Home | History | Annotate | Download | only in Bitcode
      1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitstreamReader class.  This class can be used to
     11 // read an arbitrary bitstream, regardless of its contents.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H
     16 #define LLVM_BITCODE_BITSTREAMREADER_H
     17 
     18 #include "llvm/Bitcode/BitCodes.h"
     19 #include "llvm/Support/Endian.h"
     20 #include "llvm/Support/MathExtras.h"
     21 #include "llvm/Support/StreamingMemoryObject.h"
     22 #include <climits>
     23 #include <string>
     24 #include <vector>
     25 
     26 namespace llvm {
     27 
     28 /// This class is used to read from an LLVM bitcode stream, maintaining
     29 /// information that is global to decoding the entire file. While a file is
     30 /// being read, multiple cursors can be independently advanced or skipped around
     31 /// within the file.  These are represented by the BitstreamCursor class.
     32 class BitstreamReader {
     33 public:
     34   /// This contains information emitted to BLOCKINFO_BLOCK blocks. These
     35   /// describe abbreviations that all blocks of the specified ID inherit.
     36   struct BlockInfo {
     37     unsigned BlockID;
     38     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> Abbrevs;
     39     std::string Name;
     40 
     41     std::vector<std::pair<unsigned, std::string> > RecordNames;
     42   };
     43 private:
     44   std::unique_ptr<MemoryObject> BitcodeBytes;
     45 
     46   std::vector<BlockInfo> BlockInfoRecords;
     47 
     48   /// This is set to true if we don't care about the block/record name
     49   /// information in the BlockInfo block. Only llvm-bcanalyzer uses this.
     50   bool IgnoreBlockInfoNames;
     51 
     52   BitstreamReader(const BitstreamReader&) = delete;
     53   void operator=(const BitstreamReader&) = delete;
     54 public:
     55   BitstreamReader() : IgnoreBlockInfoNames(true) {
     56   }
     57 
     58   BitstreamReader(const unsigned char *Start, const unsigned char *End)
     59       : IgnoreBlockInfoNames(true) {
     60     init(Start, End);
     61   }
     62 
     63   BitstreamReader(std::unique_ptr<MemoryObject> BitcodeBytes)
     64       : BitcodeBytes(std::move(BitcodeBytes)), IgnoreBlockInfoNames(true) {}
     65 
     66   BitstreamReader(BitstreamReader &&Other) {
     67     *this = std::move(Other);
     68   }
     69 
     70   BitstreamReader &operator=(BitstreamReader &&Other) {
     71     BitcodeBytes = std::move(Other.BitcodeBytes);
     72     // Explicitly swap block info, so that nothing gets destroyed twice.
     73     std::swap(BlockInfoRecords, Other.BlockInfoRecords);
     74     IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames;
     75     return *this;
     76   }
     77 
     78   void init(const unsigned char *Start, const unsigned char *End) {
     79     assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
     80     BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End));
     81   }
     82 
     83   MemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
     84 
     85   /// This is called by clients that want block/record name information.
     86   void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; }
     87   bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
     88 
     89   //===--------------------------------------------------------------------===//
     90   // Block Manipulation
     91   //===--------------------------------------------------------------------===//
     92 
     93   /// Return true if we've already read and processed the block info block for
     94   /// this Bitstream. We only process it for the first cursor that walks over
     95   /// it.
     96   bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
     97 
     98   /// If there is block info for the specified ID, return it, otherwise return
     99   /// null.
    100   const BlockInfo *getBlockInfo(unsigned BlockID) const {
    101     // Common case, the most recent entry matches BlockID.
    102     if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
    103       return &BlockInfoRecords.back();
    104 
    105     for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size());
    106          i != e; ++i)
    107       if (BlockInfoRecords[i].BlockID == BlockID)
    108         return &BlockInfoRecords[i];
    109     return nullptr;
    110   }
    111 
    112   BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
    113     if (const BlockInfo *BI = getBlockInfo(BlockID))
    114       return *const_cast<BlockInfo*>(BI);
    115 
    116     // Otherwise, add a new record.
    117     BlockInfoRecords.emplace_back();
    118     BlockInfoRecords.back().BlockID = BlockID;
    119     return BlockInfoRecords.back();
    120   }
    121 
    122   /// Takes block info from the other bitstream reader.
    123   ///
    124   /// This is a "take" operation because BlockInfo records are non-trivial, and
    125   /// indeed rather expensive.
    126   void takeBlockInfo(BitstreamReader &&Other) {
    127     assert(!hasBlockInfoRecords());
    128     BlockInfoRecords = std::move(Other.BlockInfoRecords);
    129   }
    130 };
    131 
    132 /// This represents a position within a bitstream. There may be multiple
    133 /// independent cursors reading within one bitstream, each maintaining their
    134 /// own local state.
    135 class SimpleBitstreamCursor {
    136   BitstreamReader *R = nullptr;
    137   size_t NextChar = 0;
    138 
    139   // The size of the bicode. 0 if we don't know it yet.
    140   size_t Size = 0;
    141 
    142   /// This is the current data we have pulled from the stream but have not
    143   /// returned to the client. This is specifically and intentionally defined to
    144   /// follow the word size of the host machine for efficiency. We use word_t in
    145   /// places that are aware of this to make it perfectly explicit what is going
    146   /// on.
    147 public:
    148   typedef size_t word_t;
    149 
    150 private:
    151   word_t CurWord = 0;
    152 
    153   /// This is the number of bits in CurWord that are valid. This is always from
    154   /// [0...bits_of(size_t)-1] inclusive.
    155   unsigned BitsInCurWord = 0;
    156 
    157 public:
    158   static const size_t MaxChunkSize = sizeof(word_t) * 8;
    159 
    160   SimpleBitstreamCursor() = default;
    161 
    162   explicit SimpleBitstreamCursor(BitstreamReader &R) : R(&R) {}
    163   explicit SimpleBitstreamCursor(BitstreamReader *R) : R(R) {}
    164 
    165   bool canSkipToPos(size_t pos) const {
    166     // pos can be skipped to if it is a valid address or one byte past the end.
    167     return pos == 0 ||
    168            R->getBitcodeBytes().isValidAddress(static_cast<uint64_t>(pos - 1));
    169   }
    170 
    171   bool AtEndOfStream() {
    172     if (BitsInCurWord != 0)
    173       return false;
    174     if (Size != 0)
    175       return Size <= NextChar;
    176     fillCurWord();
    177     return BitsInCurWord == 0;
    178   }
    179 
    180   /// Return the bit # of the bit we are reading.
    181   uint64_t GetCurrentBitNo() const {
    182     return NextChar*CHAR_BIT - BitsInCurWord;
    183   }
    184 
    185   // Return the byte # of the current bit.
    186   uint64_t getCurrentByteNo() const { return GetCurrentBitNo() / 8; }
    187 
    188   BitstreamReader *getBitStreamReader() { return R; }
    189   const BitstreamReader *getBitStreamReader() const { return R; }
    190 
    191   /// Reset the stream to the specified bit number.
    192   void JumpToBit(uint64_t BitNo) {
    193     size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1);
    194     unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
    195     assert(canSkipToPos(ByteNo) && "Invalid location");
    196 
    197     // Move the cursor to the right word.
    198     NextChar = ByteNo;
    199     BitsInCurWord = 0;
    200 
    201     // Skip over any bits that are already consumed.
    202     if (WordBitNo)
    203       Read(WordBitNo);
    204   }
    205 
    206   /// Reset the stream to the bit pointed at by the specified pointer.
    207   ///
    208   /// The pointer must be a dereferenceable pointer into the bytes in the
    209   /// underlying memory object.
    210   void jumpToPointer(const uint8_t *Pointer) {
    211     auto *Pointer0 = getPointerToByte(0, 1);
    212     assert((intptr_t)Pointer0 <= (intptr_t)Pointer &&
    213            "Expected pointer into bitstream");
    214 
    215     JumpToBit(8 * (Pointer - Pointer0));
    216     assert((intptr_t)getPointerToByte(getCurrentByteNo(), 1) ==
    217                (intptr_t)Pointer &&
    218            "Expected to reach pointer");
    219   }
    220   void jumpToPointer(const char *Pointer) {
    221     jumpToPointer((const uint8_t *)Pointer);
    222   }
    223 
    224   /// Get a pointer into the bitstream at the specified byte offset.
    225   const uint8_t *getPointerToByte(uint64_t ByteNo, uint64_t NumBytes) {
    226     return R->getBitcodeBytes().getPointer(ByteNo, NumBytes);
    227   }
    228 
    229   /// Get a pointer into the bitstream at the specified bit offset.
    230   ///
    231   /// The bit offset must be on a byte boundary.
    232   const uint8_t *getPointerToBit(uint64_t BitNo, uint64_t NumBytes) {
    233     assert(!(BitNo % 8) && "Expected bit on byte boundary");
    234     return getPointerToByte(BitNo / 8, NumBytes);
    235   }
    236 
    237   void fillCurWord() {
    238     if (Size != 0 && NextChar >= Size)
    239       report_fatal_error("Unexpected end of file");
    240 
    241     // Read the next word from the stream.
    242     uint8_t Array[sizeof(word_t)] = {0};
    243 
    244     uint64_t BytesRead =
    245         R->getBitcodeBytes().readBytes(Array, sizeof(Array), NextChar);
    246 
    247     // If we run out of data, stop at the end of the stream.
    248     if (BytesRead == 0) {
    249       CurWord = 0;
    250       BitsInCurWord = 0;
    251       Size = NextChar;
    252       return;
    253     }
    254 
    255     CurWord =
    256         support::endian::read<word_t, support::little, support::unaligned>(
    257             Array);
    258     NextChar += BytesRead;
    259     BitsInCurWord = BytesRead * 8;
    260   }
    261 
    262   word_t Read(unsigned NumBits) {
    263     static const unsigned BitsInWord = MaxChunkSize;
    264 
    265     assert(NumBits && NumBits <= BitsInWord &&
    266            "Cannot return zero or more than BitsInWord bits!");
    267 
    268     static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
    269 
    270     // If the field is fully contained by CurWord, return it quickly.
    271     if (BitsInCurWord >= NumBits) {
    272       word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
    273 
    274       // Use a mask to avoid undefined behavior.
    275       CurWord >>= (NumBits & Mask);
    276 
    277       BitsInCurWord -= NumBits;
    278       return R;
    279     }
    280 
    281     word_t R = BitsInCurWord ? CurWord : 0;
    282     unsigned BitsLeft = NumBits - BitsInCurWord;
    283 
    284     fillCurWord();
    285 
    286     // If we run out of data, stop at the end of the stream.
    287     if (BitsLeft > BitsInCurWord)
    288       return 0;
    289 
    290     word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
    291 
    292     // Use a mask to avoid undefined behavior.
    293     CurWord >>= (BitsLeft & Mask);
    294 
    295     BitsInCurWord -= BitsLeft;
    296 
    297     R |= R2 << (NumBits - BitsLeft);
    298 
    299     return R;
    300   }
    301 
    302   uint32_t ReadVBR(unsigned NumBits) {
    303     uint32_t Piece = Read(NumBits);
    304     if ((Piece & (1U << (NumBits-1))) == 0)
    305       return Piece;
    306 
    307     uint32_t Result = 0;
    308     unsigned NextBit = 0;
    309     while (1) {
    310       Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
    311 
    312       if ((Piece & (1U << (NumBits-1))) == 0)
    313         return Result;
    314 
    315       NextBit += NumBits-1;
    316       Piece = Read(NumBits);
    317     }
    318   }
    319 
    320   // Read a VBR that may have a value up to 64-bits in size. The chunk size of
    321   // the VBR must still be <= 32 bits though.
    322   uint64_t ReadVBR64(unsigned NumBits) {
    323     uint32_t Piece = Read(NumBits);
    324     if ((Piece & (1U << (NumBits-1))) == 0)
    325       return uint64_t(Piece);
    326 
    327     uint64_t Result = 0;
    328     unsigned NextBit = 0;
    329     while (1) {
    330       Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
    331 
    332       if ((Piece & (1U << (NumBits-1))) == 0)
    333         return Result;
    334 
    335       NextBit += NumBits-1;
    336       Piece = Read(NumBits);
    337     }
    338   }
    339 
    340   void SkipToFourByteBoundary() {
    341     // If word_t is 64-bits and if we've read less than 32 bits, just dump
    342     // the bits we have up to the next 32-bit boundary.
    343     if (sizeof(word_t) > 4 &&
    344         BitsInCurWord >= 32) {
    345       CurWord >>= BitsInCurWord-32;
    346       BitsInCurWord = 32;
    347       return;
    348     }
    349 
    350     BitsInCurWord = 0;
    351   }
    352 
    353   /// Skip to the end of the file.
    354   void skipToEnd() { NextChar = R->getBitcodeBytes().getExtent(); }
    355 
    356   /// Prevent the cursor from reading past a byte boundary.
    357   ///
    358   /// Prevent the cursor from requesting byte reads past \c Limit.  This is
    359   /// useful when working with a cursor on a StreamingMemoryObject, when it's
    360   /// desirable to avoid invalidating the result of getPointerToByte().
    361   ///
    362   /// If \c Limit is on a word boundary, AtEndOfStream() will return true if
    363   /// the cursor position reaches or exceeds \c Limit, regardless of the true
    364   /// number of available bytes.  Otherwise, AtEndOfStream() returns true when
    365   /// it reaches or exceeds the next word boundary.
    366   void setArtificialByteLimit(uint64_t Limit) {
    367     assert(getCurrentByteNo() < Limit && "Move cursor before lowering limit");
    368 
    369     // Round to word boundary.
    370     Limit = alignTo(Limit, sizeof(word_t));
    371 
    372     // Only change size if the new one is lower.
    373     if (!Size || Size > Limit)
    374       Size = Limit;
    375   }
    376 
    377   /// Return the Size, if known.
    378   uint64_t getSizeIfKnown() const { return Size; }
    379 };
    380 
    381 /// When advancing through a bitstream cursor, each advance can discover a few
    382 /// different kinds of entries:
    383 struct BitstreamEntry {
    384   enum {
    385     Error,    // Malformed bitcode was found.
    386     EndBlock, // We've reached the end of the current block, (or the end of the
    387               // file, which is treated like a series of EndBlock records.
    388     SubBlock, // This is the start of a new subblock of a specific ID.
    389     Record    // This is a record with a specific AbbrevID.
    390   } Kind;
    391 
    392   unsigned ID;
    393 
    394   static BitstreamEntry getError() {
    395     BitstreamEntry E; E.Kind = Error; return E;
    396   }
    397   static BitstreamEntry getEndBlock() {
    398     BitstreamEntry E; E.Kind = EndBlock; return E;
    399   }
    400   static BitstreamEntry getSubBlock(unsigned ID) {
    401     BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
    402   }
    403   static BitstreamEntry getRecord(unsigned AbbrevID) {
    404     BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
    405   }
    406 };
    407 
    408 /// This represents a position within a bitcode file, implemented on top of a
    409 /// SimpleBitstreamCursor.
    410 ///
    411 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
    412 /// be passed by value.
    413 class BitstreamCursor : SimpleBitstreamCursor {
    414   // This is the declared size of code values used for the current block, in
    415   // bits.
    416   unsigned CurCodeSize = 2;
    417 
    418   /// Abbrevs installed at in this block.
    419   std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> CurAbbrevs;
    420 
    421   struct Block {
    422     unsigned PrevCodeSize;
    423     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> PrevAbbrevs;
    424     explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
    425   };
    426 
    427   /// This tracks the codesize of parent blocks.
    428   SmallVector<Block, 8> BlockScope;
    429 
    430 
    431 public:
    432   static const size_t MaxChunkSize = sizeof(word_t) * 8;
    433 
    434   BitstreamCursor() = default;
    435 
    436   explicit BitstreamCursor(BitstreamReader &R) { init(&R); }
    437 
    438   void init(BitstreamReader *R) {
    439     freeState();
    440     SimpleBitstreamCursor::operator=(SimpleBitstreamCursor(R));
    441     CurCodeSize = 2;
    442   }
    443 
    444   void freeState();
    445 
    446   using SimpleBitstreamCursor::canSkipToPos;
    447   using SimpleBitstreamCursor::AtEndOfStream;
    448   using SimpleBitstreamCursor::GetCurrentBitNo;
    449   using SimpleBitstreamCursor::getCurrentByteNo;
    450   using SimpleBitstreamCursor::getPointerToByte;
    451   using SimpleBitstreamCursor::getBitStreamReader;
    452   using SimpleBitstreamCursor::JumpToBit;
    453   using SimpleBitstreamCursor::fillCurWord;
    454   using SimpleBitstreamCursor::Read;
    455   using SimpleBitstreamCursor::ReadVBR;
    456   using SimpleBitstreamCursor::ReadVBR64;
    457 
    458   /// Return the number of bits used to encode an abbrev #.
    459   unsigned getAbbrevIDWidth() const { return CurCodeSize; }
    460 
    461   /// Flags that modify the behavior of advance().
    462   enum {
    463     /// If this flag is used, the advance() method does not automatically pop
    464     /// the block scope when the end of a block is reached.
    465     AF_DontPopBlockAtEnd = 1,
    466 
    467     /// If this flag is used, abbrev entries are returned just like normal
    468     /// records.
    469     AF_DontAutoprocessAbbrevs = 2
    470   };
    471 
    472   /// Advance the current bitstream, returning the next entry in the stream.
    473   BitstreamEntry advance(unsigned Flags = 0) {
    474     while (1) {
    475       unsigned Code = ReadCode();
    476       if (Code == bitc::END_BLOCK) {
    477         // Pop the end of the block unless Flags tells us not to.
    478         if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
    479           return BitstreamEntry::getError();
    480         return BitstreamEntry::getEndBlock();
    481       }
    482 
    483       if (Code == bitc::ENTER_SUBBLOCK)
    484         return BitstreamEntry::getSubBlock(ReadSubBlockID());
    485 
    486       if (Code == bitc::DEFINE_ABBREV &&
    487           !(Flags & AF_DontAutoprocessAbbrevs)) {
    488         // We read and accumulate abbrev's, the client can't do anything with
    489         // them anyway.
    490         ReadAbbrevRecord();
    491         continue;
    492       }
    493 
    494       return BitstreamEntry::getRecord(Code);
    495     }
    496   }
    497 
    498   /// This is a convenience function for clients that don't expect any
    499   /// subblocks. This just skips over them automatically.
    500   BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
    501     while (1) {
    502       // If we found a normal entry, return it.
    503       BitstreamEntry Entry = advance(Flags);
    504       if (Entry.Kind != BitstreamEntry::SubBlock)
    505         return Entry;
    506 
    507       // If we found a sub-block, just skip over it and check the next entry.
    508       if (SkipBlock())
    509         return BitstreamEntry::getError();
    510     }
    511   }
    512 
    513   unsigned ReadCode() {
    514     return Read(CurCodeSize);
    515   }
    516 
    517 
    518   // Block header:
    519   //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
    520 
    521   /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
    522   unsigned ReadSubBlockID() {
    523     return ReadVBR(bitc::BlockIDWidth);
    524   }
    525 
    526   /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
    527   /// of this block. If the block record is malformed, return true.
    528   bool SkipBlock() {
    529     // Read and ignore the codelen value.  Since we are skipping this block, we
    530     // don't care what code widths are used inside of it.
    531     ReadVBR(bitc::CodeLenWidth);
    532     SkipToFourByteBoundary();
    533     unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
    534 
    535     // Check that the block wasn't partially defined, and that the offset isn't
    536     // bogus.
    537     size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8;
    538     if (AtEndOfStream() || !canSkipToPos(SkipTo/8))
    539       return true;
    540 
    541     JumpToBit(SkipTo);
    542     return false;
    543   }
    544 
    545   /// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true
    546   /// if the block has an error.
    547   bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
    548 
    549   bool ReadBlockEnd() {
    550     if (BlockScope.empty()) return true;
    551 
    552     // Block tail:
    553     //    [END_BLOCK, <align4bytes>]
    554     SkipToFourByteBoundary();
    555 
    556     popBlockScope();
    557     return false;
    558   }
    559 
    560 private:
    561 
    562   void popBlockScope() {
    563     CurCodeSize = BlockScope.back().PrevCodeSize;
    564 
    565     CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs);
    566     BlockScope.pop_back();
    567   }
    568 
    569   //===--------------------------------------------------------------------===//
    570   // Record Processing
    571   //===--------------------------------------------------------------------===//
    572 
    573 public:
    574   /// Return the abbreviation for the specified AbbrevId.
    575   const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) {
    576     unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV;
    577     if (AbbrevNo >= CurAbbrevs.size())
    578       report_fatal_error("Invalid abbrev number");
    579     return CurAbbrevs[AbbrevNo].get();
    580   }
    581 
    582   /// Read the current record and discard it.
    583   void skipRecord(unsigned AbbrevID);
    584 
    585   unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals,
    586                       StringRef *Blob = nullptr);
    587 
    588   //===--------------------------------------------------------------------===//
    589   // Abbrev Processing
    590   //===--------------------------------------------------------------------===//
    591   void ReadAbbrevRecord();
    592 
    593   bool ReadBlockInfoBlock();
    594 };
    595 
    596 } // End llvm namespace
    597 
    598 #endif
    599