Home | History | Annotate | Download | only in src
      1 //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===//
      2 //
      3 //                        The Subzero Code Generator
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Declares the Operand class and its target-independent subclasses.
     12 ///
     13 /// The main classes are Variable, which represents an LLVM variable that is
     14 /// either register- or stack-allocated, and the Constant hierarchy, which
     15 /// represents integer, floating-point, and/or symbolic constants.
     16 ///
     17 //===----------------------------------------------------------------------===//
     18 
     19 #ifndef SUBZERO_SRC_ICEOPERAND_H
     20 #define SUBZERO_SRC_ICEOPERAND_H
     21 
     22 #include "IceDefs.h"
     23 #include "IceCfg.h"
     24 #include "IceGlobalContext.h"
     25 #include "IceStringPool.h"
     26 #include "IceTypes.h"
     27 
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/Format.h"
     30 
     31 #include <limits>
     32 #include <type_traits>
     33 
     34 namespace Ice {
     35 
     36 class Operand {
     37   Operand() = delete;
     38   Operand(const Operand &) = delete;
     39   Operand &operator=(const Operand &) = delete;
     40 
     41 public:
     42   static constexpr size_t MaxTargetKinds = 10;
     43   enum OperandKind {
     44     kConst_Base,
     45     kConstInteger32,
     46     kConstInteger64,
     47     kConstFloat,
     48     kConstDouble,
     49     kConstRelocatable,
     50     kConstUndef,
     51     kConst_Target, // leave space for target-specific constant kinds
     52     kConst_Max = kConst_Target + MaxTargetKinds,
     53     kVariable,
     54     kVariable64On32,
     55     kVariableVecOn32,
     56     kVariableBoolean,
     57     kVariable_Target, // leave space for target-specific variable kinds
     58     kVariable_Max = kVariable_Target + MaxTargetKinds,
     59     // Target-specific operand classes use kTarget as the starting point for
     60     // their Kind enum space. Note that the value-spaces are shared across
     61     // targets. To avoid confusion over the definition of shared values, an
     62     // object specific to one target should never be passed to a different
     63     // target.
     64     kTarget,
     65     kTarget_Max = std::numeric_limits<uint8_t>::max(),
     66   };
     67   static_assert(kTarget <= kTarget_Max, "Must not be above max.");
     68   OperandKind getKind() const { return Kind; }
     69   Type getType() const { return Ty; }
     70 
     71   /// Every Operand keeps an array of the Variables referenced in the operand.
     72   /// This is so that the liveness operations can get quick access to the
     73   /// variables of interest, without having to dig so far into the operand.
     74   SizeT getNumVars() const { return NumVars; }
     75   Variable *getVar(SizeT I) const {
     76     assert(I < getNumVars());
     77     return Vars[I];
     78   }
     79   virtual void emit(const Cfg *Func) const = 0;
     80 
     81   /// \name Dumping functions.
     82   /// @{
     83 
     84   /// The dump(Func,Str) implementation must be sure to handle the situation
     85   /// where Func==nullptr.
     86   virtual void dump(const Cfg *Func, Ostream &Str) const = 0;
     87   void dump(const Cfg *Func) const {
     88     if (!BuildDefs::dump())
     89       return;
     90     assert(Func);
     91     dump(Func, Func->getContext()->getStrDump());
     92   }
     93   void dump(Ostream &Str) const {
     94     if (BuildDefs::dump())
     95       dump(nullptr, Str);
     96   }
     97   /// @}
     98 
     99   virtual ~Operand() = default;
    100 
    101   virtual Variable *asBoolean() { return nullptr; }
    102 
    103   virtual SizeT hashValue() const {
    104     llvm::report_fatal_error("Tried to hash unsupported operand type : " +
    105                              std::to_string(Kind));
    106     return 0;
    107   }
    108 
    109 protected:
    110   Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) {
    111     // It is undefined behavior to have a larger value in the enum
    112     assert(Kind <= kTarget_Max);
    113   }
    114 
    115   const Type Ty;
    116   const OperandKind Kind;
    117   /// Vars and NumVars are initialized by the derived class.
    118   SizeT NumVars = 0;
    119   Variable **Vars = nullptr;
    120 };
    121 
    122 template <class StreamType>
    123 inline StreamType &operator<<(StreamType &Str, const Operand &Op) {
    124   Op.dump(Str);
    125   return Str;
    126 }
    127 
    128 /// Constant is the abstract base class for constants. All constants are
    129 /// allocated from a global arena and are pooled.
    130 class Constant : public Operand {
    131   Constant() = delete;
    132   Constant(const Constant &) = delete;
    133   Constant &operator=(const Constant &) = delete;
    134 
    135 public:
    136   // Declare the lookup counter to take minimal space in a non-DUMP build.
    137   using CounterType =
    138       std::conditional<BuildDefs::dump(), uint64_t, uint8_t>::type;
    139   void emit(const Cfg *Func) const override { emit(Func->getTarget()); }
    140   virtual void emit(TargetLowering *Target) const = 0;
    141 
    142   static bool classof(const Operand *Operand) {
    143     OperandKind Kind = Operand->getKind();
    144     return Kind >= kConst_Base && Kind <= kConst_Max;
    145   }
    146 
    147   const GlobalString getLabelName() const { return LabelName; }
    148 
    149   /// Judge if this given immediate should be randomized or pooled By default
    150   /// should return false, only constant integers should truly go through this
    151   /// method.
    152   virtual bool shouldBeRandomizedOrPooled() const { return false; }
    153 
    154   bool getShouldBePooled() const { return ShouldBePooled; }
    155 
    156   // This should be thread-safe because the constant pool lock is acquired
    157   // before the method is invoked.
    158   void updateLookupCount() {
    159     if (!BuildDefs::dump())
    160       return;
    161     ++LookupCount;
    162   }
    163   CounterType getLookupCount() const { return LookupCount; }
    164   SizeT hashValue() const override { return 0; }
    165 
    166 protected:
    167   Constant(OperandKind Kind, Type Ty) : Operand(Kind, Ty) {
    168     Vars = nullptr;
    169     NumVars = 0;
    170   }
    171   /// Set the ShouldBePooled field to the proper value after the object is fully
    172   /// initialized.
    173   void initShouldBePooled();
    174   GlobalString LabelName;
    175   /// Whether we should pool this constant. Usually Float/Double and pooled
    176   /// Integers should be flagged true.  Ideally this field would be const, but
    177   /// it needs to be initialized only after the subclass is fully constructed.
    178   bool ShouldBePooled = false;
    179   /// Note: If ShouldBePooled is ever removed from the base class, we will want
    180   /// to completely disable LookupCount in a non-DUMP build to save space.
    181   CounterType LookupCount = 0;
    182 };
    183 
    184 /// ConstantPrimitive<> wraps a primitive type.
    185 template <typename T, Operand::OperandKind K>
    186 class ConstantPrimitive : public Constant {
    187   ConstantPrimitive() = delete;
    188   ConstantPrimitive(const ConstantPrimitive &) = delete;
    189   ConstantPrimitive &operator=(const ConstantPrimitive &) = delete;
    190 
    191 public:
    192   using PrimType = T;
    193 
    194   static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty,
    195                                    PrimType Value) {
    196     auto *Const =
    197         new (Ctx->allocate<ConstantPrimitive>()) ConstantPrimitive(Ty, Value);
    198     Const->initShouldBePooled();
    199     if (Const->getShouldBePooled())
    200       Const->initName(Ctx);
    201     return Const;
    202   }
    203   PrimType getValue() const { return Value; }
    204   using Constant::emit;
    205   void emit(TargetLowering *Target) const final;
    206   using Constant::dump;
    207   void dump(const Cfg *, Ostream &Str) const override {
    208     if (BuildDefs::dump())
    209       Str << getValue();
    210   }
    211 
    212   static bool classof(const Operand *Operand) {
    213     return Operand->getKind() == K;
    214   }
    215 
    216   SizeT hashValue() const override { return std::hash<PrimType>()(Value); }
    217 
    218   virtual bool shouldBeRandomizedOrPooled() const override { return false; }
    219 
    220 private:
    221   ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {}
    222 
    223   void initName(GlobalContext *Ctx) {
    224     std::string Buffer;
    225     llvm::raw_string_ostream Str(Buffer);
    226     constexpr bool IsCompact = !BuildDefs::dump();
    227     if (IsCompact) {
    228       switch (getType()) {
    229       case IceType_f32:
    230         Str << "$F";
    231         break;
    232       case IceType_f64:
    233         Str << "$D";
    234         break;
    235       default:
    236         // For constant pooling diversification
    237         Str << ".L$" << getType() << "$";
    238         break;
    239       }
    240     } else {
    241       Str << ".L$" << getType() << "$";
    242     }
    243     // Print hex characters byte by byte, starting from the most significant
    244     // byte.  NOTE: This ordering assumes Subzero runs on a little-endian
    245     // platform.  That means the possibility of different label names depending
    246     // on the endian-ness of the platform where Subzero runs.
    247     for (unsigned i = 0; i < sizeof(Value); ++i) {
    248       constexpr unsigned HexWidthChars = 2;
    249       unsigned Offset = sizeof(Value) - 1 - i;
    250       Str << llvm::format_hex_no_prefix(
    251           *(Offset + (const unsigned char *)&Value), HexWidthChars);
    252     }
    253     // For a floating-point value in DecorateAsm mode, also append the value in
    254     // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to
    255     // maintain valid asm labels.
    256     if (BuildDefs::dump() && std::is_floating_point<PrimType>::value &&
    257         getFlags().getDecorateAsm()) {
    258       char Buf[30];
    259       snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value);
    260       for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) {
    261         if (Buf[i] == '-')
    262           Buf[i] = 'm';
    263         else if (Buf[i] == '+')
    264           Buf[i] = 'p';
    265       }
    266       Str << Buf;
    267     }
    268     LabelName = GlobalString::createWithString(Ctx, Str.str());
    269   }
    270 
    271   const PrimType Value;
    272 };
    273 
    274 using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>;
    275 using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>;
    276 using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>;
    277 using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>;
    278 
    279 template <>
    280 inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const {
    281   if (!BuildDefs::dump())
    282     return;
    283   if (getType() == IceType_i1)
    284     Str << (getValue() ? "true" : "false");
    285   else
    286     Str << static_cast<int32_t>(getValue());
    287 }
    288 
    289 // =========== Immediate Randomization and Pooling routines ==============
    290 // Specialization of the template member function for ConstantInteger32
    291 // TODO(stichnot): try to move this specialization into a target-specific file.
    292 template <> inline bool ConstantInteger32::shouldBeRandomizedOrPooled() const {
    293   uint32_t Threshold = getFlags().getRandomizeAndPoolImmediatesThreshold();
    294   if (getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None)
    295     return false;
    296   if (getType() != IceType_i32 && getType() != IceType_i16 &&
    297       getType() != IceType_i8)
    298     return false;
    299   // The Following checks if the signed representation of Value is between
    300   // -Threshold/2 and +Threshold/2
    301   bool largerThanThreshold = Threshold / 2 + Value >= Threshold;
    302   return largerThanThreshold;
    303 }
    304 
    305 template <>
    306 inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const {
    307   if (!BuildDefs::dump())
    308     return;
    309   assert(getType() == IceType_i64);
    310   Str << static_cast<int64_t>(getValue());
    311 }
    312 
    313 /// RelocOffset allows symbolic references in ConstantRelocatables' offsets,
    314 /// e.g., 8 + LabelOffset, where label offset is the location (code or data)
    315 /// of a Label that is only determinable during ELF emission.
    316 class RelocOffset final {
    317   RelocOffset(const RelocOffset &) = delete;
    318   RelocOffset &operator=(const RelocOffset &) = delete;
    319 
    320 public:
    321   template <typename T> static RelocOffset *create(T *AllocOwner) {
    322     return new (AllocOwner->template allocate<RelocOffset>()) RelocOffset();
    323   }
    324 
    325   static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) {
    326     return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value);
    327   }
    328 
    329   void setSubtract(bool Value) { Subtract = Value; }
    330   bool hasOffset() const { return HasOffset; }
    331 
    332   RelocOffsetT getOffset() const {
    333     assert(HasOffset);
    334     return Offset;
    335   }
    336 
    337   void setOffset(const RelocOffsetT Value) {
    338     assert(!HasOffset);
    339     if (Subtract) {
    340       assert(Value != std::numeric_limits<RelocOffsetT>::lowest());
    341       Offset = -Value;
    342     } else {
    343       Offset = Value;
    344     }
    345     HasOffset = true;
    346   }
    347 
    348 private:
    349   RelocOffset() = default;
    350   explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); }
    351 
    352   bool Subtract = false;
    353   bool HasOffset = false;
    354   RelocOffsetT Offset;
    355 };
    356 
    357 /// RelocatableTuple bundles the parameters that are used to construct an
    358 /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit
    359 /// into the global constant pool template mechanism.
    360 class RelocatableTuple {
    361   RelocatableTuple() = delete;
    362   RelocatableTuple &operator=(const RelocatableTuple &) = delete;
    363 
    364 public:
    365   RelocatableTuple(const RelocOffsetT Offset,
    366                    const RelocOffsetArray &OffsetExpr, GlobalString Name)
    367       : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name) {}
    368 
    369   RelocatableTuple(const RelocOffsetT Offset,
    370                    const RelocOffsetArray &OffsetExpr, GlobalString Name,
    371                    const std::string &EmitString)
    372       : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name),
    373         EmitString(EmitString) {}
    374 
    375   RelocatableTuple(const RelocatableTuple &) = default;
    376 
    377   const RelocOffsetT Offset;
    378   const RelocOffsetArray OffsetExpr;
    379   const GlobalString Name;
    380   const std::string EmitString;
    381 };
    382 
    383 bool operator==(const RelocatableTuple &A, const RelocatableTuple &B);
    384 
    385 /// ConstantRelocatable represents a symbolic constant combined with a fixed
    386 /// offset.
    387 class ConstantRelocatable : public Constant {
    388   ConstantRelocatable() = delete;
    389   ConstantRelocatable(const ConstantRelocatable &) = delete;
    390   ConstantRelocatable &operator=(const ConstantRelocatable &) = delete;
    391 
    392 public:
    393   template <typename T>
    394   static ConstantRelocatable *create(T *AllocOwner, Type Ty,
    395                                      const RelocatableTuple &Tuple) {
    396     return new (AllocOwner->template allocate<ConstantRelocatable>())
    397         ConstantRelocatable(Ty, Tuple.Offset, Tuple.OffsetExpr, Tuple.Name,
    398                             Tuple.EmitString);
    399   }
    400 
    401   RelocOffsetT getOffset() const {
    402     RelocOffsetT Ret = Offset;
    403     for (const auto *const OffsetReloc : OffsetExpr) {
    404       Ret += OffsetReloc->getOffset();
    405     }
    406     return Ret;
    407   }
    408 
    409   const std::string &getEmitString() const { return EmitString; }
    410 
    411   GlobalString getName() const { return Name; }
    412   using Constant::emit;
    413   void emit(TargetLowering *Target) const final;
    414   void emitWithoutPrefix(const TargetLowering *Target,
    415                          const char *Suffix = "") const;
    416   using Constant::dump;
    417   void dump(const Cfg *Func, Ostream &Str) const override;
    418 
    419   static bool classof(const Operand *Operand) {
    420     OperandKind Kind = Operand->getKind();
    421     return Kind == kConstRelocatable;
    422   }
    423 
    424 private:
    425   ConstantRelocatable(Type Ty, const RelocOffsetT Offset,
    426                       const RelocOffsetArray &OffsetExpr, GlobalString Name,
    427                       const std::string &EmitString)
    428       : Constant(kConstRelocatable, Ty), Offset(Offset), OffsetExpr(OffsetExpr),
    429         Name(Name), EmitString(EmitString) {}
    430 
    431   const RelocOffsetT Offset;         /// fixed, known offset to add
    432   const RelocOffsetArray OffsetExpr; /// fixed, unknown offset to add
    433   const GlobalString Name;           /// optional for debug/dump
    434   const std::string EmitString;      /// optional for textual emission
    435 };
    436 
    437 /// ConstantUndef represents an unspecified bit pattern. Although it is legal to
    438 /// lower ConstantUndef to any value, backends should try to make code
    439 /// generation deterministic by lowering ConstantUndefs to 0.
    440 class ConstantUndef : public Constant {
    441   ConstantUndef() = delete;
    442   ConstantUndef(const ConstantUndef &) = delete;
    443   ConstantUndef &operator=(const ConstantUndef &) = delete;
    444 
    445 public:
    446   static ConstantUndef *create(GlobalContext *Ctx, Type Ty) {
    447     return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty);
    448   }
    449 
    450   using Constant::emit;
    451   void emit(TargetLowering *Target) const final;
    452   using Constant::dump;
    453   void dump(const Cfg *, Ostream &Str) const override {
    454     if (BuildDefs::dump())
    455       Str << "undef";
    456   }
    457 
    458   static bool classof(const Operand *Operand) {
    459     return Operand->getKind() == kConstUndef;
    460   }
    461 
    462 private:
    463   ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {}
    464 };
    465 
    466 /// RegNumT is for holding target-specific register numbers, plus the sentinel
    467 /// value if no register is assigned. Its public ctor allows direct use of enum
    468 /// values, such as RegNumT(Reg_eax), but not things like RegNumT(Reg_eax+1).
    469 /// This is to try to prevent inappropriate assumptions about enum ordering. If
    470 /// needed, the fromInt() method can be used, such as when a RegNumT is based
    471 /// on a bitvector index.
    472 class RegNumT {
    473 public:
    474   using BaseType = uint32_t;
    475   RegNumT() = default;
    476   RegNumT(const RegNumT &) = default;
    477   template <typename AnyEnum>
    478   RegNumT(AnyEnum Value,
    479           typename std::enable_if<std::is_enum<AnyEnum>::value, int>::type = 0)
    480       : Value(Value) {
    481     validate(Value);
    482   }
    483   RegNumT &operator=(const RegNumT &) = default;
    484   operator unsigned() const { return Value; }
    485   /// Asserts that the register is valid, i.e. not NoRegisterValue.  Note that
    486   /// the ctor already does the target-specific limit check.
    487   void assertIsValid() const { assert(Value != NoRegisterValue); }
    488   static RegNumT fromInt(BaseType Value) { return RegNumT(Value); }
    489   /// Marks cases that inappropriately add/subtract RegNumT values, and
    490   /// therefore need to be fixed because they make assumptions about register
    491   /// enum value ordering.  TODO(stichnot): Remove fixme() as soon as all
    492   /// current uses are fixed/removed.
    493   static RegNumT fixme(BaseType Value) { return RegNumT(Value); }
    494   /// The target's staticInit() method should call setLimit() to register the
    495   /// upper bound of allowable values.
    496   static void setLimit(BaseType Value) {
    497     // Make sure it's only called once.
    498     assert(Limit == 0);
    499     assert(Value != 0);
    500     Limit = Value;
    501   }
    502   // Define NoRegisterValue as an enum value so that it can be used as an
    503   // argument for the public ctor if desired.
    504   enum : BaseType { NoRegisterValue = std::numeric_limits<BaseType>::max() };
    505 
    506   bool hasValue() const { return Value != NoRegisterValue; }
    507   bool hasNoValue() const { return !hasValue(); }
    508 
    509 private:
    510   BaseType Value = NoRegisterValue;
    511   static BaseType Limit;
    512   /// Private ctor called only by fromInt() and fixme().
    513   RegNumT(BaseType Value) : Value(Value) { validate(Value); }
    514   /// The ctor calls this to validate against the target-supplied limit.
    515   static void validate(BaseType Value) {
    516     (void)Value;
    517     assert(Value == NoRegisterValue || Value < Limit);
    518   }
    519   /// Disallow operators that inappropriately make assumptions about register
    520   /// enum value ordering.
    521   bool operator<(const RegNumT &) = delete;
    522   bool operator<=(const RegNumT &) = delete;
    523   bool operator>(const RegNumT &) = delete;
    524   bool operator>=(const RegNumT &) = delete;
    525 };
    526 
    527 /// RegNumBVIter wraps SmallBitVector so that instead of this pattern:
    528 ///
    529 ///   for (int i = V.find_first(); i != -1; i = V.find_next(i)) {
    530 ///     RegNumT RegNum = RegNumT::fromInt(i);
    531 ///     ...
    532 ///   }
    533 ///
    534 /// this cleaner pattern can be used:
    535 ///
    536 ///   for (RegNumT RegNum : RegNumBVIter(V)) {
    537 ///     ...
    538 ///   }
    539 template <class B> class RegNumBVIterImpl {
    540   using T = B;
    541   static constexpr int Sentinel = -1;
    542   RegNumBVIterImpl() = delete;
    543 
    544 public:
    545   class Iterator {
    546     Iterator() = delete;
    547     Iterator &operator=(const Iterator &) = delete;
    548 
    549   public:
    550     explicit Iterator(const T &V) : V(V), Current(V.find_first()) {}
    551     Iterator(const T &V, int Value) : V(V), Current(Value) {}
    552     Iterator(const Iterator &) = default;
    553     RegNumT operator*() {
    554       assert(Current != Sentinel);
    555       return RegNumT::fromInt(Current);
    556     }
    557     Iterator &operator++() {
    558       assert(Current != Sentinel);
    559       Current = V.find_next(Current);
    560       return *this;
    561     }
    562     bool operator!=(Iterator &Other) { return Current != Other.Current; }
    563 
    564   private:
    565     const T &V;
    566     int Current;
    567   };
    568 
    569   RegNumBVIterImpl(const RegNumBVIterImpl &) = default;
    570   RegNumBVIterImpl &operator=(const RegNumBVIterImpl &) = delete;
    571   explicit RegNumBVIterImpl(const T &V) : V(V) {}
    572   Iterator begin() { return Iterator(V); }
    573   Iterator end() { return Iterator(V, Sentinel); }
    574 
    575 private:
    576   const T &V;
    577 };
    578 
    579 template <class B> RegNumBVIterImpl<B> RegNumBVIter(const B &BV) {
    580   return RegNumBVIterImpl<B>(BV);
    581 }
    582 
    583 /// RegWeight is a wrapper for a uint32_t weight value, with a special value
    584 /// that represents infinite weight, and an addWeight() method that ensures that
    585 /// W+infinity=infinity.
    586 class RegWeight {
    587 public:
    588   using BaseType = uint32_t;
    589   RegWeight() = default;
    590   explicit RegWeight(BaseType Weight) : Weight(Weight) {}
    591   RegWeight(const RegWeight &) = default;
    592   RegWeight &operator=(const RegWeight &) = default;
    593   constexpr static BaseType Inf = ~0; /// Force regalloc to give a register
    594   constexpr static BaseType Zero = 0; /// Force regalloc NOT to give a register
    595   constexpr static BaseType Max = Inf - 1; /// Max natural weight.
    596   void addWeight(BaseType Delta) {
    597     if (Delta == Inf)
    598       Weight = Inf;
    599     else if (Weight != Inf)
    600       if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf)
    601         Weight = Max;
    602   }
    603   void addWeight(const RegWeight &Other) { addWeight(Other.Weight); }
    604   void setWeight(BaseType Val) { Weight = Val; }
    605   BaseType getWeight() const { return Weight; }
    606 
    607 private:
    608   BaseType Weight = 0;
    609 };
    610 Ostream &operator<<(Ostream &Str, const RegWeight &W);
    611 bool operator<(const RegWeight &A, const RegWeight &B);
    612 bool operator<=(const RegWeight &A, const RegWeight &B);
    613 bool operator==(const RegWeight &A, const RegWeight &B);
    614 
    615 /// LiveRange is a set of instruction number intervals representing a variable's
    616 /// live range. Generally there is one interval per basic block where the
    617 /// variable is live, but adjacent intervals get coalesced into a single
    618 /// interval.
    619 class LiveRange {
    620 public:
    621   using RangeElementType = std::pair<InstNumberT, InstNumberT>;
    622   /// RangeType is arena-allocated from the Cfg's allocator.
    623   using RangeType = CfgVector<RangeElementType>;
    624   LiveRange() = default;
    625   /// Special constructor for building a kill set. The advantage is that we can
    626   /// reserve the right amount of space in advance.
    627   explicit LiveRange(const CfgVector<InstNumberT> &Kills) {
    628     Range.reserve(Kills.size());
    629     for (InstNumberT I : Kills)
    630       addSegment(I, I);
    631   }
    632   LiveRange(const LiveRange &) = default;
    633   LiveRange &operator=(const LiveRange &) = default;
    634 
    635   void reset() {
    636     Range.clear();
    637     untrim();
    638   }
    639   void addSegment(InstNumberT Start, InstNumberT End, CfgNode *Node = nullptr);
    640   void addSegment(RangeElementType Segment, CfgNode *Node = nullptr) {
    641     addSegment(Segment.first, Segment.second, Node);
    642   }
    643 
    644   bool endsBefore(const LiveRange &Other) const;
    645   bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const;
    646   bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const;
    647   bool containsValue(InstNumberT Value, bool IsDest) const;
    648   bool isEmpty() const { return Range.empty(); }
    649   InstNumberT getStart() const {
    650     return Range.empty() ? -1 : Range.begin()->first;
    651   }
    652   InstNumberT getEnd() const {
    653     return Range.empty() ? -1 : Range.rbegin()->second;
    654   }
    655 
    656   void untrim() { TrimmedBegin = Range.begin(); }
    657   void trim(InstNumberT Lower);
    658 
    659   void dump(Ostream &Str) const;
    660 
    661   SizeT getNumSegments() const { return Range.size(); }
    662 
    663   const RangeType &getSegments() const { return Range; }
    664   CfgNode *getNodeForSegment(InstNumberT Begin) {
    665     auto Iter = NodeMap.find(Begin);
    666     assert(Iter != NodeMap.end());
    667     return Iter->second;
    668   }
    669 
    670 private:
    671   RangeType Range;
    672   CfgUnorderedMap<InstNumberT, CfgNode *> NodeMap;
    673   /// TrimmedBegin is an optimization for the overlaps() computation. Since the
    674   /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances
    675   /// monotonically according to live range start, we can optimize overlaps() by
    676   /// ignoring all segments that end before the start of Cur's range. The
    677   /// linear-scan code enables this by calling trim() on the ranges of interest
    678   /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin
    679   /// at the beginning by calling untrim().
    680   RangeType::const_iterator TrimmedBegin;
    681 };
    682 
    683 Ostream &operator<<(Ostream &Str, const LiveRange &L);
    684 
    685 /// Variable represents an operand that is register-allocated or
    686 /// stack-allocated. If it is register-allocated, it will ultimately have a
    687 /// valid RegNum field.
    688 class Variable : public Operand {
    689   Variable() = delete;
    690   Variable(const Variable &) = delete;
    691   Variable &operator=(const Variable &) = delete;
    692 
    693   enum RegRequirement : uint8_t {
    694     RR_MayHaveRegister,
    695     RR_MustHaveRegister,
    696     RR_MustNotHaveRegister,
    697   };
    698 
    699 public:
    700   static Variable *create(Cfg *Func, Type Ty, SizeT Index) {
    701     return new (Func->allocate<Variable>())
    702         Variable(Func, kVariable, Ty, Index);
    703   }
    704 
    705   SizeT getIndex() const { return Number; }
    706   std::string getName() const {
    707     if (Name.hasStdString())
    708       return Name.toString();
    709     return "__" + std::to_string(getIndex());
    710   }
    711   virtual void setName(const Cfg *Func, const std::string &NewName) {
    712     if (NewName.empty())
    713       return;
    714     Name = VariableString::createWithString(Func, NewName);
    715   }
    716 
    717   bool getIsArg() const { return IsArgument; }
    718   virtual void setIsArg(bool Val = true) { IsArgument = Val; }
    719   bool getIsImplicitArg() const { return IsImplicitArgument; }
    720   void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; }
    721 
    722   void setIgnoreLiveness() { IgnoreLiveness = true; }
    723   bool getIgnoreLiveness() const {
    724     return IgnoreLiveness || IsRematerializable;
    725   }
    726 
    727   /// Returns true if the variable either has a definite stack offset, or has
    728   /// the UndeterminedStackOffset such that it is guaranteed to have a definite
    729   /// stack offset at emission time.
    730   bool hasStackOffset() const { return StackOffset != InvalidStackOffset; }
    731   /// Returns true if the variable has a stack offset that is known at this
    732   /// time.
    733   bool hasKnownStackOffset() const {
    734     return StackOffset != InvalidStackOffset &&
    735            StackOffset != UndeterminedStackOffset;
    736   }
    737   int32_t getStackOffset() const {
    738     assert(hasKnownStackOffset());
    739     return StackOffset;
    740   }
    741   void setStackOffset(int32_t Offset) { StackOffset = Offset; }
    742   /// Set a "placeholder" stack offset before its actual offset has been
    743   /// determined.
    744   void setHasStackOffset() {
    745     if (!hasStackOffset())
    746       StackOffset = UndeterminedStackOffset;
    747   }
    748   /// Returns the variable's stack offset in symbolic form, to improve
    749   /// readability in DecorateAsm mode.
    750   std::string getSymbolicStackOffset() const {
    751     if (!BuildDefs::dump())
    752       return "";
    753     return ".L$lv$" + getName();
    754   }
    755 
    756   bool hasReg() const { return getRegNum().hasValue(); }
    757   RegNumT getRegNum() const { return RegNum; }
    758   void setRegNum(RegNumT NewRegNum) {
    759     // Regnum shouldn't be set more than once.
    760     assert(!hasReg() || RegNum == NewRegNum);
    761     RegNum = NewRegNum;
    762   }
    763   bool hasRegTmp() const { return getRegNumTmp().hasValue(); }
    764   RegNumT getRegNumTmp() const { return RegNumTmp; }
    765   void setRegNumTmp(RegNumT NewRegNum) { RegNumTmp = NewRegNum; }
    766 
    767   RegWeight getWeight(const Cfg *Func) const;
    768 
    769   void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; }
    770   bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; }
    771   void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; }
    772   bool mustNotHaveReg() const {
    773     return RegRequirement == RR_MustNotHaveRegister;
    774   }
    775   bool mayHaveReg() const { return RegRequirement == RR_MayHaveRegister; }
    776   void setRematerializable(RegNumT NewRegNum, int32_t NewOffset) {
    777     IsRematerializable = true;
    778     setRegNum(NewRegNum);
    779     setStackOffset(NewOffset);
    780     setMustHaveReg();
    781   }
    782   bool isRematerializable() const { return IsRematerializable; }
    783 
    784   void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); }
    785   RegClass getRegClass() const { return RegisterClass; }
    786 
    787   LiveRange &getLiveRange() { return Live; }
    788   const LiveRange &getLiveRange() const { return Live; }
    789   void setLiveRange(const LiveRange &Range) { Live = Range; }
    790   void resetLiveRange() { Live.reset(); }
    791   void addLiveRange(InstNumberT Start, InstNumberT End,
    792                     CfgNode *Node = nullptr) {
    793     assert(!getIgnoreLiveness());
    794     Live.addSegment(Start, End, Node);
    795   }
    796   void trimLiveRange(InstNumberT Start) { Live.trim(Start); }
    797   void untrimLiveRange() { Live.untrim(); }
    798   bool rangeEndsBefore(const Variable *Other) const {
    799     return Live.endsBefore(Other->Live);
    800   }
    801   bool rangeOverlaps(const Variable *Other) const {
    802     constexpr bool UseTrimmed = true;
    803     return Live.overlaps(Other->Live, UseTrimmed);
    804   }
    805   bool rangeOverlapsStart(const Variable *Other) const {
    806     constexpr bool UseTrimmed = true;
    807     return Live.overlapsInst(Other->Live.getStart(), UseTrimmed);
    808   }
    809 
    810   /// Creates a temporary copy of the variable with a different type. Used
    811   /// primarily for syntactic correctness of textual assembly emission. Note
    812   /// that only basic information is copied, in particular not IsArgument,
    813   /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar,
    814   /// VarsReal. If NewRegNum.hasValue(), then that register assignment is made
    815   /// instead of copying the existing assignment.
    816   const Variable *asType(const Cfg *Func, Type Ty, RegNumT NewRegNum) const;
    817 
    818   void emit(const Cfg *Func) const override;
    819   using Operand::dump;
    820   void dump(const Cfg *Func, Ostream &Str) const override;
    821 
    822   /// Return reg num of base register, if different from stack/frame register.
    823   virtual RegNumT getBaseRegNum() const { return RegNumT(); }
    824 
    825   /// Access the LinkedTo field.
    826   void setLinkedTo(Variable *Var) { LinkedTo = Var; }
    827   Variable *getLinkedTo() const { return LinkedTo; }
    828   /// Follow the LinkedTo chain up to the furthest ancestor.
    829   Variable *getLinkedToRoot() const {
    830     Variable *Root = LinkedTo;
    831     if (Root == nullptr)
    832       return nullptr;
    833     while (Root->LinkedTo != nullptr)
    834       Root = Root->LinkedTo;
    835     return Root;
    836   }
    837   /// Follow the LinkedTo chain up to the furthest stack-allocated ancestor.
    838   /// This is only certain to be accurate after register allocation and stack
    839   /// slot assignment have completed.
    840   Variable *getLinkedToStackRoot() const {
    841     Variable *FurthestStackVar = nullptr;
    842     for (Variable *Root = LinkedTo; Root != nullptr; Root = Root->LinkedTo) {
    843       if (!Root->hasReg() && Root->hasStackOffset()) {
    844         FurthestStackVar = Root;
    845       }
    846     }
    847     return FurthestStackVar;
    848   }
    849 
    850   static bool classof(const Operand *Operand) {
    851     OperandKind Kind = Operand->getKind();
    852     return Kind >= kVariable && Kind <= kVariable_Max;
    853   }
    854 
    855   SizeT hashValue() const override { return std::hash<SizeT>()(getIndex()); }
    856 
    857 protected:
    858   Variable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
    859       : Operand(K, Ty), Number(Index),
    860         Name(VariableString::createWithoutString(Func)),
    861         RegisterClass(static_cast<RegClass>(Ty)) {
    862     Vars = VarsReal;
    863     Vars[0] = this;
    864     NumVars = 1;
    865   }
    866   /// Number is unique across all variables, and is used as a (bit)vector index
    867   /// for liveness analysis.
    868   const SizeT Number;
    869   VariableString Name;
    870   bool IsArgument = false;
    871   bool IsImplicitArgument = false;
    872   /// IgnoreLiveness means that the variable should be ignored when constructing
    873   /// and validating live ranges. This is usually reserved for the stack
    874   /// pointer and other physical registers specifically referenced by name.
    875   bool IgnoreLiveness = false;
    876   // If IsRematerializable, RegNum keeps track of which register (stack or frame
    877   // pointer), and StackOffset is the known offset from that register.
    878   bool IsRematerializable = false;
    879   RegRequirement RegRequirement = RR_MayHaveRegister;
    880   RegClass RegisterClass;
    881   /// RegNum is the allocated register, (as long as RegNum.hasValue() is true).
    882   RegNumT RegNum;
    883   /// RegNumTmp is the tentative assignment during register allocation.
    884   RegNumT RegNumTmp;
    885   static constexpr int32_t InvalidStackOffset =
    886       std::numeric_limits<int32_t>::min();
    887   static constexpr int32_t UndeterminedStackOffset =
    888       1 + std::numeric_limits<int32_t>::min();
    889   /// StackOffset is the canonical location on stack (only if
    890   /// RegNum.hasNoValue() || IsArgument).
    891   int32_t StackOffset = InvalidStackOffset;
    892   LiveRange Live;
    893   /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this.
    894   Variable *VarsReal[1];
    895   /// This Variable may be "linked" to another Variable, such that if neither
    896   /// Variable gets a register, they are guaranteed to share a stack location.
    897   Variable *LinkedTo = nullptr;
    898 };
    899 
    900 // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In
    901 // this situation the variable must be split into a low and a high word.
    902 class Variable64On32 : public Variable {
    903   Variable64On32() = delete;
    904   Variable64On32(const Variable64On32 &) = delete;
    905   Variable64On32 &operator=(const Variable64On32 &) = delete;
    906 
    907 public:
    908   static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) {
    909     return new (Func->allocate<Variable64On32>())
    910         Variable64On32(Func, kVariable64On32, Ty, Index);
    911   }
    912 
    913   void setName(const Cfg *Func, const std::string &NewName) override {
    914     Variable::setName(Func, NewName);
    915     if (LoVar && HiVar) {
    916       LoVar->setName(Func, getName() + "__lo");
    917       HiVar->setName(Func, getName() + "__hi");
    918     }
    919   }
    920 
    921   void setIsArg(bool Val = true) override {
    922     Variable::setIsArg(Val);
    923     if (LoVar && HiVar) {
    924       LoVar->setIsArg(Val);
    925       HiVar->setIsArg(Val);
    926     }
    927   }
    928 
    929   Variable *getLo() const {
    930     assert(LoVar != nullptr);
    931     return LoVar;
    932   }
    933   Variable *getHi() const {
    934     assert(HiVar != nullptr);
    935     return HiVar;
    936   }
    937 
    938   void initHiLo(Cfg *Func) {
    939     assert(LoVar == nullptr);
    940     assert(HiVar == nullptr);
    941     LoVar = Func->makeVariable(IceType_i32);
    942     HiVar = Func->makeVariable(IceType_i32);
    943     LoVar->setIsArg(getIsArg());
    944     HiVar->setIsArg(getIsArg());
    945     if (BuildDefs::dump()) {
    946       LoVar->setName(Func, getName() + "__lo");
    947       HiVar->setName(Func, getName() + "__hi");
    948     }
    949   }
    950 
    951   static bool classof(const Operand *Operand) {
    952     OperandKind Kind = Operand->getKind();
    953     return Kind == kVariable64On32;
    954   }
    955 
    956 protected:
    957   Variable64On32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
    958       : Variable(Func, K, Ty, Index) {
    959     assert(typeWidthInBytes(Ty) == 8);
    960   }
    961 
    962   Variable *LoVar = nullptr;
    963   Variable *HiVar = nullptr;
    964 };
    965 
    966 // VariableVecOn32 represents a 128-bit vector variable on a 32-bit
    967 // architecture. In this case the variable must be split into 4 containers.
    968 class VariableVecOn32 : public Variable {
    969   VariableVecOn32() = delete;
    970   VariableVecOn32(const VariableVecOn32 &) = delete;
    971   VariableVecOn32 &operator=(const VariableVecOn32 &) = delete;
    972 
    973 public:
    974   static VariableVecOn32 *create(Cfg *Func, Type Ty, SizeT Index) {
    975     return new (Func->allocate<VariableVecOn32>())
    976         VariableVecOn32(Func, kVariableVecOn32, Ty, Index);
    977   }
    978 
    979   void setName(const Cfg *Func, const std::string &NewName) override {
    980     Variable::setName(Func, NewName);
    981     if (!Containers.empty()) {
    982       for (SizeT i = 0; i < ContainersPerVector; ++i) {
    983         Containers[i]->setName(Func, getName() + "__cont" + std::to_string(i));
    984       }
    985     }
    986   }
    987 
    988   void setIsArg(bool Val = true) override {
    989     Variable::setIsArg(Val);
    990     for (Variable *Var : Containers) {
    991       Var->setIsArg(getIsArg());
    992     }
    993   }
    994 
    995   const VarList &getContainers() const { return Containers; }
    996 
    997   void initVecElement(Cfg *Func) {
    998     for (SizeT i = 0; i < ContainersPerVector; ++i) {
    999       Variable *Var = Func->makeVariable(IceType_i32);
   1000       Var->setIsArg(getIsArg());
   1001       if (BuildDefs::dump()) {
   1002         Var->setName(Func, getName() + "__cont" + std::to_string(i));
   1003       }
   1004       Containers.push_back(Var);
   1005     }
   1006   }
   1007 
   1008   static bool classof(const Operand *Operand) {
   1009     OperandKind Kind = Operand->getKind();
   1010     return Kind == kVariableVecOn32;
   1011   }
   1012 
   1013   // A 128-bit vector value is mapped onto 4 32-bit register values.
   1014   static constexpr SizeT ContainersPerVector = 4;
   1015 
   1016 protected:
   1017   VariableVecOn32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
   1018       : Variable(Func, K, Ty, Index) {
   1019     assert(typeWidthInBytes(Ty) ==
   1020            ContainersPerVector * typeWidthInBytes(IceType_i32));
   1021   }
   1022 
   1023   VarList Containers;
   1024 };
   1025 
   1026 enum MetadataKind {
   1027   VMK_Uses,       /// Track only uses, not defs
   1028   VMK_SingleDefs, /// Track uses+defs, but only record single def
   1029   VMK_All         /// Track uses+defs, including full def list
   1030 };
   1031 using InstDefList = CfgVector<const Inst *>;
   1032 
   1033 /// VariableTracking tracks the metadata for a single variable.  It is
   1034 /// only meant to be used internally by VariablesMetadata.
   1035 class VariableTracking {
   1036 public:
   1037   enum MultiDefState {
   1038     // TODO(stichnot): Consider using just a simple counter.
   1039     MDS_Unknown,
   1040     MDS_SingleDef,
   1041     MDS_MultiDefSingleBlock,
   1042     MDS_MultiDefMultiBlock
   1043   };
   1044   enum MultiBlockState {
   1045     MBS_Unknown,     // Not yet initialized, so be conservative
   1046     MBS_NoUses,      // Known to have no uses
   1047     MBS_SingleBlock, // All uses in are in a single block
   1048     MBS_MultiBlock   // Several uses across several blocks
   1049   };
   1050   VariableTracking() = default;
   1051   VariableTracking(const VariableTracking &) = default;
   1052   VariableTracking &operator=(const VariableTracking &) = default;
   1053   VariableTracking(MultiBlockState MultiBlock) : MultiBlock(MultiBlock) {}
   1054   MultiDefState getMultiDef() const { return MultiDef; }
   1055   MultiBlockState getMultiBlock() const { return MultiBlock; }
   1056   const Inst *getFirstDefinitionSingleBlock() const;
   1057   const Inst *getSingleDefinition() const;
   1058   const Inst *getFirstDefinition() const;
   1059   const InstDefList &getLatterDefinitions() const { return Definitions; }
   1060   CfgNode *getNode() const { return SingleUseNode; }
   1061   RegWeight getUseWeight() const { return UseWeight; }
   1062   void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node,
   1063                bool IsImplicit);
   1064   void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node);
   1065 
   1066 private:
   1067   MultiDefState MultiDef = MDS_Unknown;
   1068   MultiBlockState MultiBlock = MBS_Unknown;
   1069   CfgNode *SingleUseNode = nullptr;
   1070   CfgNode *SingleDefNode = nullptr;
   1071   /// All definitions of the variable are collected in Definitions[] (except for
   1072   /// the earliest definition), in increasing order of instruction number.
   1073   InstDefList Definitions; /// Only used if Kind==VMK_All
   1074   const Inst *FirstOrSingleDefinition = nullptr;
   1075   RegWeight UseWeight;
   1076 };
   1077 
   1078 /// VariablesMetadata analyzes and summarizes the metadata for the complete set
   1079 /// of Variables.
   1080 class VariablesMetadata {
   1081   VariablesMetadata() = delete;
   1082   VariablesMetadata(const VariablesMetadata &) = delete;
   1083   VariablesMetadata &operator=(const VariablesMetadata &) = delete;
   1084 
   1085 public:
   1086   explicit VariablesMetadata(const Cfg *Func) : Func(Func) {}
   1087   /// Initialize the state by traversing all instructions/variables in the CFG.
   1088   void init(MetadataKind TrackingKind);
   1089   /// Add a single node. This is called by init(), and can be called
   1090   /// incrementally from elsewhere, e.g. after edge-splitting.
   1091   void addNode(CfgNode *Node);
   1092   MetadataKind getKind() const { return Kind; }
   1093   /// Returns whether the given Variable is tracked in this object. It should
   1094   /// only return false if changes were made to the CFG after running init(), in
   1095   /// which case the state is stale and the results shouldn't be trusted (but it
   1096   /// may be OK e.g. for dumping).
   1097   bool isTracked(const Variable *Var) const {
   1098     return Var->getIndex() < Metadata.size();
   1099   }
   1100 
   1101   /// Returns whether the given Variable has multiple definitions.
   1102   bool isMultiDef(const Variable *Var) const;
   1103   /// Returns the first definition instruction of the given Variable. This is
   1104   /// only valid for variables whose definitions are all within the same block,
   1105   /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which
   1106   /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For
   1107   /// variables with definitions span multiple blocks, nullptr is returned.
   1108   const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const;
   1109   /// Returns the definition instruction of the given Variable, when the
   1110   /// variable has exactly one definition. Otherwise, nullptr is returned.
   1111   const Inst *getSingleDefinition(const Variable *Var) const;
   1112   /// getFirstDefinition() and getLatterDefinitions() are used together to
   1113   /// return the complete set of instructions that define the given Variable,
   1114   /// regardless of whether the definitions are within the same block (in
   1115   /// contrast to getFirstDefinitionSingleBlock).
   1116   const Inst *getFirstDefinition(const Variable *Var) const;
   1117   const InstDefList &getLatterDefinitions(const Variable *Var) const;
   1118 
   1119   /// Returns whether the given Variable is live across multiple blocks. Mainly,
   1120   /// this is used to partition Variables into single-block versus multi-block
   1121   /// sets for leveraging sparsity in liveness analysis, and for implementing
   1122   /// simple stack slot coalescing. As a special case, function arguments are
   1123   /// always considered multi-block because they are live coming into the entry
   1124   /// block.
   1125   bool isMultiBlock(const Variable *Var) const;
   1126   bool isSingleBlock(const Variable *Var) const;
   1127   /// Returns the node that the given Variable is used in, assuming
   1128   /// isMultiBlock() returns false. Otherwise, nullptr is returned.
   1129   CfgNode *getLocalUseNode(const Variable *Var) const;
   1130 
   1131   /// Returns the total use weight computed as the sum of uses multiplied by a
   1132   /// loop nest depth factor for each use.
   1133   RegWeight getUseWeight(const Variable *Var) const;
   1134 
   1135 private:
   1136   const Cfg *Func;
   1137   MetadataKind Kind;
   1138   CfgVector<VariableTracking> Metadata;
   1139   static const InstDefList *NoDefinitions;
   1140 };
   1141 
   1142 /// BooleanVariable represents a variable that was the zero-extended result of a
   1143 /// comparison. It maintains a pointer to its original i1 source so that the
   1144 /// WASM frontend can avoid adding needless comparisons.
   1145 class BooleanVariable : public Variable {
   1146   BooleanVariable() = delete;
   1147   BooleanVariable(const BooleanVariable &) = delete;
   1148   BooleanVariable &operator=(const BooleanVariable &) = delete;
   1149 
   1150   BooleanVariable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
   1151       : Variable(Func, K, Ty, Index) {}
   1152 
   1153 public:
   1154   static BooleanVariable *create(Cfg *Func, Type Ty, SizeT Index) {
   1155     return new (Func->allocate<BooleanVariable>())
   1156         BooleanVariable(Func, kVariable, Ty, Index);
   1157   }
   1158 
   1159   virtual Variable *asBoolean() { return BoolSource; }
   1160 
   1161   void setBoolSource(Variable *Src) { BoolSource = Src; }
   1162 
   1163   static bool classof(const Operand *Operand) {
   1164     return Operand->getKind() == kVariableBoolean;
   1165   }
   1166 
   1167 private:
   1168   Variable *BoolSource = nullptr;
   1169 };
   1170 
   1171 } // end of namespace Ice
   1172 
   1173 #endif // SUBZERO_SRC_ICEOPERAND_H
   1174