Home | History | Annotate | Download | only in src
      1 /* -----------------------------------------------------------------------------
      2 Software License for The Fraunhofer FDK AAC Codec Library for Android
      3 
      4  Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten
      5 Forschung e.V. All rights reserved.
      6 
      7  1.    INTRODUCTION
      8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
      9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
     10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
     11 a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
     14 general perceptual audio codecs. AAC-ELD is considered the best-performing
     15 full-bandwidth communications codec by independent studies and is widely
     16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
     17 specifications.
     18 
     19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
     20 those of Fraunhofer) may be obtained through Via Licensing
     21 (www.vialicensing.com) or through the respective patent owners individually for
     22 the purpose of encoding or decoding bit streams in products that are compliant
     23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
     24 Android devices already license these patent claims through Via Licensing or
     25 directly from the patent owners, and therefore FDK AAC Codec software may
     26 already be covered under those patent licenses when it is used for those
     27 licensed purposes only.
     28 
     29 Commercially-licensed AAC software libraries, including floating-point versions
     30 with enhanced sound quality, are also available from Fraunhofer. Users are
     31 encouraged to check the Fraunhofer website for additional applications
     32 information and documentation.
     33 
     34 2.    COPYRIGHT LICENSE
     35 
     36 Redistribution and use in source and binary forms, with or without modification,
     37 are permitted without payment of copyright license fees provided that you
     38 satisfy the following conditions:
     39 
     40 You must retain the complete text of this software license in redistributions of
     41 the FDK AAC Codec or your modifications thereto in source code form.
     42 
     43 You must retain the complete text of this software license in the documentation
     44 and/or other materials provided with redistributions of the FDK AAC Codec or
     45 your modifications thereto in binary form. You must make available free of
     46 charge copies of the complete source code of the FDK AAC Codec and your
     47 modifications thereto to recipients of copies in binary form.
     48 
     49 The name of Fraunhofer may not be used to endorse or promote products derived
     50 from this library without prior written permission.
     51 
     52 You may not charge copyright license fees for anyone to use, copy or distribute
     53 the FDK AAC Codec software or your modifications thereto.
     54 
     55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
     56 that you changed the software and the date of any change. For modified versions
     57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
     58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
     59 AAC Codec Library for Android."
     60 
     61 3.    NO PATENT LICENSE
     62 
     63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
     64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
     65 Fraunhofer provides no warranty of patent non-infringement with respect to this
     66 software.
     67 
     68 You may use this FDK AAC Codec software or modifications thereto only for
     69 purposes that are authorized by appropriate patent licenses.
     70 
     71 4.    DISCLAIMER
     72 
     73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
     74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
     75 including but not limited to the implied warranties of merchantability and
     76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
     78 or consequential damages, including but not limited to procurement of substitute
     79 goods or services; loss of use, data, or profits, or business interruption,
     80 however caused and on any theory of liability, whether in contract, strict
     81 liability, or tort (including negligence), arising in any way out of the use of
     82 this software, even if advised of the possibility of such damage.
     83 
     84 5.    CONTACT INFORMATION
     85 
     86 Fraunhofer Institute for Integrated Circuits IIS
     87 Attention: Audio and Multimedia Departments - FDK AAC LL
     88 Am Wolfsmantel 33
     89 91058 Erlangen, Germany
     90 
     91 www.iis.fraunhofer.de/amm
     92 amm-info (at) iis.fraunhofer.de
     93 ----------------------------------------------------------------------------- */
     94 
     95 /******************* Library for basic calculation routines ********************
     96 
     97    Author(s):
     98 
     99    Description: Scaling operations
    100 
    101 *******************************************************************************/
    102 
    103 #include "common_fix.h"
    104 
    105 #include "genericStds.h"
    106 
    107 /**************************************************
    108  * Inline definitions
    109  **************************************************/
    110 
    111 #include "scale.h"
    112 
    113 #if defined(__mips__)
    114 #include "mips/scale_mips.cpp"
    115 
    116 #elif defined(__arm__)
    117 #include "arm/scale_arm.cpp"
    118 
    119 #endif
    120 
    121 #ifndef FUNCTION_scaleValues_SGL
    122 /*!
    123  *
    124  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    125  *  \param len    must be larger than 4
    126  *  \return void
    127  *
    128  */
    129 #define FUNCTION_scaleValues_SGL
    130 void scaleValues(FIXP_SGL *vector, /*!< Vector */
    131                  INT len,          /*!< Length */
    132                  INT scalefactor   /*!< Scalefactor */
    133 ) {
    134   INT i;
    135 
    136   /* Return if scalefactor is Zero */
    137   if (scalefactor == 0) return;
    138 
    139   if (scalefactor > 0) {
    140     scalefactor = fixmin_I(scalefactor, (INT)(FRACT_BITS - 1));
    141     for (i = len & 3; i--;) {
    142       *(vector++) <<= scalefactor;
    143     }
    144     for (i = len >> 2; i--;) {
    145       *(vector++) <<= scalefactor;
    146       *(vector++) <<= scalefactor;
    147       *(vector++) <<= scalefactor;
    148       *(vector++) <<= scalefactor;
    149     }
    150   } else {
    151     INT negScalefactor = fixmin_I(-scalefactor, (INT)FRACT_BITS - 1);
    152     for (i = len & 3; i--;) {
    153       *(vector++) >>= negScalefactor;
    154     }
    155     for (i = len >> 2; i--;) {
    156       *(vector++) >>= negScalefactor;
    157       *(vector++) >>= negScalefactor;
    158       *(vector++) >>= negScalefactor;
    159       *(vector++) >>= negScalefactor;
    160     }
    161   }
    162 }
    163 #endif
    164 
    165 #ifndef FUNCTION_scaleValues_DBL
    166 /*!
    167  *
    168  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    169  *  \param len must be larger than 4
    170  *  \return void
    171  *
    172  */
    173 #define FUNCTION_scaleValues_DBL
    174 SCALE_INLINE
    175 void scaleValues(FIXP_DBL *vector, /*!< Vector */
    176                  INT len,          /*!< Length */
    177                  INT scalefactor   /*!< Scalefactor */
    178 ) {
    179   INT i;
    180 
    181   /* Return if scalefactor is Zero */
    182   if (scalefactor == 0) return;
    183 
    184   if (scalefactor > 0) {
    185     scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
    186     for (i = len & 3; i--;) {
    187       *(vector++) <<= scalefactor;
    188     }
    189     for (i = len >> 2; i--;) {
    190       *(vector++) <<= scalefactor;
    191       *(vector++) <<= scalefactor;
    192       *(vector++) <<= scalefactor;
    193       *(vector++) <<= scalefactor;
    194     }
    195   } else {
    196     INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
    197     for (i = len & 3; i--;) {
    198       *(vector++) >>= negScalefactor;
    199     }
    200     for (i = len >> 2; i--;) {
    201       *(vector++) >>= negScalefactor;
    202       *(vector++) >>= negScalefactor;
    203       *(vector++) >>= negScalefactor;
    204       *(vector++) >>= negScalefactor;
    205     }
    206   }
    207 }
    208 #endif
    209 
    210 #ifndef FUNCTION_scaleValuesSaturate_DBL
    211 /*!
    212  *
    213  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    214  *  \param vector      source/destination buffer
    215  *  \param len         length of vector
    216  *  \param scalefactor amount of shifts to be applied
    217  *  \return void
    218  *
    219  */
    220 #define FUNCTION_scaleValuesSaturate_DBL
    221 SCALE_INLINE
    222 void scaleValuesSaturate(FIXP_DBL *vector, /*!< Vector */
    223                          INT len,          /*!< Length */
    224                          INT scalefactor   /*!< Scalefactor */
    225 ) {
    226   INT i;
    227 
    228   /* Return if scalefactor is Zero */
    229   if (scalefactor == 0) return;
    230 
    231   scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
    232                          (INT) - (DFRACT_BITS - 1));
    233 
    234   for (i = 0; i < len; i++) {
    235     vector[i] = scaleValueSaturate(vector[i], scalefactor);
    236   }
    237 }
    238 #endif /* FUNCTION_scaleValuesSaturate_DBL */
    239 
    240 #ifndef FUNCTION_scaleValuesSaturate_DBL_DBL
    241 /*!
    242  *
    243  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    244  *  \param dst         destination buffer
    245  *  \param src         source buffer
    246  *  \param len         length of vector
    247  *  \param scalefactor amount of shifts to be applied
    248  *  \return void
    249  *
    250  */
    251 #define FUNCTION_scaleValuesSaturate_DBL_DBL
    252 SCALE_INLINE
    253 void scaleValuesSaturate(FIXP_DBL *dst,  /*!< Output */
    254                          FIXP_DBL *src,  /*!< Input   */
    255                          INT len,        /*!< Length */
    256                          INT scalefactor /*!< Scalefactor */
    257 ) {
    258   INT i;
    259 
    260   /* Return if scalefactor is Zero */
    261   if (scalefactor == 0) {
    262     FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
    263     return;
    264   }
    265 
    266   scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
    267                          (INT) - (DFRACT_BITS - 1));
    268 
    269   for (i = 0; i < len; i++) {
    270     dst[i] = scaleValueSaturate(src[i], scalefactor);
    271   }
    272 }
    273 #endif /* FUNCTION_scaleValuesSaturate_DBL_DBL */
    274 
    275 #ifndef FUNCTION_scaleValuesSaturate_SGL_DBL
    276 /*!
    277  *
    278  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    279  *  \param dst         destination buffer (FIXP_SGL)
    280  *  \param src         source buffer (FIXP_DBL)
    281  *  \param len         length of vector
    282  *  \param scalefactor amount of shifts to be applied
    283  *  \return void
    284  *
    285  */
    286 #define FUNCTION_scaleValuesSaturate_SGL_DBL
    287 SCALE_INLINE
    288 void scaleValuesSaturate(FIXP_SGL *dst,   /*!< Output */
    289                          FIXP_DBL *src,   /*!< Input   */
    290                          INT len,         /*!< Length */
    291                          INT scalefactor) /*!< Scalefactor */
    292 {
    293   INT i;
    294   scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
    295                          (INT) - (DFRACT_BITS - 1));
    296 
    297   for (i = 0; i < len; i++) {
    298     dst[i] = FX_DBL2FX_SGL(fAddSaturate(scaleValueSaturate(src[i], scalefactor),
    299                                         (FIXP_DBL)0x8000));
    300   }
    301 }
    302 #endif /* FUNCTION_scaleValuesSaturate_SGL_DBL */
    303 
    304 #ifndef FUNCTION_scaleValuesSaturate_SGL
    305 /*!
    306  *
    307  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    308  *  \param vector      source/destination buffer
    309  *  \param len         length of vector
    310  *  \param scalefactor amount of shifts to be applied
    311  *  \return void
    312  *
    313  */
    314 #define FUNCTION_scaleValuesSaturate_SGL
    315 SCALE_INLINE
    316 void scaleValuesSaturate(FIXP_SGL *vector, /*!< Vector */
    317                          INT len,          /*!< Length */
    318                          INT scalefactor   /*!< Scalefactor */
    319 ) {
    320   INT i;
    321 
    322   /* Return if scalefactor is Zero */
    323   if (scalefactor == 0) return;
    324 
    325   scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
    326                          (INT) - (DFRACT_BITS - 1));
    327 
    328   for (i = 0; i < len; i++) {
    329     vector[i] = FX_DBL2FX_SGL(
    330         scaleValueSaturate(FX_SGL2FX_DBL(vector[i]), scalefactor));
    331   }
    332 }
    333 #endif /* FUNCTION_scaleValuesSaturate_SGL */
    334 
    335 #ifndef FUNCTION_scaleValuesSaturate_SGL_SGL
    336 /*!
    337  *
    338  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    339  *  \param dst         destination buffer
    340  *  \param src         source buffer
    341  *  \param len         length of vector
    342  *  \param scalefactor amount of shifts to be applied
    343  *  \return void
    344  *
    345  */
    346 #define FUNCTION_scaleValuesSaturate_SGL_SGL
    347 SCALE_INLINE
    348 void scaleValuesSaturate(FIXP_SGL *dst,  /*!< Output */
    349                          FIXP_SGL *src,  /*!< Input */
    350                          INT len,        /*!< Length */
    351                          INT scalefactor /*!< Scalefactor */
    352 ) {
    353   INT i;
    354 
    355   /* Return if scalefactor is Zero */
    356   if (scalefactor == 0) {
    357     FDKmemmove(dst, src, len * sizeof(FIXP_SGL));
    358     return;
    359   }
    360 
    361   scalefactor = fixmax_I(fixmin_I(scalefactor, (INT)DFRACT_BITS - 1),
    362                          (INT) - (DFRACT_BITS - 1));
    363 
    364   for (i = 0; i < len; i++) {
    365     dst[i] =
    366         FX_DBL2FX_SGL(scaleValueSaturate(FX_SGL2FX_DBL(src[i]), scalefactor));
    367   }
    368 }
    369 #endif /* FUNCTION_scaleValuesSaturate_SGL_SGL */
    370 
    371 #ifndef FUNCTION_scaleValues_DBLDBL
    372 /*!
    373  *
    374  *  \brief  Multiply input vector src by \f$ 2^{scalefactor} \f$
    375  *          and place result into dst
    376  *  \param dst detination buffer
    377  *  \param src source buffer
    378  *  \param len must be larger than 4
    379  *  \param scalefactor amount of left shifts to be applied
    380  *  \return void
    381  *
    382  */
    383 #define FUNCTION_scaleValues_DBLDBL
    384 SCALE_INLINE
    385 void scaleValues(FIXP_DBL *dst,       /*!< dst Vector */
    386                  const FIXP_DBL *src, /*!< src Vector */
    387                  INT len,             /*!< Length */
    388                  INT scalefactor      /*!< Scalefactor */
    389 ) {
    390   INT i;
    391 
    392   /* Return if scalefactor is Zero */
    393   if (scalefactor == 0) {
    394     if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
    395   } else {
    396     if (scalefactor > 0) {
    397       scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
    398       for (i = len & 3; i--;) {
    399         *(dst++) = *(src++) << scalefactor;
    400       }
    401       for (i = len >> 2; i--;) {
    402         *(dst++) = *(src++) << scalefactor;
    403         *(dst++) = *(src++) << scalefactor;
    404         *(dst++) = *(src++) << scalefactor;
    405         *(dst++) = *(src++) << scalefactor;
    406       }
    407     } else {
    408       INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
    409       for (i = len & 3; i--;) {
    410         *(dst++) = *(src++) >> negScalefactor;
    411       }
    412       for (i = len >> 2; i--;) {
    413         *(dst++) = *(src++) >> negScalefactor;
    414         *(dst++) = *(src++) >> negScalefactor;
    415         *(dst++) = *(src++) >> negScalefactor;
    416         *(dst++) = *(src++) >> negScalefactor;
    417       }
    418     }
    419   }
    420 }
    421 #endif
    422 
    423 #if (SAMPLE_BITS == 16)
    424 #ifndef FUNCTION_scaleValues_PCMDBL
    425 /*!
    426  *
    427  *  \brief  Multiply input vector src by \f$ 2^{scalefactor} \f$
    428  *          and place result into dst
    429  *  \param dst detination buffer
    430  *  \param src source buffer
    431  *  \param len must be larger than 4
    432  *  \param scalefactor amount of left shifts to be applied
    433  *  \return void
    434  *
    435  */
    436 #define FUNCTION_scaleValues_PCMDBL
    437 SCALE_INLINE
    438 void scaleValues(FIXP_PCM *dst,       /*!< dst Vector */
    439                  const FIXP_DBL *src, /*!< src Vector */
    440                  INT len,             /*!< Length */
    441                  INT scalefactor      /*!< Scalefactor */
    442 ) {
    443   INT i;
    444 
    445   scalefactor -= DFRACT_BITS - SAMPLE_BITS;
    446 
    447   /* Return if scalefactor is Zero */
    448   {
    449     if (scalefactor > 0) {
    450       scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
    451       for (i = len & 3; i--;) {
    452         *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
    453       }
    454       for (i = len >> 2; i--;) {
    455         *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
    456         *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
    457         *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
    458         *(dst++) = (FIXP_PCM)(*(src++) << scalefactor);
    459       }
    460     } else {
    461       INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
    462       for (i = len & 3; i--;) {
    463         *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
    464       }
    465       for (i = len >> 2; i--;) {
    466         *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
    467         *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
    468         *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
    469         *(dst++) = (FIXP_PCM)(*(src++) >> negScalefactor);
    470       }
    471     }
    472   }
    473 }
    474 #endif
    475 #endif /* (SAMPLE_BITS == 16) */
    476 
    477 #ifndef FUNCTION_scaleValues_SGLSGL
    478 /*!
    479  *
    480  *  \brief  Multiply input vector src by \f$ 2^{scalefactor} \f$
    481  *          and place result into dst
    482  *  \param dst detination buffer
    483  *  \param src source buffer
    484  *  \param len must be larger than 4
    485  *  \param scalefactor amount of left shifts to be applied
    486  *  \return void
    487  *
    488  */
    489 #define FUNCTION_scaleValues_SGLSGL
    490 SCALE_INLINE
    491 void scaleValues(FIXP_SGL *dst,       /*!< dst Vector */
    492                  const FIXP_SGL *src, /*!< src Vector */
    493                  INT len,             /*!< Length */
    494                  INT scalefactor      /*!< Scalefactor */
    495 ) {
    496   INT i;
    497 
    498   /* Return if scalefactor is Zero */
    499   if (scalefactor == 0) {
    500     if (dst != src) FDKmemmove(dst, src, len * sizeof(FIXP_DBL));
    501   } else {
    502     if (scalefactor > 0) {
    503       scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
    504       for (i = len & 3; i--;) {
    505         *(dst++) = *(src++) << scalefactor;
    506       }
    507       for (i = len >> 2; i--;) {
    508         *(dst++) = *(src++) << scalefactor;
    509         *(dst++) = *(src++) << scalefactor;
    510         *(dst++) = *(src++) << scalefactor;
    511         *(dst++) = *(src++) << scalefactor;
    512       }
    513     } else {
    514       INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
    515       for (i = len & 3; i--;) {
    516         *(dst++) = *(src++) >> negScalefactor;
    517       }
    518       for (i = len >> 2; i--;) {
    519         *(dst++) = *(src++) >> negScalefactor;
    520         *(dst++) = *(src++) >> negScalefactor;
    521         *(dst++) = *(src++) >> negScalefactor;
    522         *(dst++) = *(src++) >> negScalefactor;
    523       }
    524     }
    525   }
    526 }
    527 #endif
    528 
    529 #ifndef FUNCTION_scaleValuesWithFactor_DBL
    530 /*!
    531  *
    532  *  \brief  Multiply input vector by \f$ 2^{scalefactor} \f$
    533  *  \param len must be larger than 4
    534  *  \return void
    535  *
    536  */
    537 #define FUNCTION_scaleValuesWithFactor_DBL
    538 SCALE_INLINE
    539 void scaleValuesWithFactor(FIXP_DBL *vector, FIXP_DBL factor, INT len,
    540                            INT scalefactor) {
    541   INT i;
    542 
    543   /* Compensate fMultDiv2 */
    544   scalefactor++;
    545 
    546   if (scalefactor > 0) {
    547     scalefactor = fixmin_I(scalefactor, (INT)DFRACT_BITS - 1);
    548     for (i = len & 3; i--;) {
    549       *vector = fMultDiv2(*vector, factor) << scalefactor;
    550       vector++;
    551     }
    552     for (i = len >> 2; i--;) {
    553       *vector = fMultDiv2(*vector, factor) << scalefactor;
    554       vector++;
    555       *vector = fMultDiv2(*vector, factor) << scalefactor;
    556       vector++;
    557       *vector = fMultDiv2(*vector, factor) << scalefactor;
    558       vector++;
    559       *vector = fMultDiv2(*vector, factor) << scalefactor;
    560       vector++;
    561     }
    562   } else {
    563     INT negScalefactor = fixmin_I(-scalefactor, (INT)DFRACT_BITS - 1);
    564     for (i = len & 3; i--;) {
    565       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    566       vector++;
    567     }
    568     for (i = len >> 2; i--;) {
    569       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    570       vector++;
    571       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    572       vector++;
    573       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    574       vector++;
    575       *vector = fMultDiv2(*vector, factor) >> negScalefactor;
    576       vector++;
    577     }
    578   }
    579 }
    580 #endif /* FUNCTION_scaleValuesWithFactor_DBL */
    581 
    582   /*******************************************
    583 
    584   IMPORTANT NOTE for usage of getScalefactor()
    585 
    586   If the input array contains negative values too, then these functions may
    587   sometimes return the actual maximum value minus 1, due to the nature of the
    588   applied algorithm. So be careful with possible fractional -1 values that may
    589   lead to overflows when being fPow2()'ed.
    590 
    591   ********************************************/
    592 
    593 #ifndef FUNCTION_getScalefactorShort
    594 /*!
    595  *
    596  *  \brief Calculate max possible scale factor for input vector of shorts
    597  *
    598  *  \return Maximum scale factor / possible left shift
    599  *
    600  */
    601 #define FUNCTION_getScalefactorShort
    602 SCALE_INLINE
    603 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
    604                         INT len              /*!< Length of input vector */
    605 ) {
    606   INT i;
    607   SHORT temp, maxVal = 0;
    608 
    609   for (i = len; i != 0; i--) {
    610     temp = (SHORT)(*vector++);
    611     maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
    612   }
    613 
    614   return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
    615                                 (INT)(DFRACT_BITS - SHORT_BITS)));
    616 }
    617 #endif
    618 
    619 #ifndef FUNCTION_getScalefactorPCM
    620 /*!
    621  *
    622  *  \brief Calculate max possible scale factor for input vector of shorts
    623  *
    624  *  \return Maximum scale factor
    625  *
    626  */
    627 #define FUNCTION_getScalefactorPCM
    628 SCALE_INLINE
    629 INT getScalefactorPCM(const INT_PCM *vector, /*!< Pointer to input vector */
    630                       INT len,               /*!< Length of input vector */
    631                       INT stride) {
    632   INT i;
    633   INT_PCM temp, maxVal = 0;
    634 
    635   for (i = len; i != 0; i--) {
    636     temp = (INT_PCM)(*vector);
    637     vector += stride;
    638     maxVal |= (temp ^ (temp >> ((sizeof(INT_PCM) * 8) - 1)));
    639   }
    640   return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
    641                                 (INT)(DFRACT_BITS - SAMPLE_BITS)));
    642 }
    643 #endif
    644 
    645 #ifndef FUNCTION_getScalefactorShort
    646 /*!
    647  *
    648  *  \brief Calculate max possible scale factor for input vector of shorts
    649  *  \param stride, item increment between vector members.
    650  *  \return Maximum scale factor
    651  *
    652  */
    653 #define FUNCTION_getScalefactorShort
    654 SCALE_INLINE
    655 INT getScalefactorShort(const SHORT *vector, /*!< Pointer to input vector */
    656                         INT len,             /*!< Length of input vector */
    657                         INT stride) {
    658   INT i;
    659   SHORT temp, maxVal = 0;
    660 
    661   for (i = len; i != 0; i--) {
    662     temp = (SHORT)(*vector);
    663     vector += stride;
    664     maxVal |= (temp ^ (temp >> (SHORT_BITS - 1)));
    665   }
    666 
    667   return fixmax_I((INT)0, (INT)(fixnormz_D((INT)maxVal) - (INT)1 -
    668                                 (INT)(DFRACT_BITS - SHORT_BITS)));
    669 }
    670 #endif
    671 
    672 #ifndef FUNCTION_getScalefactor_DBL
    673 /*!
    674  *
    675  *  \brief Calculate max possible scale factor for input vector
    676  *
    677  *  \return Maximum scale factor
    678  *
    679  *  This function can constitute a significant amount of computational
    680  * complexity - very much depending on the bitrate. Since it is a rather small
    681  * function, effective assembler optimization might be possible.
    682  *
    683  *  If all data is 0xFFFF.FFFF or 0x0000.0000 function returns 31
    684  *  Note: You can skip data normalization only if return value is 0
    685  *
    686  */
    687 #define FUNCTION_getScalefactor_DBL
    688 SCALE_INLINE
    689 INT getScalefactor(const FIXP_DBL *vector, /*!< Pointer to input vector */
    690                    INT len)                /*!< Length of input vector */
    691 {
    692   INT i;
    693   FIXP_DBL temp, maxVal = (FIXP_DBL)0;
    694 
    695   for (i = len; i != 0; i--) {
    696     temp = (LONG)(*vector++);
    697     maxVal |= (FIXP_DBL)((LONG)temp ^ (LONG)(temp >> (DFRACT_BITS - 1)));
    698   }
    699 
    700   return fixmax_I((INT)0, (INT)(fixnormz_D(maxVal) - 1));
    701 }
    702 #endif
    703 
    704 #ifndef FUNCTION_getScalefactor_SGL
    705 #define FUNCTION_getScalefactor_SGL
    706 SCALE_INLINE
    707 INT getScalefactor(const FIXP_SGL *vector, /*!< Pointer to input vector */
    708                    INT len)                /*!< Length of input vector */
    709 {
    710   INT i;
    711   SHORT temp, maxVal = (FIXP_SGL)0;
    712 
    713   for (i = len; i != 0; i--) {
    714     temp = (SHORT)(*vector++);
    715     maxVal |= (temp ^ (temp >> (FRACT_BITS - 1)));
    716   }
    717 
    718   return fixmax_I((INT)0, (INT)(fixnormz_S((FIXP_SGL)maxVal)) - 1);
    719 }
    720 #endif
    721