Home | History | Annotate | Download | only in util
      1 /*
      2  * Copyright 2010 Marek Olk <maraeo (at) gmail.com>
      3  * Copyright 2016 Advanced Micro Devices, Inc.
      4  *
      5  * Permission is hereby granted, free of charge, to any person obtaining a
      6  * copy of this software and associated documentation files (the "Software"),
      7  * to deal in the Software without restriction, including without limitation
      8  * on the rights to use, copy, modify, merge, publish, distribute, sub
      9  * license, and/or sell copies of the Software, and to permit persons to whom
     10  * the Software is furnished to do so, subject to the following conditions:
     11  *
     12  * The above copyright notice and this permission notice (including the next
     13  * paragraph) shall be included in all copies or substantial portions of the
     14  * Software.
     15  *
     16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
     20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     22  * USE OR OTHER DEALINGS IN THE SOFTWARE. */
     23 
     24 #include "slab.h"
     25 #include "macros.h"
     26 #include "u_atomic.h"
     27 #include <stdint.h>
     28 #include <stdbool.h>
     29 #include <string.h>
     30 
     31 #define ALIGN(value, align) (((value) + (align) - 1) & ~((align) - 1))
     32 
     33 #define SLAB_MAGIC_ALLOCATED 0xcafe4321
     34 #define SLAB_MAGIC_FREE 0x7ee01234
     35 
     36 #ifdef DEBUG
     37 #define SET_MAGIC(element, value)   (element)->magic = (value)
     38 #define CHECK_MAGIC(element, value) assert((element)->magic == (value))
     39 #else
     40 #define SET_MAGIC(element, value)
     41 #define CHECK_MAGIC(element, value)
     42 #endif
     43 
     44 /* One array element within a big buffer. */
     45 struct slab_element_header {
     46    /* The next element in the free or migrated list. */
     47    struct slab_element_header *next;
     48 
     49    /* This is either
     50     * - a pointer to the child pool to which this element belongs, or
     51     * - a pointer to the orphaned page of the element, with the least
     52     *   significant bit set to 1.
     53     */
     54    intptr_t owner;
     55 
     56 #ifdef DEBUG
     57    intptr_t magic;
     58 #endif
     59 };
     60 
     61 /* The page is an array of allocations in one block. */
     62 struct slab_page_header {
     63    union {
     64       /* Next page in the same child pool. */
     65       struct slab_page_header *next;
     66 
     67       /* Number of remaining, non-freed elements (for orphaned pages). */
     68       unsigned num_remaining;
     69    } u;
     70    /* Memory after the last member is dedicated to the page itself.
     71     * The allocated size is always larger than this structure.
     72     */
     73 };
     74 
     75 
     76 static struct slab_element_header *
     77 slab_get_element(struct slab_parent_pool *parent,
     78                  struct slab_page_header *page, unsigned index)
     79 {
     80    return (struct slab_element_header*)
     81           ((uint8_t*)&page[1] + (parent->element_size * index));
     82 }
     83 
     84 /* The given object/element belongs to an orphaned page (i.e. the owning child
     85  * pool has been destroyed). Mark the element as freed and free the whole page
     86  * when no elements are left in it.
     87  */
     88 static void
     89 slab_free_orphaned(struct slab_element_header *elt)
     90 {
     91    struct slab_page_header *page;
     92 
     93    assert(elt->owner & 1);
     94 
     95    page = (struct slab_page_header *)(elt->owner & ~(intptr_t)1);
     96    if (!p_atomic_dec_return(&page->u.num_remaining))
     97       free(page);
     98 }
     99 
    100 /**
    101  * Create a parent pool for the allocation of same-sized objects.
    102  *
    103  * \param item_size     Size of one object.
    104  * \param num_items     Number of objects to allocate at once.
    105  */
    106 void
    107 slab_create_parent(struct slab_parent_pool *parent,
    108                    unsigned item_size,
    109                    unsigned num_items)
    110 {
    111    mtx_init(&parent->mutex, mtx_plain);
    112    parent->element_size = ALIGN(sizeof(struct slab_element_header) + item_size,
    113                                 sizeof(intptr_t));
    114    parent->num_elements = num_items;
    115 }
    116 
    117 void
    118 slab_destroy_parent(struct slab_parent_pool *parent)
    119 {
    120    mtx_destroy(&parent->mutex);
    121 }
    122 
    123 /**
    124  * Create a child pool linked to the given parent.
    125  */
    126 void slab_create_child(struct slab_child_pool *pool,
    127                        struct slab_parent_pool *parent)
    128 {
    129    pool->parent = parent;
    130    pool->pages = NULL;
    131    pool->free = NULL;
    132    pool->migrated = NULL;
    133 }
    134 
    135 /**
    136  * Destroy the child pool.
    137  *
    138  * Pages associated to the pool will be orphaned. They are eventually freed
    139  * when all objects in them are freed.
    140  */
    141 void slab_destroy_child(struct slab_child_pool *pool)
    142 {
    143    mtx_lock(&pool->parent->mutex);
    144 
    145    while (pool->pages) {
    146       struct slab_page_header *page = pool->pages;
    147       pool->pages = page->u.next;
    148       p_atomic_set(&page->u.num_remaining, pool->parent->num_elements);
    149 
    150       for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
    151          struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
    152          p_atomic_set(&elt->owner, (intptr_t)page | 1);
    153       }
    154    }
    155 
    156    while (pool->migrated) {
    157       struct slab_element_header *elt = pool->migrated;
    158       pool->migrated = elt->next;
    159       slab_free_orphaned(elt);
    160    }
    161 
    162    mtx_unlock(&pool->parent->mutex);
    163 
    164    while (pool->free) {
    165       struct slab_element_header *elt = pool->free;
    166       pool->free = elt->next;
    167       slab_free_orphaned(elt);
    168    }
    169 
    170    /* Guard against use-after-free. */
    171    pool->parent = NULL;
    172 }
    173 
    174 static bool
    175 slab_add_new_page(struct slab_child_pool *pool)
    176 {
    177    struct slab_page_header *page = malloc(sizeof(struct slab_page_header) +
    178       pool->parent->num_elements * pool->parent->element_size);
    179 
    180    if (!page)
    181       return false;
    182 
    183    for (unsigned i = 0; i < pool->parent->num_elements; ++i) {
    184       struct slab_element_header *elt = slab_get_element(pool->parent, page, i);
    185       elt->owner = (intptr_t)pool;
    186       assert(!(elt->owner & 1));
    187 
    188       elt->next = pool->free;
    189       pool->free = elt;
    190       SET_MAGIC(elt, SLAB_MAGIC_FREE);
    191    }
    192 
    193    page->u.next = pool->pages;
    194    pool->pages = page;
    195 
    196    return true;
    197 }
    198 
    199 /**
    200  * Allocate an object from the child pool. Single-threaded (i.e. the caller
    201  * must ensure that no operation happens on the same child pool in another
    202  * thread).
    203  */
    204 void *
    205 slab_alloc(struct slab_child_pool *pool)
    206 {
    207    struct slab_element_header *elt;
    208 
    209    if (!pool->free) {
    210       /* First, collect elements that belong to us but were freed from a
    211        * different child pool.
    212        */
    213       mtx_lock(&pool->parent->mutex);
    214       pool->free = pool->migrated;
    215       pool->migrated = NULL;
    216       mtx_unlock(&pool->parent->mutex);
    217 
    218       /* Now allocate a new page. */
    219       if (!pool->free && !slab_add_new_page(pool))
    220          return NULL;
    221    }
    222 
    223    elt = pool->free;
    224    pool->free = elt->next;
    225 
    226    CHECK_MAGIC(elt, SLAB_MAGIC_FREE);
    227    SET_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
    228 
    229    return &elt[1];
    230 }
    231 
    232 /**
    233  * Free an object allocated from the slab. Single-threaded (i.e. the caller
    234  * must ensure that no operation happens on the same child pool in another
    235  * thread).
    236  *
    237  * Freeing an object in a different child pool from the one where it was
    238  * allocated is allowed, as long the pool belong to the same parent. No
    239  * additional locking is required in this case.
    240  */
    241 void slab_free(struct slab_child_pool *pool, void *ptr)
    242 {
    243    struct slab_element_header *elt = ((struct slab_element_header*)ptr - 1);
    244    intptr_t owner_int;
    245 
    246    CHECK_MAGIC(elt, SLAB_MAGIC_ALLOCATED);
    247    SET_MAGIC(elt, SLAB_MAGIC_FREE);
    248 
    249    if (p_atomic_read(&elt->owner) == (intptr_t)pool) {
    250       /* This is the simple case: The caller guarantees that we can safely
    251        * access the free list.
    252        */
    253       elt->next = pool->free;
    254       pool->free = elt;
    255       return;
    256    }
    257 
    258    /* The slow case: migration or an orphaned page. */
    259    mtx_lock(&pool->parent->mutex);
    260 
    261    /* Note: we _must_ re-read elt->owner here because the owning child pool
    262     * may have been destroyed by another thread in the meantime.
    263     */
    264    owner_int = p_atomic_read(&elt->owner);
    265 
    266    if (!(owner_int & 1)) {
    267       struct slab_child_pool *owner = (struct slab_child_pool *)owner_int;
    268       elt->next = owner->migrated;
    269       owner->migrated = elt;
    270       mtx_unlock(&pool->parent->mutex);
    271    } else {
    272       mtx_unlock(&pool->parent->mutex);
    273 
    274       slab_free_orphaned(elt);
    275    }
    276 }
    277 
    278 /**
    279  * Allocate an object from the slab. Single-threaded (no mutex).
    280  */
    281 void *
    282 slab_alloc_st(struct slab_mempool *pool)
    283 {
    284    return slab_alloc(&pool->child);
    285 }
    286 
    287 /**
    288  * Free an object allocated from the slab. Single-threaded (no mutex).
    289  */
    290 void
    291 slab_free_st(struct slab_mempool *pool, void *ptr)
    292 {
    293    slab_free(&pool->child, ptr);
    294 }
    295 
    296 void
    297 slab_destroy(struct slab_mempool *pool)
    298 {
    299    slab_destroy_child(&pool->child);
    300    slab_destroy_parent(&pool->parent);
    301 }
    302 
    303 /**
    304  * Create an allocator for same-sized objects.
    305  *
    306  * \param item_size     Size of one object.
    307  * \param num_items     Number of objects to allocate at once.
    308  */
    309 void
    310 slab_create(struct slab_mempool *pool,
    311             unsigned item_size,
    312             unsigned num_items)
    313 {
    314    slab_create_parent(&pool->parent, item_size, num_items);
    315    slab_create_child(&pool->child, &pool->parent);
    316 }
    317