Home | History | Annotate | Download | only in Utils
      1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MapValue function, which is shared by various parts of
     11 // the lib/Transforms/Utils library.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/ValueMapper.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/IR/CallSite.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DebugInfoMetadata.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/GlobalAlias.h"
     22 #include "llvm/IR/GlobalVariable.h"
     23 #include "llvm/IR/InlineAsm.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/Metadata.h"
     26 #include "llvm/IR/Operator.h"
     27 using namespace llvm;
     28 
     29 // Out of line method to get vtable etc for class.
     30 void ValueMapTypeRemapper::anchor() {}
     31 void ValueMaterializer::anchor() {}
     32 
     33 namespace {
     34 
     35 /// A basic block used in a BlockAddress whose function body is not yet
     36 /// materialized.
     37 struct DelayedBasicBlock {
     38   BasicBlock *OldBB;
     39   std::unique_ptr<BasicBlock> TempBB;
     40 
     41   // Explicit move for MSVC.
     42   DelayedBasicBlock(DelayedBasicBlock &&X)
     43       : OldBB(std::move(X.OldBB)), TempBB(std::move(X.TempBB)) {}
     44   DelayedBasicBlock &operator=(DelayedBasicBlock &&X) {
     45     OldBB = std::move(X.OldBB);
     46     TempBB = std::move(X.TempBB);
     47     return *this;
     48   }
     49 
     50   DelayedBasicBlock(const BlockAddress &Old)
     51       : OldBB(Old.getBasicBlock()),
     52         TempBB(BasicBlock::Create(Old.getContext())) {}
     53 };
     54 
     55 struct WorklistEntry {
     56   enum EntryKind {
     57     MapGlobalInit,
     58     MapAppendingVar,
     59     MapGlobalAliasee,
     60     RemapFunction
     61   };
     62   struct GVInitTy {
     63     GlobalVariable *GV;
     64     Constant *Init;
     65   };
     66   struct AppendingGVTy {
     67     GlobalVariable *GV;
     68     Constant *InitPrefix;
     69   };
     70   struct GlobalAliaseeTy {
     71     GlobalAlias *GA;
     72     Constant *Aliasee;
     73   };
     74 
     75   unsigned Kind : 2;
     76   unsigned MCID : 29;
     77   unsigned AppendingGVIsOldCtorDtor : 1;
     78   unsigned AppendingGVNumNewMembers;
     79   union {
     80     GVInitTy GVInit;
     81     AppendingGVTy AppendingGV;
     82     GlobalAliaseeTy GlobalAliasee;
     83     Function *RemapF;
     84   } Data;
     85 };
     86 
     87 struct MappingContext {
     88   ValueToValueMapTy *VM;
     89   ValueMaterializer *Materializer = nullptr;
     90 
     91   /// Construct a MappingContext with a value map and materializer.
     92   explicit MappingContext(ValueToValueMapTy &VM,
     93                           ValueMaterializer *Materializer = nullptr)
     94       : VM(&VM), Materializer(Materializer) {}
     95 };
     96 
     97 class MDNodeMapper;
     98 class Mapper {
     99   friend class MDNodeMapper;
    100 
    101 #ifndef NDEBUG
    102   DenseSet<GlobalValue *> AlreadyScheduled;
    103 #endif
    104 
    105   RemapFlags Flags;
    106   ValueMapTypeRemapper *TypeMapper;
    107   unsigned CurrentMCID = 0;
    108   SmallVector<MappingContext, 2> MCs;
    109   SmallVector<WorklistEntry, 4> Worklist;
    110   SmallVector<DelayedBasicBlock, 1> DelayedBBs;
    111   SmallVector<Constant *, 16> AppendingInits;
    112 
    113 public:
    114   Mapper(ValueToValueMapTy &VM, RemapFlags Flags,
    115          ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer)
    116       : Flags(Flags), TypeMapper(TypeMapper),
    117         MCs(1, MappingContext(VM, Materializer)) {}
    118 
    119   /// ValueMapper should explicitly call \a flush() before destruction.
    120   ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); }
    121 
    122   bool hasWorkToDo() const { return !Worklist.empty(); }
    123 
    124   unsigned
    125   registerAlternateMappingContext(ValueToValueMapTy &VM,
    126                                   ValueMaterializer *Materializer = nullptr) {
    127     MCs.push_back(MappingContext(VM, Materializer));
    128     return MCs.size() - 1;
    129   }
    130 
    131   void addFlags(RemapFlags Flags);
    132 
    133   Value *mapValue(const Value *V);
    134   void remapInstruction(Instruction *I);
    135   void remapFunction(Function &F);
    136 
    137   Constant *mapConstant(const Constant *C) {
    138     return cast_or_null<Constant>(mapValue(C));
    139   }
    140 
    141   /// Map metadata.
    142   ///
    143   /// Find the mapping for MD.  Guarantees that the return will be resolved
    144   /// (not an MDNode, or MDNode::isResolved() returns true).
    145   Metadata *mapMetadata(const Metadata *MD);
    146 
    147   void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
    148                                     unsigned MCID);
    149   void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
    150                                     bool IsOldCtorDtor,
    151                                     ArrayRef<Constant *> NewMembers,
    152                                     unsigned MCID);
    153   void scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
    154                                 unsigned MCID);
    155   void scheduleRemapFunction(Function &F, unsigned MCID);
    156 
    157   void flush();
    158 
    159 private:
    160   void mapGlobalInitializer(GlobalVariable &GV, Constant &Init);
    161   void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
    162                             bool IsOldCtorDtor,
    163                             ArrayRef<Constant *> NewMembers);
    164   void mapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee);
    165   void remapFunction(Function &F, ValueToValueMapTy &VM);
    166 
    167   ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; }
    168   ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; }
    169 
    170   Value *mapBlockAddress(const BlockAddress &BA);
    171 
    172   /// Map metadata that doesn't require visiting operands.
    173   Optional<Metadata *> mapSimpleMetadata(const Metadata *MD);
    174 
    175   Metadata *mapToMetadata(const Metadata *Key, Metadata *Val);
    176   Metadata *mapToSelf(const Metadata *MD);
    177 };
    178 
    179 class MDNodeMapper {
    180   Mapper &M;
    181 
    182   /// Data about a node in \a UniquedGraph.
    183   struct Data {
    184     bool HasChanged = false;
    185     unsigned ID = ~0u;
    186     TempMDNode Placeholder;
    187 
    188     Data() {}
    189     Data(Data &&X)
    190         : HasChanged(std::move(X.HasChanged)), ID(std::move(X.ID)),
    191           Placeholder(std::move(X.Placeholder)) {}
    192     Data &operator=(Data &&X) {
    193       HasChanged = std::move(X.HasChanged);
    194       ID = std::move(X.ID);
    195       Placeholder = std::move(X.Placeholder);
    196       return *this;
    197     }
    198   };
    199 
    200   /// A graph of uniqued nodes.
    201   struct UniquedGraph {
    202     SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties.
    203     SmallVector<MDNode *, 16> POT;                  // Post-order traversal.
    204 
    205     /// Propagate changed operands through the post-order traversal.
    206     ///
    207     /// Iteratively update \a Data::HasChanged for each node based on \a
    208     /// Data::HasChanged of its operands, until fixed point.
    209     void propagateChanges();
    210 
    211     /// Get a forward reference to a node to use as an operand.
    212     Metadata &getFwdReference(MDNode &Op);
    213   };
    214 
    215   /// Worklist of distinct nodes whose operands need to be remapped.
    216   SmallVector<MDNode *, 16> DistinctWorklist;
    217 
    218   // Storage for a UniquedGraph.
    219   SmallDenseMap<const Metadata *, Data, 32> InfoStorage;
    220   SmallVector<MDNode *, 16> POTStorage;
    221 
    222 public:
    223   MDNodeMapper(Mapper &M) : M(M) {}
    224 
    225   /// Map a metadata node (and its transitive operands).
    226   ///
    227   /// Map all the (unmapped) nodes in the subgraph under \c N.  The iterative
    228   /// algorithm handles distinct nodes and uniqued node subgraphs using
    229   /// different strategies.
    230   ///
    231   /// Distinct nodes are immediately mapped and added to \a DistinctWorklist
    232   /// using \a mapDistinctNode().  Their mapping can always be computed
    233   /// immediately without visiting operands, even if their operands change.
    234   ///
    235   /// The mapping for uniqued nodes depends on whether their operands change.
    236   /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of
    237   /// a node to calculate uniqued node mappings in bulk.  Distinct leafs are
    238   /// added to \a DistinctWorklist with \a mapDistinctNode().
    239   ///
    240   /// After mapping \c N itself, this function remaps the operands of the
    241   /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c
    242   /// N has been mapped.
    243   Metadata *map(const MDNode &N);
    244 
    245 private:
    246   /// Map a top-level uniqued node and the uniqued subgraph underneath it.
    247   ///
    248   /// This builds up a post-order traversal of the (unmapped) uniqued subgraph
    249   /// underneath \c FirstN and calculates the nodes' mapping.  Each node uses
    250   /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its
    251   /// operands uses the identity mapping.
    252   ///
    253   /// The algorithm works as follows:
    254   ///
    255   ///  1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and
    256   ///     save the post-order traversal in the given \a UniquedGraph, tracking
    257   ///     nodes' operands change.
    258   ///
    259   ///  2. \a UniquedGraph::propagateChanges(): propagate changed operands
    260   ///     through the \a UniquedGraph until fixed point, following the rule
    261   ///     that if a node changes, any node that references must also change.
    262   ///
    263   ///  3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes
    264   ///     (referencing new operands) where necessary.
    265   Metadata *mapTopLevelUniquedNode(const MDNode &FirstN);
    266 
    267   /// Try to map the operand of an \a MDNode.
    268   ///
    269   /// If \c Op is already mapped, return the mapping.  If it's not an \a
    270   /// MDNode, compute and return the mapping.  If it's a distinct \a MDNode,
    271   /// return the result of \a mapDistinctNode().
    272   ///
    273   /// \return None if \c Op is an unmapped uniqued \a MDNode.
    274   /// \post getMappedOp(Op) only returns None if this returns None.
    275   Optional<Metadata *> tryToMapOperand(const Metadata *Op);
    276 
    277   /// Map a distinct node.
    278   ///
    279   /// Return the mapping for the distinct node \c N, saving the result in \a
    280   /// DistinctWorklist for later remapping.
    281   ///
    282   /// \pre \c N is not yet mapped.
    283   /// \pre \c N.isDistinct().
    284   MDNode *mapDistinctNode(const MDNode &N);
    285 
    286   /// Get a previously mapped node.
    287   Optional<Metadata *> getMappedOp(const Metadata *Op) const;
    288 
    289   /// Create a post-order traversal of an unmapped uniqued node subgraph.
    290   ///
    291   /// This traverses the metadata graph deeply enough to map \c FirstN.  It
    292   /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any
    293   /// metadata that has already been mapped will not be part of the POT.
    294   ///
    295   /// Each node that has a changed operand from outside the graph (e.g., a
    296   /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata)
    297   /// is marked with \a Data::HasChanged.
    298   ///
    299   /// \return \c true if any nodes in \c G have \a Data::HasChanged.
    300   /// \post \c G.POT is a post-order traversal ending with \c FirstN.
    301   /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs
    302   /// to change because of operands outside the graph.
    303   bool createPOT(UniquedGraph &G, const MDNode &FirstN);
    304 
    305   /// Visit the operands of a uniqued node in the POT.
    306   ///
    307   /// Visit the operands in the range from \c I to \c E, returning the first
    308   /// uniqued node we find that isn't yet in \c G.  \c I is always advanced to
    309   /// where to continue the loop through the operands.
    310   ///
    311   /// This sets \c HasChanged if any of the visited operands change.
    312   MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
    313                         MDNode::op_iterator E, bool &HasChanged);
    314 
    315   /// Map all the nodes in the given uniqued graph.
    316   ///
    317   /// This visits all the nodes in \c G in post-order, using the identity
    318   /// mapping or creating a new node depending on \a Data::HasChanged.
    319   ///
    320   /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of
    321   /// their operands outside of \c G.
    322   /// \pre \a Data::HasChanged is true for a node in \c G iff any of its
    323   /// operands have changed.
    324   /// \post \a getMappedOp() returns the mapped node for every node in \c G.
    325   void mapNodesInPOT(UniquedGraph &G);
    326 
    327   /// Remap a node's operands using the given functor.
    328   ///
    329   /// Iterate through the operands of \c N and update them in place using \c
    330   /// mapOperand.
    331   ///
    332   /// \pre N.isDistinct() or N.isTemporary().
    333   template <class OperandMapper>
    334   void remapOperands(MDNode &N, OperandMapper mapOperand);
    335 };
    336 
    337 } // end namespace
    338 
    339 Value *Mapper::mapValue(const Value *V) {
    340   ValueToValueMapTy::iterator I = getVM().find(V);
    341 
    342   // If the value already exists in the map, use it.
    343   if (I != getVM().end()) {
    344     assert(I->second && "Unexpected null mapping");
    345     return I->second;
    346   }
    347 
    348   // If we have a materializer and it can materialize a value, use that.
    349   if (auto *Materializer = getMaterializer()) {
    350     if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) {
    351       getVM()[V] = NewV;
    352       return NewV;
    353     }
    354   }
    355 
    356   // Global values do not need to be seeded into the VM if they
    357   // are using the identity mapping.
    358   if (isa<GlobalValue>(V)) {
    359     if (Flags & RF_NullMapMissingGlobalValues)
    360       return nullptr;
    361     return getVM()[V] = const_cast<Value *>(V);
    362   }
    363 
    364   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    365     // Inline asm may need *type* remapping.
    366     FunctionType *NewTy = IA->getFunctionType();
    367     if (TypeMapper) {
    368       NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
    369 
    370       if (NewTy != IA->getFunctionType())
    371         V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
    372                            IA->hasSideEffects(), IA->isAlignStack());
    373     }
    374 
    375     return getVM()[V] = const_cast<Value *>(V);
    376   }
    377 
    378   if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
    379     const Metadata *MD = MDV->getMetadata();
    380 
    381     if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) {
    382       // Look through to grab the local value.
    383       if (Value *LV = mapValue(LAM->getValue())) {
    384         if (V == LAM->getValue())
    385           return const_cast<Value *>(V);
    386         return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV));
    387       }
    388 
    389       // FIXME: always return nullptr once Verifier::verifyDominatesUse()
    390       // ensures metadata operands only reference defined SSA values.
    391       return (Flags & RF_IgnoreMissingLocals)
    392                  ? nullptr
    393                  : MetadataAsValue::get(V->getContext(),
    394                                         MDTuple::get(V->getContext(), None));
    395     }
    396 
    397     // If this is a module-level metadata and we know that nothing at the module
    398     // level is changing, then use an identity mapping.
    399     if (Flags & RF_NoModuleLevelChanges)
    400       return getVM()[V] = const_cast<Value *>(V);
    401 
    402     // Map the metadata and turn it into a value.
    403     auto *MappedMD = mapMetadata(MD);
    404     if (MD == MappedMD)
    405       return getVM()[V] = const_cast<Value *>(V);
    406     return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD);
    407   }
    408 
    409   // Okay, this either must be a constant (which may or may not be mappable) or
    410   // is something that is not in the mapping table.
    411   Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
    412   if (!C)
    413     return nullptr;
    414 
    415   if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
    416     return mapBlockAddress(*BA);
    417 
    418   auto mapValueOrNull = [this](Value *V) {
    419     auto Mapped = mapValue(V);
    420     assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) &&
    421            "Unexpected null mapping for constant operand without "
    422            "NullMapMissingGlobalValues flag");
    423     return Mapped;
    424   };
    425 
    426   // Otherwise, we have some other constant to remap.  Start by checking to see
    427   // if all operands have an identity remapping.
    428   unsigned OpNo = 0, NumOperands = C->getNumOperands();
    429   Value *Mapped = nullptr;
    430   for (; OpNo != NumOperands; ++OpNo) {
    431     Value *Op = C->getOperand(OpNo);
    432     Mapped = mapValueOrNull(Op);
    433     if (!Mapped)
    434       return nullptr;
    435     if (Mapped != Op)
    436       break;
    437   }
    438 
    439   // See if the type mapper wants to remap the type as well.
    440   Type *NewTy = C->getType();
    441   if (TypeMapper)
    442     NewTy = TypeMapper->remapType(NewTy);
    443 
    444   // If the result type and all operands match up, then just insert an identity
    445   // mapping.
    446   if (OpNo == NumOperands && NewTy == C->getType())
    447     return getVM()[V] = C;
    448 
    449   // Okay, we need to create a new constant.  We've already processed some or
    450   // all of the operands, set them all up now.
    451   SmallVector<Constant*, 8> Ops;
    452   Ops.reserve(NumOperands);
    453   for (unsigned j = 0; j != OpNo; ++j)
    454     Ops.push_back(cast<Constant>(C->getOperand(j)));
    455 
    456   // If one of the operands mismatch, push it and the other mapped operands.
    457   if (OpNo != NumOperands) {
    458     Ops.push_back(cast<Constant>(Mapped));
    459 
    460     // Map the rest of the operands that aren't processed yet.
    461     for (++OpNo; OpNo != NumOperands; ++OpNo) {
    462       Mapped = mapValueOrNull(C->getOperand(OpNo));
    463       if (!Mapped)
    464         return nullptr;
    465       Ops.push_back(cast<Constant>(Mapped));
    466     }
    467   }
    468   Type *NewSrcTy = nullptr;
    469   if (TypeMapper)
    470     if (auto *GEPO = dyn_cast<GEPOperator>(C))
    471       NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
    472 
    473   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    474     return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
    475   if (isa<ConstantArray>(C))
    476     return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
    477   if (isa<ConstantStruct>(C))
    478     return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
    479   if (isa<ConstantVector>(C))
    480     return getVM()[V] = ConstantVector::get(Ops);
    481   // If this is a no-operand constant, it must be because the type was remapped.
    482   if (isa<UndefValue>(C))
    483     return getVM()[V] = UndefValue::get(NewTy);
    484   if (isa<ConstantAggregateZero>(C))
    485     return getVM()[V] = ConstantAggregateZero::get(NewTy);
    486   assert(isa<ConstantPointerNull>(C));
    487   return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
    488 }
    489 
    490 Value *Mapper::mapBlockAddress(const BlockAddress &BA) {
    491   Function *F = cast<Function>(mapValue(BA.getFunction()));
    492 
    493   // F may not have materialized its initializer.  In that case, create a
    494   // dummy basic block for now, and replace it once we've materialized all
    495   // the initializers.
    496   BasicBlock *BB;
    497   if (F->empty()) {
    498     DelayedBBs.push_back(DelayedBasicBlock(BA));
    499     BB = DelayedBBs.back().TempBB.get();
    500   } else {
    501     BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock()));
    502   }
    503 
    504   return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock());
    505 }
    506 
    507 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) {
    508   getVM().MD()[Key].reset(Val);
    509   return Val;
    510 }
    511 
    512 Metadata *Mapper::mapToSelf(const Metadata *MD) {
    513   return mapToMetadata(MD, const_cast<Metadata *>(MD));
    514 }
    515 
    516 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) {
    517   if (!Op)
    518     return nullptr;
    519 
    520   if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) {
    521 #ifndef NDEBUG
    522     if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
    523       assert((!*MappedOp || M.getVM().count(CMD->getValue()) ||
    524               M.getVM().getMappedMD(Op)) &&
    525              "Expected Value to be memoized");
    526     else
    527       assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) &&
    528              "Expected result to be memoized");
    529 #endif
    530     return *MappedOp;
    531   }
    532 
    533   const MDNode &N = *cast<MDNode>(Op);
    534   if (N.isDistinct())
    535     return mapDistinctNode(N);
    536   return None;
    537 }
    538 
    539 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) {
    540   assert(N.isDistinct() && "Expected a distinct node");
    541   assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node");
    542   DistinctWorklist.push_back(cast<MDNode>(
    543       (M.Flags & RF_MoveDistinctMDs)
    544           ? M.mapToSelf(&N)
    545           : M.mapToMetadata(&N, MDNode::replaceWithDistinct(N.clone()))));
    546   return DistinctWorklist.back();
    547 }
    548 
    549 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD,
    550                                                   Value *MappedV) {
    551   if (CMD.getValue() == MappedV)
    552     return const_cast<ConstantAsMetadata *>(&CMD);
    553   return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr;
    554 }
    555 
    556 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const {
    557   if (!Op)
    558     return nullptr;
    559 
    560   if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op))
    561     return *MappedOp;
    562 
    563   if (isa<MDString>(Op))
    564     return const_cast<Metadata *>(Op);
    565 
    566   if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op))
    567     return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue()));
    568 
    569   return None;
    570 }
    571 
    572 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) {
    573   auto Where = Info.find(&Op);
    574   assert(Where != Info.end() && "Expected a valid reference");
    575 
    576   auto &OpD = Where->second;
    577   if (!OpD.HasChanged)
    578     return Op;
    579 
    580   // Lazily construct a temporary node.
    581   if (!OpD.Placeholder)
    582     OpD.Placeholder = Op.clone();
    583 
    584   return *OpD.Placeholder;
    585 }
    586 
    587 template <class OperandMapper>
    588 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) {
    589   assert(!N.isUniqued() && "Expected distinct or temporary nodes");
    590   for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) {
    591     Metadata *Old = N.getOperand(I);
    592     Metadata *New = mapOperand(Old);
    593 
    594     if (Old != New)
    595       N.replaceOperandWith(I, New);
    596   }
    597 }
    598 
    599 namespace {
    600 /// An entry in the worklist for the post-order traversal.
    601 struct POTWorklistEntry {
    602   MDNode *N;              ///< Current node.
    603   MDNode::op_iterator Op; ///< Current operand of \c N.
    604 
    605   /// Keep a flag of whether operands have changed in the worklist to avoid
    606   /// hitting the map in \a UniquedGraph.
    607   bool HasChanged = false;
    608 
    609   POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {}
    610 };
    611 } // end namespace
    612 
    613 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) {
    614   assert(G.Info.empty() && "Expected a fresh traversal");
    615   assert(FirstN.isUniqued() && "Expected uniqued node in POT");
    616 
    617   // Construct a post-order traversal of the uniqued subgraph under FirstN.
    618   bool AnyChanges = false;
    619   SmallVector<POTWorklistEntry, 16> Worklist;
    620   Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN)));
    621   (void)G.Info[&FirstN];
    622   while (!Worklist.empty()) {
    623     // Start or continue the traversal through the this node's operands.
    624     auto &WE = Worklist.back();
    625     if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) {
    626       // Push a new node to traverse first.
    627       Worklist.push_back(POTWorklistEntry(*N));
    628       continue;
    629     }
    630 
    631     // Push the node onto the POT.
    632     assert(WE.N->isUniqued() && "Expected only uniqued nodes");
    633     assert(WE.Op == WE.N->op_end() && "Expected to visit all operands");
    634     auto &D = G.Info[WE.N];
    635     AnyChanges |= D.HasChanged = WE.HasChanged;
    636     D.ID = G.POT.size();
    637     G.POT.push_back(WE.N);
    638 
    639     // Pop the node off the worklist.
    640     Worklist.pop_back();
    641   }
    642   return AnyChanges;
    643 }
    644 
    645 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I,
    646                                     MDNode::op_iterator E, bool &HasChanged) {
    647   while (I != E) {
    648     Metadata *Op = *I++; // Increment even on early return.
    649     if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) {
    650       // Check if the operand changes.
    651       HasChanged |= Op != *MappedOp;
    652       continue;
    653     }
    654 
    655     // A uniqued metadata node.
    656     MDNode &OpN = *cast<MDNode>(Op);
    657     assert(OpN.isUniqued() &&
    658            "Only uniqued operands cannot be mapped immediately");
    659     if (G.Info.insert(std::make_pair(&OpN, Data())).second)
    660       return &OpN; // This is a new one.  Return it.
    661   }
    662   return nullptr;
    663 }
    664 
    665 void MDNodeMapper::UniquedGraph::propagateChanges() {
    666   bool AnyChanges;
    667   do {
    668     AnyChanges = false;
    669     for (MDNode *N : POT) {
    670       auto &D = Info[N];
    671       if (D.HasChanged)
    672         continue;
    673 
    674       if (!llvm::any_of(N->operands(), [&](const Metadata *Op) {
    675             auto Where = Info.find(Op);
    676             return Where != Info.end() && Where->second.HasChanged;
    677           }))
    678         continue;
    679 
    680       AnyChanges = D.HasChanged = true;
    681     }
    682   } while (AnyChanges);
    683 }
    684 
    685 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) {
    686   // Construct uniqued nodes, building forward references as necessary.
    687   SmallVector<MDNode *, 16> CyclicNodes;
    688   for (auto *N : G.POT) {
    689     auto &D = G.Info[N];
    690     if (!D.HasChanged) {
    691       // The node hasn't changed.
    692       M.mapToSelf(N);
    693       continue;
    694     }
    695 
    696     // Remember whether this node had a placeholder.
    697     bool HadPlaceholder(D.Placeholder);
    698 
    699     // Clone the uniqued node and remap the operands.
    700     TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone();
    701     remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) {
    702       if (Optional<Metadata *> MappedOp = getMappedOp(Old))
    703         return *MappedOp;
    704       assert(G.Info[Old].ID > D.ID && "Expected a forward reference");
    705       return &G.getFwdReference(*cast<MDNode>(Old));
    706     });
    707 
    708     auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN));
    709     M.mapToMetadata(N, NewN);
    710 
    711     // Nodes that were referenced out of order in the POT are involved in a
    712     // uniquing cycle.
    713     if (HadPlaceholder)
    714       CyclicNodes.push_back(NewN);
    715   }
    716 
    717   // Resolve cycles.
    718   for (auto *N : CyclicNodes)
    719     if (!N->isResolved())
    720       N->resolveCycles();
    721 }
    722 
    723 Metadata *MDNodeMapper::map(const MDNode &N) {
    724   assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive");
    725   assert(!(M.Flags & RF_NoModuleLevelChanges) &&
    726          "MDNodeMapper::map assumes module-level changes");
    727 
    728   // Require resolved nodes whenever metadata might be remapped.
    729   assert(N.isResolved() && "Unexpected unresolved node");
    730 
    731   Metadata *MappedN =
    732       N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N);
    733   while (!DistinctWorklist.empty())
    734     remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) {
    735       if (Optional<Metadata *> MappedOp = tryToMapOperand(Old))
    736         return *MappedOp;
    737       return mapTopLevelUniquedNode(*cast<MDNode>(Old));
    738     });
    739   return MappedN;
    740 }
    741 
    742 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) {
    743   assert(FirstN.isUniqued() && "Expected uniqued node");
    744 
    745   // Create a post-order traversal of uniqued nodes under FirstN.
    746   UniquedGraph G;
    747   if (!createPOT(G, FirstN)) {
    748     // Return early if no nodes have changed.
    749     for (const MDNode *N : G.POT)
    750       M.mapToSelf(N);
    751     return &const_cast<MDNode &>(FirstN);
    752   }
    753 
    754   // Update graph with all nodes that have changed.
    755   G.propagateChanges();
    756 
    757   // Map all the nodes in the graph.
    758   mapNodesInPOT(G);
    759 
    760   // Return the original node, remapped.
    761   return *getMappedOp(&FirstN);
    762 }
    763 
    764 namespace {
    765 
    766 struct MapMetadataDisabler {
    767   ValueToValueMapTy &VM;
    768 
    769   MapMetadataDisabler(ValueToValueMapTy &VM) : VM(VM) {
    770     VM.disableMapMetadata();
    771   }
    772   ~MapMetadataDisabler() { VM.enableMapMetadata(); }
    773 };
    774 
    775 } // end namespace
    776 
    777 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) {
    778   // If the value already exists in the map, use it.
    779   if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD))
    780     return *NewMD;
    781 
    782   if (isa<MDString>(MD))
    783     return const_cast<Metadata *>(MD);
    784 
    785   // This is a module-level metadata.  If nothing at the module level is
    786   // changing, use an identity mapping.
    787   if ((Flags & RF_NoModuleLevelChanges))
    788     return const_cast<Metadata *>(MD);
    789 
    790   if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) {
    791     // Disallow recursion into metadata mapping through mapValue.
    792     MapMetadataDisabler MMD(getVM());
    793 
    794     // Don't memoize ConstantAsMetadata.  Instead of lasting until the
    795     // LLVMContext is destroyed, they can be deleted when the GlobalValue they
    796     // reference is destructed.  These aren't super common, so the extra
    797     // indirection isn't that expensive.
    798     return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue()));
    799   }
    800 
    801   assert(isa<MDNode>(MD) && "Expected a metadata node");
    802 
    803   return None;
    804 }
    805 
    806 Metadata *Mapper::mapMetadata(const Metadata *MD) {
    807   assert(MD && "Expected valid metadata");
    808   assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata");
    809 
    810   if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD))
    811     return *NewMD;
    812 
    813   return MDNodeMapper(*this).map(*cast<MDNode>(MD));
    814 }
    815 
    816 void Mapper::flush() {
    817   // Flush out the worklist of global values.
    818   while (!Worklist.empty()) {
    819     WorklistEntry E = Worklist.pop_back_val();
    820     CurrentMCID = E.MCID;
    821     switch (E.Kind) {
    822     case WorklistEntry::MapGlobalInit:
    823       E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init));
    824       break;
    825     case WorklistEntry::MapAppendingVar: {
    826       unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers;
    827       mapAppendingVariable(*E.Data.AppendingGV.GV,
    828                            E.Data.AppendingGV.InitPrefix,
    829                            E.AppendingGVIsOldCtorDtor,
    830                            makeArrayRef(AppendingInits).slice(PrefixSize));
    831       AppendingInits.resize(PrefixSize);
    832       break;
    833     }
    834     case WorklistEntry::MapGlobalAliasee:
    835       E.Data.GlobalAliasee.GA->setAliasee(
    836           mapConstant(E.Data.GlobalAliasee.Aliasee));
    837       break;
    838     case WorklistEntry::RemapFunction:
    839       remapFunction(*E.Data.RemapF);
    840       break;
    841     }
    842   }
    843   CurrentMCID = 0;
    844 
    845   // Finish logic for block addresses now that all global values have been
    846   // handled.
    847   while (!DelayedBBs.empty()) {
    848     DelayedBasicBlock DBB = DelayedBBs.pop_back_val();
    849     BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB));
    850     DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB);
    851   }
    852 }
    853 
    854 void Mapper::remapInstruction(Instruction *I) {
    855   // Remap operands.
    856   for (Use &Op : I->operands()) {
    857     Value *V = mapValue(Op);
    858     // If we aren't ignoring missing entries, assert that something happened.
    859     if (V)
    860       Op = V;
    861     else
    862       assert((Flags & RF_IgnoreMissingLocals) &&
    863              "Referenced value not in value map!");
    864   }
    865 
    866   // Remap phi nodes' incoming blocks.
    867   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    868     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    869       Value *V = mapValue(PN->getIncomingBlock(i));
    870       // If we aren't ignoring missing entries, assert that something happened.
    871       if (V)
    872         PN->setIncomingBlock(i, cast<BasicBlock>(V));
    873       else
    874         assert((Flags & RF_IgnoreMissingLocals) &&
    875                "Referenced block not in value map!");
    876     }
    877   }
    878 
    879   // Remap attached metadata.
    880   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
    881   I->getAllMetadata(MDs);
    882   for (const auto &MI : MDs) {
    883     MDNode *Old = MI.second;
    884     MDNode *New = cast_or_null<MDNode>(mapMetadata(Old));
    885     if (New != Old)
    886       I->setMetadata(MI.first, New);
    887   }
    888 
    889   if (!TypeMapper)
    890     return;
    891 
    892   // If the instruction's type is being remapped, do so now.
    893   if (auto CS = CallSite(I)) {
    894     SmallVector<Type *, 3> Tys;
    895     FunctionType *FTy = CS.getFunctionType();
    896     Tys.reserve(FTy->getNumParams());
    897     for (Type *Ty : FTy->params())
    898       Tys.push_back(TypeMapper->remapType(Ty));
    899     CS.mutateFunctionType(FunctionType::get(
    900         TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
    901     return;
    902   }
    903   if (auto *AI = dyn_cast<AllocaInst>(I))
    904     AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
    905   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    906     GEP->setSourceElementType(
    907         TypeMapper->remapType(GEP->getSourceElementType()));
    908     GEP->setResultElementType(
    909         TypeMapper->remapType(GEP->getResultElementType()));
    910   }
    911   I->mutateType(TypeMapper->remapType(I->getType()));
    912 }
    913 
    914 void Mapper::remapFunction(Function &F) {
    915   // Remap the operands.
    916   for (Use &Op : F.operands())
    917     if (Op)
    918       Op = mapValue(Op);
    919 
    920   // Remap the metadata attachments.
    921   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
    922   F.getAllMetadata(MDs);
    923   F.clearMetadata();
    924   for (const auto &I : MDs)
    925     F.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second)));
    926 
    927   // Remap the argument types.
    928   if (TypeMapper)
    929     for (Argument &A : F.args())
    930       A.mutateType(TypeMapper->remapType(A.getType()));
    931 
    932   // Remap the instructions.
    933   for (BasicBlock &BB : F)
    934     for (Instruction &I : BB)
    935       remapInstruction(&I);
    936 }
    937 
    938 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix,
    939                                   bool IsOldCtorDtor,
    940                                   ArrayRef<Constant *> NewMembers) {
    941   SmallVector<Constant *, 16> Elements;
    942   if (InitPrefix) {
    943     unsigned NumElements =
    944         cast<ArrayType>(InitPrefix->getType())->getNumElements();
    945     for (unsigned I = 0; I != NumElements; ++I)
    946       Elements.push_back(InitPrefix->getAggregateElement(I));
    947   }
    948 
    949   PointerType *VoidPtrTy;
    950   Type *EltTy;
    951   if (IsOldCtorDtor) {
    952     // FIXME: This upgrade is done during linking to support the C API.  See
    953     // also IRLinker::linkAppendingVarProto() in IRMover.cpp.
    954     VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo();
    955     auto &ST = *cast<StructType>(NewMembers.front()->getType());
    956     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    957     EltTy = StructType::get(GV.getContext(), Tys, false);
    958   }
    959 
    960   for (auto *V : NewMembers) {
    961     Constant *NewV;
    962     if (IsOldCtorDtor) {
    963       auto *S = cast<ConstantStruct>(V);
    964       auto *E1 = mapValue(S->getOperand(0));
    965       auto *E2 = mapValue(S->getOperand(1));
    966       Value *Null = Constant::getNullValue(VoidPtrTy);
    967       NewV =
    968           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
    969     } else {
    970       NewV = cast_or_null<Constant>(mapValue(V));
    971     }
    972     Elements.push_back(NewV);
    973   }
    974 
    975   GV.setInitializer(ConstantArray::get(
    976       cast<ArrayType>(GV.getType()->getElementType()), Elements));
    977 }
    978 
    979 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init,
    980                                           unsigned MCID) {
    981   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
    982   assert(MCID < MCs.size() && "Invalid mapping context");
    983 
    984   WorklistEntry WE;
    985   WE.Kind = WorklistEntry::MapGlobalInit;
    986   WE.MCID = MCID;
    987   WE.Data.GVInit.GV = &GV;
    988   WE.Data.GVInit.Init = &Init;
    989   Worklist.push_back(WE);
    990 }
    991 
    992 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV,
    993                                           Constant *InitPrefix,
    994                                           bool IsOldCtorDtor,
    995                                           ArrayRef<Constant *> NewMembers,
    996                                           unsigned MCID) {
    997   assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule");
    998   assert(MCID < MCs.size() && "Invalid mapping context");
    999 
   1000   WorklistEntry WE;
   1001   WE.Kind = WorklistEntry::MapAppendingVar;
   1002   WE.MCID = MCID;
   1003   WE.Data.AppendingGV.GV = &GV;
   1004   WE.Data.AppendingGV.InitPrefix = InitPrefix;
   1005   WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor;
   1006   WE.AppendingGVNumNewMembers = NewMembers.size();
   1007   Worklist.push_back(WE);
   1008   AppendingInits.append(NewMembers.begin(), NewMembers.end());
   1009 }
   1010 
   1011 void Mapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
   1012                                       unsigned MCID) {
   1013   assert(AlreadyScheduled.insert(&GA).second && "Should not reschedule");
   1014   assert(MCID < MCs.size() && "Invalid mapping context");
   1015 
   1016   WorklistEntry WE;
   1017   WE.Kind = WorklistEntry::MapGlobalAliasee;
   1018   WE.MCID = MCID;
   1019   WE.Data.GlobalAliasee.GA = &GA;
   1020   WE.Data.GlobalAliasee.Aliasee = &Aliasee;
   1021   Worklist.push_back(WE);
   1022 }
   1023 
   1024 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) {
   1025   assert(AlreadyScheduled.insert(&F).second && "Should not reschedule");
   1026   assert(MCID < MCs.size() && "Invalid mapping context");
   1027 
   1028   WorklistEntry WE;
   1029   WE.Kind = WorklistEntry::RemapFunction;
   1030   WE.MCID = MCID;
   1031   WE.Data.RemapF = &F;
   1032   Worklist.push_back(WE);
   1033 }
   1034 
   1035 void Mapper::addFlags(RemapFlags Flags) {
   1036   assert(!hasWorkToDo() && "Expected to have flushed the worklist");
   1037   this->Flags = this->Flags | Flags;
   1038 }
   1039 
   1040 static Mapper *getAsMapper(void *pImpl) {
   1041   return reinterpret_cast<Mapper *>(pImpl);
   1042 }
   1043 
   1044 namespace {
   1045 
   1046 class FlushingMapper {
   1047   Mapper &M;
   1048 
   1049 public:
   1050   explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) {
   1051     assert(!M.hasWorkToDo() && "Expected to be flushed");
   1052   }
   1053   ~FlushingMapper() { M.flush(); }
   1054   Mapper *operator->() const { return &M; }
   1055 };
   1056 
   1057 } // end namespace
   1058 
   1059 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags,
   1060                          ValueMapTypeRemapper *TypeMapper,
   1061                          ValueMaterializer *Materializer)
   1062     : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {}
   1063 
   1064 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); }
   1065 
   1066 unsigned
   1067 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM,
   1068                                              ValueMaterializer *Materializer) {
   1069   return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer);
   1070 }
   1071 
   1072 void ValueMapper::addFlags(RemapFlags Flags) {
   1073   FlushingMapper(pImpl)->addFlags(Flags);
   1074 }
   1075 
   1076 Value *ValueMapper::mapValue(const Value &V) {
   1077   return FlushingMapper(pImpl)->mapValue(&V);
   1078 }
   1079 
   1080 Constant *ValueMapper::mapConstant(const Constant &C) {
   1081   return cast_or_null<Constant>(mapValue(C));
   1082 }
   1083 
   1084 Metadata *ValueMapper::mapMetadata(const Metadata &MD) {
   1085   return FlushingMapper(pImpl)->mapMetadata(&MD);
   1086 }
   1087 
   1088 MDNode *ValueMapper::mapMDNode(const MDNode &N) {
   1089   return cast_or_null<MDNode>(mapMetadata(N));
   1090 }
   1091 
   1092 void ValueMapper::remapInstruction(Instruction &I) {
   1093   FlushingMapper(pImpl)->remapInstruction(&I);
   1094 }
   1095 
   1096 void ValueMapper::remapFunction(Function &F) {
   1097   FlushingMapper(pImpl)->remapFunction(F);
   1098 }
   1099 
   1100 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV,
   1101                                                Constant &Init,
   1102                                                unsigned MCID) {
   1103   getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID);
   1104 }
   1105 
   1106 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV,
   1107                                                Constant *InitPrefix,
   1108                                                bool IsOldCtorDtor,
   1109                                                ArrayRef<Constant *> NewMembers,
   1110                                                unsigned MCID) {
   1111   getAsMapper(pImpl)->scheduleMapAppendingVariable(
   1112       GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID);
   1113 }
   1114 
   1115 void ValueMapper::scheduleMapGlobalAliasee(GlobalAlias &GA, Constant &Aliasee,
   1116                                            unsigned MCID) {
   1117   getAsMapper(pImpl)->scheduleMapGlobalAliasee(GA, Aliasee, MCID);
   1118 }
   1119 
   1120 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) {
   1121   getAsMapper(pImpl)->scheduleRemapFunction(F, MCID);
   1122 }
   1123