Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  *
     23  * Authors:
     24  *    Eric Anholt <eric (at) anholt.net>
     25  *
     26  */
     27 
     28 /** @file register_allocate.c
     29  *
     30  * Graph-coloring register allocator.
     31  *
     32  * The basic idea of graph coloring is to make a node in a graph for
     33  * every thing that needs a register (color) number assigned, and make
     34  * edges in the graph between nodes that interfere (can't be allocated
     35  * to the same register at the same time).
     36  *
     37  * During the "simplify" process, any any node with fewer edges than
     38  * there are registers means that that edge can get assigned a
     39  * register regardless of what its neighbors choose, so that node is
     40  * pushed on a stack and removed (with its edges) from the graph.
     41  * That likely causes other nodes to become trivially colorable as well.
     42  *
     43  * Then during the "select" process, nodes are popped off of that
     44  * stack, their edges restored, and assigned a color different from
     45  * their neighbors.  Because they were pushed on the stack only when
     46  * they were trivially colorable, any color chosen won't interfere
     47  * with the registers to be popped later.
     48  *
     49  * The downside to most graph coloring is that real hardware often has
     50  * limitations, like registers that need to be allocated to a node in
     51  * pairs, or aligned on some boundary.  This implementation follows
     52  * the paper "Retargetable Graph-Coloring Register Allocation for
     53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nystrm.
     54  *
     55  * In this system, there are register classes each containing various
     56  * registers, and registers may interfere with other registers.  For
     57  * example, one might have a class of base registers, and a class of
     58  * aligned register pairs that would each interfere with their pair of
     59  * the base registers.  Each node has a register class it needs to be
     60  * assigned to.  Define p(B) to be the size of register class B, and
     61  * q(B,C) to be the number of registers in B that the worst choice
     62  * register in C could conflict with.  Then, this system replaces the
     63  * basic graph coloring test of "fewer edges from this node than there
     64  * are registers" with "For this node of class B, the sum of q(B,C)
     65  * for each neighbor node of class C is less than pB".
     66  *
     67  * A nice feature of the pq test is that q(B,C) can be computed once
     68  * up front and stored in a 2-dimensional array, so that the cost of
     69  * coloring a node is constant with the number of registers.  We do
     70  * this during ra_set_finalize().
     71  */
     72 
     73 #include <stdbool.h>
     74 
     75 #include "ralloc.h"
     76 #include "main/imports.h"
     77 #include "main/macros.h"
     78 #include "main/mtypes.h"
     79 #include "util/bitset.h"
     80 #include "register_allocate.h"
     81 
     82 #define NO_REG ~0U
     83 
     84 struct ra_reg {
     85    BITSET_WORD *conflicts;
     86    unsigned int *conflict_list;
     87    unsigned int conflict_list_size;
     88    unsigned int num_conflicts;
     89 };
     90 
     91 struct ra_regs {
     92    struct ra_reg *regs;
     93    unsigned int count;
     94 
     95    struct ra_class **classes;
     96    unsigned int class_count;
     97 
     98    bool round_robin;
     99 };
    100 
    101 struct ra_class {
    102    /**
    103     * Bitset indicating which registers belong to this class.
    104     *
    105     * (If bit N is set, then register N belongs to this class.)
    106     */
    107    BITSET_WORD *regs;
    108 
    109    /**
    110     * p(B) in Runeson/Nystrm paper.
    111     *
    112     * This is "how many regs are in the set."
    113     */
    114    unsigned int p;
    115 
    116    /**
    117     * q(B,C) (indexed by C, B is this register class) in
    118     * Runeson/Nystrm paper.  This is "how many registers of B could
    119     * the worst choice register from C conflict with".
    120     */
    121    unsigned int *q;
    122 };
    123 
    124 struct ra_node {
    125    /** @{
    126     *
    127     * List of which nodes this node interferes with.  This should be
    128     * symmetric with the other node.
    129     */
    130    BITSET_WORD *adjacency;
    131    unsigned int *adjacency_list;
    132    unsigned int adjacency_list_size;
    133    unsigned int adjacency_count;
    134    /** @} */
    135 
    136    unsigned int class;
    137 
    138    /* Register, if assigned, or NO_REG. */
    139    unsigned int reg;
    140 
    141    /**
    142     * Set when the node is in the trivially colorable stack.  When
    143     * set, the adjacency to this node is ignored, to implement the
    144     * "remove the edge from the graph" in simplification without
    145     * having to actually modify the adjacency_list.
    146     */
    147    bool in_stack;
    148 
    149    /**
    150     * The q total, as defined in the Runeson/Nystrm paper, for all the
    151     * interfering nodes not in the stack.
    152     */
    153    unsigned int q_total;
    154 
    155    /* For an implementation that needs register spilling, this is the
    156     * approximate cost of spilling this node.
    157     */
    158    float spill_cost;
    159 };
    160 
    161 struct ra_graph {
    162    struct ra_regs *regs;
    163    /**
    164     * the variables that need register allocation.
    165     */
    166    struct ra_node *nodes;
    167    unsigned int count; /**< count of nodes. */
    168 
    169    unsigned int *stack;
    170    unsigned int stack_count;
    171 
    172    /**
    173     * Tracks the start of the set of optimistically-colored registers in the
    174     * stack.
    175     */
    176    unsigned int stack_optimistic_start;
    177 };
    178 
    179 /**
    180  * Creates a set of registers for the allocator.
    181  *
    182  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
    183  * using ralloc_free().
    184  */
    185 struct ra_regs *
    186 ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
    187 {
    188    unsigned int i;
    189    struct ra_regs *regs;
    190 
    191    regs = rzalloc(mem_ctx, struct ra_regs);
    192    regs->count = count;
    193    regs->regs = rzalloc_array(regs, struct ra_reg, count);
    194 
    195    for (i = 0; i < count; i++) {
    196       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
    197                                               BITSET_WORDS(count));
    198       BITSET_SET(regs->regs[i].conflicts, i);
    199 
    200       if (need_conflict_lists) {
    201          regs->regs[i].conflict_list = ralloc_array(regs->regs,
    202                                                     unsigned int, 4);
    203          regs->regs[i].conflict_list_size = 4;
    204          regs->regs[i].conflict_list[0] = i;
    205       } else {
    206          regs->regs[i].conflict_list = NULL;
    207          regs->regs[i].conflict_list_size = 0;
    208       }
    209       regs->regs[i].num_conflicts = 1;
    210    }
    211 
    212    return regs;
    213 }
    214 
    215 /**
    216  * The register allocator by default prefers to allocate low register numbers,
    217  * since it was written for hardware (gen4/5 Intel) that is limited in its
    218  * multithreadedness by the number of registers used in a given shader.
    219  *
    220  * However, for hardware without that restriction, densely packed register
    221  * allocation can put serious constraints on instruction scheduling.  This
    222  * function tells the allocator to rotate around the registers if possible as
    223  * it allocates the nodes.
    224  */
    225 void
    226 ra_set_allocate_round_robin(struct ra_regs *regs)
    227 {
    228    regs->round_robin = true;
    229 }
    230 
    231 static void
    232 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
    233 {
    234    struct ra_reg *reg1 = &regs->regs[r1];
    235 
    236    if (reg1->conflict_list) {
    237       if (reg1->conflict_list_size == reg1->num_conflicts) {
    238          reg1->conflict_list_size *= 2;
    239          reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
    240                                         unsigned int, reg1->conflict_list_size);
    241       }
    242       reg1->conflict_list[reg1->num_conflicts++] = r2;
    243    }
    244    BITSET_SET(reg1->conflicts, r2);
    245 }
    246 
    247 void
    248 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
    249 {
    250    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
    251       ra_add_conflict_list(regs, r1, r2);
    252       ra_add_conflict_list(regs, r2, r1);
    253    }
    254 }
    255 
    256 /**
    257  * Adds a conflict between base_reg and reg, and also between reg and
    258  * anything that base_reg conflicts with.
    259  *
    260  * This can simplify code for setting up multiple register classes
    261  * which are aggregates of some base hardware registers, compared to
    262  * explicitly using ra_add_reg_conflict.
    263  */
    264 void
    265 ra_add_transitive_reg_conflict(struct ra_regs *regs,
    266                                unsigned int base_reg, unsigned int reg)
    267 {
    268    unsigned int i;
    269 
    270    ra_add_reg_conflict(regs, reg, base_reg);
    271 
    272    for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
    273       ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
    274    }
    275 }
    276 
    277 /**
    278  * Makes every conflict on the given register transitive.  In other words,
    279  * every register that conflicts with r will now conflict with every other
    280  * register conflicting with r.
    281  *
    282  * This can simplify code for setting up multiple register classes
    283  * which are aggregates of some base hardware registers, compared to
    284  * explicitly using ra_add_reg_conflict.
    285  */
    286 void
    287 ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
    288 {
    289    struct ra_reg *reg = &regs->regs[r];
    290    BITSET_WORD tmp;
    291    int c;
    292 
    293    BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
    294       struct ra_reg *other = &regs->regs[c];
    295       unsigned i;
    296       for (i = 0; i < BITSET_WORDS(regs->count); i++)
    297          other->conflicts[i] |= reg->conflicts[i];
    298    }
    299 }
    300 
    301 unsigned int
    302 ra_alloc_reg_class(struct ra_regs *regs)
    303 {
    304    struct ra_class *class;
    305 
    306    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
    307                             regs->class_count + 1);
    308 
    309    class = rzalloc(regs, struct ra_class);
    310    regs->classes[regs->class_count] = class;
    311 
    312    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
    313 
    314    return regs->class_count++;
    315 }
    316 
    317 void
    318 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
    319 {
    320    struct ra_class *class = regs->classes[c];
    321 
    322    BITSET_SET(class->regs, r);
    323    class->p++;
    324 }
    325 
    326 /**
    327  * Returns true if the register belongs to the given class.
    328  */
    329 static bool
    330 reg_belongs_to_class(unsigned int r, struct ra_class *c)
    331 {
    332    return BITSET_TEST(c->regs, r);
    333 }
    334 
    335 /**
    336  * Must be called after all conflicts and register classes have been
    337  * set up and before the register set is used for allocation.
    338  * To avoid costly q value computation, use the q_values paramater
    339  * to pass precomputed q values to this function.
    340  */
    341 void
    342 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
    343 {
    344    unsigned int b, c;
    345 
    346    for (b = 0; b < regs->class_count; b++) {
    347       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
    348    }
    349 
    350    if (q_values) {
    351       for (b = 0; b < regs->class_count; b++) {
    352          for (c = 0; c < regs->class_count; c++) {
    353             regs->classes[b]->q[c] = q_values[b][c];
    354          }
    355       }
    356    } else {
    357       /* Compute, for each class B and C, how many regs of B an
    358        * allocation to C could conflict with.
    359        */
    360       for (b = 0; b < regs->class_count; b++) {
    361          for (c = 0; c < regs->class_count; c++) {
    362             unsigned int rc;
    363             int max_conflicts = 0;
    364 
    365             for (rc = 0; rc < regs->count; rc++) {
    366                int conflicts = 0;
    367                unsigned int i;
    368 
    369                if (!reg_belongs_to_class(rc, regs->classes[c]))
    370                   continue;
    371 
    372                for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
    373                   unsigned int rb = regs->regs[rc].conflict_list[i];
    374                   if (reg_belongs_to_class(rb, regs->classes[b]))
    375                      conflicts++;
    376                }
    377                max_conflicts = MAX2(max_conflicts, conflicts);
    378             }
    379             regs->classes[b]->q[c] = max_conflicts;
    380          }
    381       }
    382    }
    383 
    384    for (b = 0; b < regs->count; b++) {
    385       ralloc_free(regs->regs[b].conflict_list);
    386       regs->regs[b].conflict_list = NULL;
    387    }
    388 }
    389 
    390 static void
    391 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
    392 {
    393    BITSET_SET(g->nodes[n1].adjacency, n2);
    394 
    395    if (n1 != n2) {
    396       int n1_class = g->nodes[n1].class;
    397       int n2_class = g->nodes[n2].class;
    398       g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
    399    }
    400 
    401    if (g->nodes[n1].adjacency_count >=
    402        g->nodes[n1].adjacency_list_size) {
    403       g->nodes[n1].adjacency_list_size *= 2;
    404       g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
    405                                              unsigned int,
    406                                              g->nodes[n1].adjacency_list_size);
    407    }
    408 
    409    g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
    410    g->nodes[n1].adjacency_count++;
    411 }
    412 
    413 struct ra_graph *
    414 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
    415 {
    416    struct ra_graph *g;
    417    unsigned int i;
    418 
    419    g = rzalloc(NULL, struct ra_graph);
    420    g->regs = regs;
    421    g->nodes = rzalloc_array(g, struct ra_node, count);
    422    g->count = count;
    423 
    424    g->stack = rzalloc_array(g, unsigned int, count);
    425 
    426    for (i = 0; i < count; i++) {
    427       int bitset_count = BITSET_WORDS(count);
    428       g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
    429 
    430       g->nodes[i].adjacency_list_size = 4;
    431       g->nodes[i].adjacency_list =
    432          ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
    433       g->nodes[i].adjacency_count = 0;
    434       g->nodes[i].q_total = 0;
    435 
    436       ra_add_node_adjacency(g, i, i);
    437       g->nodes[i].reg = NO_REG;
    438    }
    439 
    440    return g;
    441 }
    442 
    443 void
    444 ra_set_node_class(struct ra_graph *g,
    445                   unsigned int n, unsigned int class)
    446 {
    447    g->nodes[n].class = class;
    448 }
    449 
    450 void
    451 ra_add_node_interference(struct ra_graph *g,
    452                          unsigned int n1, unsigned int n2)
    453 {
    454    if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
    455       ra_add_node_adjacency(g, n1, n2);
    456       ra_add_node_adjacency(g, n2, n1);
    457    }
    458 }
    459 
    460 static bool
    461 pq_test(struct ra_graph *g, unsigned int n)
    462 {
    463    int n_class = g->nodes[n].class;
    464 
    465    return g->nodes[n].q_total < g->regs->classes[n_class]->p;
    466 }
    467 
    468 static void
    469 decrement_q(struct ra_graph *g, unsigned int n)
    470 {
    471    unsigned int i;
    472    int n_class = g->nodes[n].class;
    473 
    474    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
    475       unsigned int n2 = g->nodes[n].adjacency_list[i];
    476       unsigned int n2_class = g->nodes[n2].class;
    477 
    478       if (n != n2 && !g->nodes[n2].in_stack) {
    479          assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
    480          g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
    481       }
    482    }
    483 }
    484 
    485 /**
    486  * Simplifies the interference graph by pushing all
    487  * trivially-colorable nodes into a stack of nodes to be colored,
    488  * removing them from the graph, and rinsing and repeating.
    489  *
    490  * If we encounter a case where we can't push any nodes on the stack, then
    491  * we optimistically choose a node and push it on the stack. We heuristically
    492  * push the node with the lowest total q value, since it has the fewest
    493  * neighbors and therefore is most likely to be allocated.
    494  */
    495 static void
    496 ra_simplify(struct ra_graph *g)
    497 {
    498    bool progress = true;
    499    unsigned int stack_optimistic_start = UINT_MAX;
    500    int i;
    501 
    502    while (progress) {
    503       unsigned int best_optimistic_node = ~0;
    504       unsigned int lowest_q_total = ~0;
    505 
    506       progress = false;
    507 
    508       for (i = g->count - 1; i >= 0; i--) {
    509 	 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
    510 	    continue;
    511 
    512 	 if (pq_test(g, i)) {
    513 	    decrement_q(g, i);
    514 	    g->stack[g->stack_count] = i;
    515 	    g->stack_count++;
    516 	    g->nodes[i].in_stack = true;
    517 	    progress = true;
    518 	 } else {
    519 	    unsigned int new_q_total = g->nodes[i].q_total;
    520 	    if (new_q_total < lowest_q_total) {
    521 	       best_optimistic_node = i;
    522 	       lowest_q_total = new_q_total;
    523 	    }
    524 	 }
    525       }
    526 
    527       if (!progress && best_optimistic_node != ~0U) {
    528          if (stack_optimistic_start == UINT_MAX)
    529             stack_optimistic_start = g->stack_count;
    530 
    531 	 decrement_q(g, best_optimistic_node);
    532 	 g->stack[g->stack_count] = best_optimistic_node;
    533 	 g->stack_count++;
    534 	 g->nodes[best_optimistic_node].in_stack = true;
    535 	 progress = true;
    536       }
    537    }
    538 
    539    g->stack_optimistic_start = stack_optimistic_start;
    540 }
    541 
    542 /**
    543  * Pops nodes from the stack back into the graph, coloring them with
    544  * registers as they go.
    545  *
    546  * If all nodes were trivially colorable, then this must succeed.  If
    547  * not (optimistic coloring), then it may return false;
    548  */
    549 static bool
    550 ra_select(struct ra_graph *g)
    551 {
    552    int start_search_reg = 0;
    553 
    554    while (g->stack_count != 0) {
    555       unsigned int i;
    556       unsigned int ri;
    557       unsigned int r = -1;
    558       int n = g->stack[g->stack_count - 1];
    559       struct ra_class *c = g->regs->classes[g->nodes[n].class];
    560 
    561       /* Find the lowest-numbered reg which is not used by a member
    562        * of the graph adjacent to us.
    563        */
    564       for (ri = 0; ri < g->regs->count; ri++) {
    565          r = (start_search_reg + ri) % g->regs->count;
    566          if (!reg_belongs_to_class(r, c))
    567 	    continue;
    568 
    569 	 /* Check if any of our neighbors conflict with this register choice. */
    570 	 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
    571 	    unsigned int n2 = g->nodes[n].adjacency_list[i];
    572 
    573 	    if (!g->nodes[n2].in_stack &&
    574 		BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
    575 	       break;
    576 	    }
    577 	 }
    578 	 if (i == g->nodes[n].adjacency_count)
    579 	    break;
    580       }
    581 
    582       /* set this to false even if we return here so that
    583        * ra_get_best_spill_node() considers this node later.
    584        */
    585       g->nodes[n].in_stack = false;
    586 
    587       if (ri == g->regs->count)
    588 	 return false;
    589 
    590       g->nodes[n].reg = r;
    591       g->stack_count--;
    592 
    593       /* Rotate the starting point except for any nodes above the lowest
    594        * optimistically colorable node.  The likelihood that we will succeed
    595        * at allocating optimistically colorable nodes is highly dependent on
    596        * the way that the previous nodes popped off the stack are laid out.
    597        * The round-robin strategy increases the fragmentation of the register
    598        * file and decreases the number of nearby nodes assigned to the same
    599        * color, what increases the likelihood of spilling with respect to the
    600        * dense packing strategy.
    601        */
    602       if (g->regs->round_robin &&
    603           g->stack_count - 1 <= g->stack_optimistic_start)
    604          start_search_reg = r + 1;
    605    }
    606 
    607    return true;
    608 }
    609 
    610 bool
    611 ra_allocate(struct ra_graph *g)
    612 {
    613    ra_simplify(g);
    614    return ra_select(g);
    615 }
    616 
    617 unsigned int
    618 ra_get_node_reg(struct ra_graph *g, unsigned int n)
    619 {
    620    return g->nodes[n].reg;
    621 }
    622 
    623 /**
    624  * Forces a node to a specific register.  This can be used to avoid
    625  * creating a register class containing one node when handling data
    626  * that must live in a fixed location and is known to not conflict
    627  * with other forced register assignment (as is common with shader
    628  * input data).  These nodes do not end up in the stack during
    629  * ra_simplify(), and thus at ra_select() time it is as if they were
    630  * the first popped off the stack and assigned their fixed locations.
    631  * Nodes that use this function do not need to be assigned a register
    632  * class.
    633  *
    634  * Must be called before ra_simplify().
    635  */
    636 void
    637 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
    638 {
    639    g->nodes[n].reg = reg;
    640    g->nodes[n].in_stack = false;
    641 }
    642 
    643 static float
    644 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
    645 {
    646    unsigned int j;
    647    float benefit = 0;
    648    int n_class = g->nodes[n].class;
    649 
    650    /* Define the benefit of eliminating an interference between n, n2
    651     * through spilling as q(C, B) / p(C).  This is similar to the
    652     * "count number of edges" approach of traditional graph coloring,
    653     * but takes classes into account.
    654     */
    655    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
    656       unsigned int n2 = g->nodes[n].adjacency_list[j];
    657       if (n != n2) {
    658 	 unsigned int n2_class = g->nodes[n2].class;
    659 	 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
    660 		     g->regs->classes[n_class]->p);
    661       }
    662    }
    663 
    664    return benefit;
    665 }
    666 
    667 /**
    668  * Returns a node number to be spilled according to the cost/benefit using
    669  * the pq test, or -1 if there are no spillable nodes.
    670  */
    671 int
    672 ra_get_best_spill_node(struct ra_graph *g)
    673 {
    674    unsigned int best_node = -1;
    675    float best_benefit = 0.0;
    676    unsigned int n;
    677 
    678    /* Consider any nodes that we colored successfully or the node we failed to
    679     * color for spilling. When we failed to color a node in ra_select(), we
    680     * only considered these nodes, so spilling any other ones would not result
    681     * in us making progress.
    682     */
    683    for (n = 0; n < g->count; n++) {
    684       float cost = g->nodes[n].spill_cost;
    685       float benefit;
    686 
    687       if (cost <= 0.0f)
    688 	 continue;
    689 
    690       if (g->nodes[n].in_stack)
    691          continue;
    692 
    693       benefit = ra_get_spill_benefit(g, n);
    694 
    695       if (benefit / cost > best_benefit) {
    696 	 best_benefit = benefit / cost;
    697 	 best_node = n;
    698       }
    699    }
    700 
    701    return best_node;
    702 }
    703 
    704 /**
    705  * Only nodes with a spill cost set (cost != 0.0) will be considered
    706  * for register spilling.
    707  */
    708 void
    709 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
    710 {
    711    g->nodes[n].spill_cost = cost;
    712 }
    713