_t *max_global_size = ret;
   1004 			uint64_t max_mem_alloc_size;
   1005 
   1006 			r600_get_compute_param(screen, ir_type,
   1007 				PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
   1008 				&max_mem_alloc_size);
   1009 
   1010 			/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
   1011 			 * 1/4 of the MAX_GLOBAL_SIZE.  Since the
   1012 			 * MAX_MEM_ALLOC_SIZE is fixed for older kernels,
   1013 			 * make sure we never report more than
   1014 			 * 4 * MAX_MEM_ALLOC_SIZE.
   1015 			 */
   1016 			*max_global_size = MIN2(4 * max_mem_alloc_size,
   1017 						MAX2(rscreen->info.gart_size,
   1018 						     rscreen->info.vram_size));
   1019 		}
   1020 		return sizeof(uint64_t);
   1021 
   1022 	case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
   1023 		if (ret) {
   1024 			uint64_t *max_local_size = ret;
   1025 			/* Value reported by the closed source driver. */
   1026 			*max_local_size = 32768;
   1027 		}
   1028 		return sizeof(uint64_t);
   1029 
   1030 	case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
   1031 		if (ret) {
   1032 			uint64_t *max_input_size = ret;
   1033 			/* Value reported by the closed source driver. */
   1034 			*max_input_size = 1024;
   1035 		}
   1036 		return sizeof(uint64_t);
   1037 
   1038 	case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
   1039 		if (ret) {
   1040 			uint64_t *max_mem_alloc_size = ret;
   1041 
   1042 			*max_mem_alloc_size = rscreen->info.max_alloc_size;
   1043 		}
   1044 		return sizeof(uint64_t);
   1045 
   1046 	case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
   1047 		if (ret) {
   1048 			uint32_t *max_clock_frequency = ret;
   1049 			*max_clock_frequency = rscreen->info.max_shader_clock;
   1050 		}
   1051 		return sizeof(uint32_t);
   1052 
   1053 	case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
   1054 		if (ret) {
   1055 			uint32_t *max_compute_units = ret;
   1056 			*max_compute_units = rscreen->info.num_good_compute_units;
   1057 		}
   1058 		return sizeof(uint32_t);
   1059 
   1060 	case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
   1061 		if (ret) {
   1062 			uint32_t *images_supported = ret;
   1063 			*images_supported = 0;
   1064 		}
   1065 		return sizeof(uint32_t);
   1066 	case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
   1067 		break; /* unused */
   1068 	case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
   1069 		if (ret) {
   1070 			uint32_t *subgroup_size = ret;
   1071 			*subgroup_size = r600_wavefront_size(rscreen->family);
   1072 		}
   1073 		return sizeof(uint32_t);
   1074 	case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
   1075 		if (ret) {
   1076 			uint64_t *max_variable_threads_per_block = ret;
   1077 			if (rscreen->chip_class >= SI && HAVE_LLVM >= 0x309 &&
   1078 			    ir_type == PIPE_SHADER_IR_TGSI)
   1079 				*max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
   1080 			else
   1081 				*max_variable_threads_per_block = 0;
   1082 		}
   1083 		return sizeof(uint64_t);
   1084 	}
   1085 
   1086         fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
   1087         return 0;
   1088 }
   1089 
   1090 static uint64_t r600_get_timestamp(struct pipe_screen *screen)
   1091 {
   1092 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
   1093 
   1094 	return 1000000 * rscreen->ws->query_value(rscreen->ws, RADEON_TIMESTAMP) /
   1095 			rscreen->info.clock_crystal_freq;
   1096 }
   1097 
   1098 static void r600_fence_reference(struct pipe_screen *screen,
   1099 				 struct pipe_fence_handle **dst,
   1100 				 struct pipe_fence_handle *src)
   1101 {
   1102 	struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
   1103 	struct r600_multi_fence **rdst = (struct r600_multi_fence **)dst;
   1104 	struct r600_multi_fence *rsrc = (struct r600_multi_fence *)src;
   1105 
   1106 	if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
   1107 		ws->fence_reference(&(*rdst)->gfx, NULL);
   1108 		ws->fence_reference(&(*rdst)->sdma, NULL);
   1109 		FREE(*rdst);
   1110 	}
   1111         *rdst = rsrc;
   1112 }
   1113 
   1114 static boolean r600_fence_finish(struct pipe_screen *screen,
   1115 				 struct pipe_context *ctx,
   1116 				 struct pipe_fence_handle *fence,
   1117 				 uint64_t timeout)
   1118 {
   1119 	struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
   1120 	struct r600_multi_fence *rfence = (struct r600_multi_fence *)fence;
   1121 	struct r600_common_context *rctx =
   1122 		ctx ? (struct r600_common_context*)ctx : NULL;
   1123 	int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
   1124 
   1125 	if (rfence->sdma) {
   1126 		if (!rws->fence_wait(rws, rfence->sdma, timeout))
   1127 			return false;
   1128 
   1129 		/* Recompute the timeout after waiting. */
   1130 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
   1131 			int64_t time = os_time_get_nano();
   1132 			timeout = abs_timeout > time ? abs_timeout - time : 0;
   1133 		}
   1134 	}
   1135 
   1136 	if (!rfence->gfx)
   1137 		return true;
   1138 
   1139 	/* Flush the gfx IB if it hasn't been flushed yet. */
   1140 	if (rctx &&
   1141 	    rfence->gfx_unflushed.ctx == rctx &&
   1142 	    rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
   1143 		rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
   1144 		rfence->gfx_unflushed.ctx = NULL;
   1145 
   1146 		if (!timeout)
   1147 			return false;
   1148 
   1149 		/* Recompute the timeout after all that. */
   1150 		if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
   1151 			int64_t time = os_time_get_nano();
   1152 			timeout = abs_timeout > time ? abs_timeout - time : 0;
   1153 		}
   1154 	}
   1155 
   1156 	return rws->fence_wait(rws, rfence->gfx, timeout);
   1157 }
   1158 
   1159 static void r600_query_memory_info(struct pipe_screen *screen,
   1160 				   struct pipe_memory_info *info)
   1161 {
   1162 	struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
   1163 	struct radeon_winsys *ws = rscreen->ws;
   1164 	unsigned vram_usage, gtt_usage;
   1165 
   1166 	info->total_device_memory = rscreen->info.vram_size / 1024;
   1167 	info->total_staging_memory = rscreen->info.gart_size / 1024;
   1168 
   1169 	/* The real TTM memory usage is somewhat random, because:
   1170 	 *
   1171 	 * 1) TTM delays freeing memory, because it can only free it after
   1172 	 *    fences expire.
   1173 	 *
   1174 	 * 2) The memory usage can be really low if big VRAM evictions are
   1175 	 *    taking place, but the real usage is well above the size of VRAM.
   1176 	 *
   1177 	 * Instead, return statistics of this process.
   1178 	 */
   1179 	vram_usage = ws->query_value(ws, RADEON_REQUESTED_VRAM_MEMORY) / 1024;
   1180 	gtt_usage =  ws->query_value(ws, RADEON_REQUESTED_GTT_MEMORY) / 1024;
   1181 
   1182 	info->avail_device_memory =
   1183 		vram_usage <= info->total_device_memory ?
   1184 				info->total_device_memory - vram_usage : 0;
   1185 	info->avail_staging_memory =
   1186 		gtt_usage <= info->total_staging_memory ?
   1187 				info->total_staging_memory - gtt_usage : 0;
   1188 
   1189 	info->device_memory_evicted =
   1190 		ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
   1191 
   1192 	if (rscreen->info.drm_major == 3 && rscreen->info.drm_minor >= 4)
   1193 		info->nr_device_memory_evictions =
   1194 			ws->query_value(ws, RADEON_NUM_EVICTIONS);
   1195 	else
   1196 		/* Just return the number of evicted 64KB pages. */
   1197 		info->nr_device_memory_evictions = info->device_memory_evicted / 64;
   1198 }
   1199 
   1200 struct pipe_resource *r600_resource_create_common(struct pipe_screen *screen,
   1201 						  const struct pipe_resource *templ)
   1202 {
   1203 	if (templ->target == PIPE_BUFFER) {
   1204 		return r600_buffer_create(screen, templ, 256);
   1205 	} else {
   1206 		return r600_texture_create(screen, templ);
   1207 	}
   1208 }
   1209 
   1210 bool r600_common_screen_init(struct r600_common_screen *rscreen,
   1211 			     struct radeon_winsys *ws)
   1212 {
   1213 	char llvm_string[32] = {}, kernel_version[128] = {};
   1214 	struct utsname uname_data;
   1215 
   1216 	ws->query_info(ws, &rscreen->info);
   1217 
   1218 	if (uname(&uname_data) == 0)
   1219 		snprintf(kernel_version, sizeof(kernel_version),
   1220 			 " / %s", uname_data.release);
   1221 
   1222 	if (HAVE_LLVM > 0) {
   1223 		snprintf(llvm_string, sizeof(llvm_string),
   1224 			 ", LLVM %i.%i.%i", (HAVE_LLVM >> 8) & 0xff,
   1225 			 HAVE_LLVM & 0xff, MESA_LLVM_VERSION_PATCH);
   1226 	}
   1227 
   1228 	snprintf(rscreen->renderer_string, sizeof(rscreen->renderer_string),
   1229 		 "%s (DRM %i.%i.%i%s%s)",
   1230 		 r600_get_chip_name(rscreen), rscreen->info.drm_major,
   1231 		 rscreen->info.drm_minor, rscreen->info.drm_patchlevel,
   1232 		 kernel_version, llvm_string);
   1233 
   1234 	rscreen->b.get_name = r600_get_name;
   1235 	rscreen->b.get_vendor = r600_get_vendor;
   1236 	rscreen->b.get_device_vendor = r600_get_device_vendor;
   1237 	rscreen->b.get_compute_param = r600_get_compute_param;
   1238 	rscreen->b.get_paramf = r600_get_paramf;
   1239 	rscreen->b.get_timestamp = r600_get_timestamp;
   1240 	rscreen->b.fence_finish = r600_fence_finish;
   1241 	rscreen->b.fence_reference = r600_fence_reference;
   1242 	rscreen->b.resource_destroy = u_resource_destroy_vtbl;
   1243 	rscreen->b.resource_from_user_memory = r600_buffer_from_user_memory;
   1244 	rscreen->b.query_memory_info = r600_query_memory_info;
   1245 
   1246 	if (rscreen->info.has_uvd) {
   1247 		rscreen->b.get_video_param = rvid_get_video_param;
   1248 		rscreen->b.is_video_format_supported = rvid_is_format_supported;
   1249 	} else {
   1250 		rscreen->b.get_video_param = r600_get_video_param;
   1251 		rscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
   1252 	}
   1253 
   1254 	r600_init_screen_texture_functions(rscreen);
   1255 	r600_init_screen_query_functions(rscreen);
   1256 
   1257 	rscreen->ws = ws;
   1258 	rscreen->family = rscreen->info.family;
   1259 	rscreen->chip_class = rscreen->info.chip_class;
   1260 	rscreen->debug_flags = debug_get_flags_option("R600_DEBUG", common_debug_options, 0);
   1261 
   1262 	slab_create_parent(&rscreen->pool_transfers, sizeof(struct r600_transfer), 64);
   1263 
   1264 	rscreen->force_aniso = MIN2(16, debug_get_num_option("R600_TEX_ANISO", -1));
   1265 	if (rscreen->force_aniso >= 0) {
   1266 		printf("radeon: Forcing anisotropy filter to %ix\n",
   1267 		       /* round down to a power of two */
   1268 		       1 << util_logbase2(rscreen->force_aniso));
   1269 	}
   1270 
   1271 	util_format_s3tc_init();
   1272 	pipe_mutex_init(rscreen->aux_context_lock);
   1273 	pipe_mutex_init(rscreen->gpu_load_mutex);
   1274 
   1275 	if (rscreen->debug_flags & DBG_INFO) {
   1276 		printf("pci_id = 0x%x\n", rscreen->info.pci_id);
   1277 		printf("family = %i (%s)\n", rscreen->info.family,
   1278 		       r600_get_chip_name(rscreen));
   1279 		printf("chip_class = %i\n", rscreen->info.chip_class);
   1280 		printf("gart_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.gart_size, 1024*1024));
   1281 		printf("vram_size = %i MB\n", (int)DIV_ROUND_UP(rscreen->info.vram_size, 1024*1024));
   1282 		printf("max_alloc_size = %i MB\n",
   1283 		       (int)DIV_ROUND_UP(rscreen->info.max_alloc_size, 1024*1024));
   1284 		printf("has_virtual_memory = %i\n", rscreen->info.has_virtual_memory);
   1285 		printf("gfx_ib_pad_with_type2 = %i\n", rscreen->info.gfx_ib_pad_with_type2);
   1286 		printf("has_sdma = %i\n", rscreen->info.has_sdma);
   1287 		printf("has_uvd = %i\n", rscreen->info.has_uvd);
   1288 		printf("me_fw_version = %i\n", rscreen->info.me_fw_version);
   1289 		printf("pfp_fw_version = %i\n", rscreen->info.pfp_fw_version);
   1290 		printf("ce_fw_version = %i\n", rscreen->info.ce_fw_version);
   1291 		printf("vce_fw_version = %i\n", rscreen->info.vce_fw_version);
   1292 		printf("vce_harvest_config = %i\n", rscreen->info.vce_harvest_config);
   1293 		printf("clock_crystal_freq = %i\n", rscreen->info.clock_crystal_freq);
   1294 		printf("drm = %i.%i.%i\n", rscreen->info.drm_major,
   1295 		       rscreen->info.drm_minor, rscreen->info.drm_patchlevel);
   1296 		printf("has_userptr = %i\n", rscreen->info.has_userptr);
   1297 
   1298 		printf("r600_max_quad_pipes = %i\n", rscreen->info.r600_max_quad_pipes);
   1299 		printf("max_shader_clock = %i\n", rscreen->info.max_shader_clock);
   1300 		printf("num_good_compute_units = %i\n", rscreen->info.num_good_compute_units);
   1301 		printf("max_se = %i\n", rscreen->info.max_se);
   1302 		printf("max_sh_per_se = %i\n", rscreen->info.max_sh_per_se);
   1303 
   1304 		printf("r600_gb_backend_map = %i\n", rscreen->info.r600_gb_backend_map);
   1305 		printf("r600_gb_backend_map_valid = %i\n", rscreen->info.r600_gb_backend_map_valid);
   1306 		printf("r600_num_banks = %i\n", rscreen->info.r600_num_banks);
   1307 		printf("num_render_backends = %i\n", rscreen->info.num_render_backends);
   1308 		printf("num_tile_pipes = %i\n", rscreen->info.num_tile_pipes);
   1309 		printf("pipe_interleave_bytes = %i\n", rscreen->info.pipe_interleave_bytes);
   1310 	}
   1311 	return true;
   1312 }
   1313 
   1314 void r600_destroy_common_screen(struct r600_common_screen *rscreen)
   1315 {
   1316 	r600_perfcounters_destroy(rscreen);
   1317 	r600_gpu_load_kill_thread(rscreen);
   1318 
   1319 	pipe_mutex_destroy(rscreen->gpu_load_mutex);
   1320 	pipe_mutex_destroy(rscreen->aux_context_lock);
   1321 	rscreen->aux_context->destroy(rscreen->aux_context);
   1322 
   1323 	slab_destroy_parent(&rscreen->pool_transfers);
   1324 
   1325 	rscreen->ws->destroy(rscreen->ws);
   1326 	FREE(rscreen);
   1327 }
   1328 
   1329 bool r600_can_dump_shader(struct r600_common_screen *rscreen,
   1330 			  unsigned processor)
   1331 {
   1332 	switch (processor) {
   1333 	case PIPE_SHADER_VERTEX:
   1334 		return (rscreen->debug_flags & DBG_VS) != 0;
   1335 	case PIPE_SHADER_TESS_CTRL:
   1336 		return (rscreen->debug_flags & DBG_TCS) != 0;
   1337 	case PIPE_SHADER_TESS_EVAL:
   1338 		return (rscreen->debug_flags & DBG_TES) != 0;
   1339 	case PIPE_SHADER_GEOMETRY:
   1340 		return (rscreen->debug_flags & DBG_GS) != 0;
   1341 	case PIPE_SHADER_FRAGMENT:
   1342 		return (rscreen->debug_flags & DBG_PS) != 0;
   1343 	case PIPE_SHADER_COMPUTE:
   1344 		return (rscreen->debug_flags & DBG_CS) != 0;
   1345 	default:
   1346 		return false;
   1347 	}
   1348 }
   1349 
   1350 bool r600_extra_shader_checks(struct r600_common_screen *rscreen, unsigned processor)
   1351 {
   1352 	return (rscreen->debug_flags & DBG_CHECK_IR) ||
   1353 	       r600_can_dump_shader(rscreen, processor);
   1354 }
   1355 
   1356 void r600_screen_clear_buffer(struct r600_common_screen *rscreen, struct pipe_resource *dst,
   1357 			      uint64_t offset, uint64_t size, unsigned value)
   1358 {
   1359 	struct r600_common_context *rctx = (struct r600_common_context*)rscreen->aux_context;
   1360 
   1361 	pipe_mutex_lock(rscreen->aux_context_lock);
   1362 	rctx->dma_clear_buffer(&rctx->b, dst, offset, size, value);
   1363 	rscreen->aux_context->flush(rscreen->aux_context, NULL, 0);
   1364 	pipe_mutex_unlock(rscreen->aux_context_lock);
   1365 }
   1366