Home | History | Annotate | Download | only in applypatch
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This program constructs binary patches for images -- such as boot.img and recovery.img -- that
     19  * consist primarily of large chunks of gzipped data interspersed with uncompressed data.  Doing a
     20  * naive bsdiff of these files is not useful because small changes in the data lead to large
     21  * changes in the compressed bitstream; bsdiff patches of gzipped data are typically as large as
     22  * the data itself.
     23  *
     24  * To patch these usefully, we break the source and target images up into chunks of two types:
     25  * "normal" and "gzip".  Normal chunks are simply patched using a plain bsdiff.  Gzip chunks are
     26  * first expanded, then a bsdiff is applied to the uncompressed data, then the patched data is
     27  * gzipped using the same encoder parameters.  Patched chunks are concatenated together to create
     28  * the output file; the output image should be *exactly* the same series of bytes as the target
     29  * image used originally to generate the patch.
     30  *
     31  * To work well with this tool, the gzipped sections of the target image must have been generated
     32  * using the same deflate encoder that is available in applypatch, namely, the one in the zlib
     33  * library.  In practice this means that images should be compressed using the "minigzip" tool
     34  * included in the zlib distribution, not the GNU gzip program.
     35  *
     36  * An "imgdiff" patch consists of a header describing the chunk structure of the file and any
     37  * encoding parameters needed for the gzipped chunks, followed by N bsdiff patches, one per chunk.
     38  *
     39  * For a diff to be generated, the source and target must be in well-formed zip archive format;
     40  * or they are image files with the same "chunk" structure: that is, the same number of gzipped and
     41  * normal chunks in the same order.  Android boot and recovery images currently consist of five
     42  * chunks: a small normal header, a gzipped kernel, a small normal section, a gzipped ramdisk, and
     43  * finally a small normal footer.
     44  *
     45  * Caveats:  we locate gzipped sections within the source and target images by searching for the
     46  * byte sequence 1f8b0800:  1f8b is the gzip magic number; 08 specifies the "deflate" encoding
     47  * [the only encoding supported by the gzip standard]; and 00 is the flags byte.  We do not
     48  * currently support any extra header fields (which would be indicated by a nonzero flags byte).
     49  * We also don't handle the case when that byte sequence appears spuriously in the file.  (Note
     50  * that it would have to occur spuriously within a normal chunk to be a problem.)
     51  *
     52  *
     53  * The imgdiff patch header looks like this:
     54  *
     55  *    "IMGDIFF2"                  (8)   [magic number and version]
     56  *    chunk count                 (4)
     57  *    for each chunk:
     58  *        chunk type              (4)   [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
     59  *        if chunk type == CHUNK_NORMAL:
     60  *           source start         (8)
     61  *           source len           (8)
     62  *           bsdiff patch offset  (8)   [from start of patch file]
     63  *        if chunk type == CHUNK_GZIP:      (version 1 only)
     64  *           source start         (8)
     65  *           source len           (8)
     66  *           bsdiff patch offset  (8)   [from start of patch file]
     67  *           source expanded len  (8)   [size of uncompressed source]
     68  *           target expected len  (8)   [size of uncompressed target]
     69  *           gzip level           (4)
     70  *                method          (4)
     71  *                windowBits      (4)
     72  *                memLevel        (4)
     73  *                strategy        (4)
     74  *           gzip header len      (4)
     75  *           gzip header          (gzip header len)
     76  *           gzip footer          (8)
     77  *        if chunk type == CHUNK_DEFLATE:   (version 2 only)
     78  *           source start         (8)
     79  *           source len           (8)
     80  *           bsdiff patch offset  (8)   [from start of patch file]
     81  *           source expanded len  (8)   [size of uncompressed source]
     82  *           target expected len  (8)   [size of uncompressed target]
     83  *           gzip level           (4)
     84  *                method          (4)
     85  *                windowBits      (4)
     86  *                memLevel        (4)
     87  *                strategy        (4)
     88  *        if chunk type == RAW:             (version 2 only)
     89  *           target len           (4)
     90  *           data                 (target len)
     91  *
     92  * All integers are little-endian.  "source start" and "source len" specify the section of the
     93  * input image that comprises this chunk, including the gzip header and footer for gzip chunks.
     94  * "source expanded len" is the size of the uncompressed source data.  "target expected len" is the
     95  * size of the uncompressed data after applying the bsdiff patch.  The next five parameters
     96  * specify the zlib parameters to be used when compressing the patched data, and the next three
     97  * specify the header and footer to be wrapped around the compressed data to create the output
     98  * chunk (so that header contents like the timestamp are recreated exactly).
     99  *
    100  * After the header there are 'chunk count' bsdiff patches; the offset of each from the beginning
    101  * of the file is specified in the header.
    102  *
    103  * This tool can take an optional file of "bonus data".  This is an extra file of data that is
    104  * appended to chunk #1 after it is compressed (it must be a CHUNK_DEFLATE chunk).  The same file
    105  * must be available (and passed to applypatch with -b) when applying the patch.  This is used to
    106  * reduce the size of recovery-from-boot patches by combining the boot image with recovery ramdisk
    107  * information that is stored on the system partition.
    108  *
    109  * When generating the patch between two zip files, this tool has an option "--block-limit" to
    110  * split the large source/target files into several pair of pieces, with each piece has at most
    111  * *limit* blocks.  When this option is used, we also need to output the split info into the file
    112  * path specified by "--split-info".
    113  *
    114  * Format of split info file:
    115  *   2                                      [version of imgdiff]
    116  *   n                                      [count of split pieces]
    117  *   <patch_size>, <tgt_size>, <src_range>  [size and ranges for split piece#1]
    118  *   ...
    119  *   <patch_size>, <tgt_size>, <src_range>  [size and ranges for split piece#n]
    120  *
    121  * To split a pair of large zip files, we walk through the chunks in target zip and search by its
    122  * entry_name in the source zip.  If the entry_name is non-empty and a matching entry in source
    123  * is found, we'll add the source entry to the current split source image; otherwise we'll skip
    124  * this chunk and later do bsdiff between all the skipped trunks and the whole split source image.
    125  * We move on to the next pair of pieces if the size of the split source image reaches the block
    126  * limit.
    127  *
    128  * After the split, the target pieces are continuous and block aligned, while the source pieces
    129  * are mutually exclusive.  Some of the source blocks may not be used if there's no matching
    130  * entry_name in the target; as a result, they won't be included in any of these split source
    131  * images.  Then we will generate patches accordingly between each split image pairs; in particular,
    132  * the unmatched trunks in the split target will diff against the entire split source image.
    133  *
    134  * For example:
    135  * Input: [src_image, tgt_image]
    136  * Split: [src-0, tgt-0; src-1, tgt-1, src-2, tgt-2]
    137  * Diff:  [  patch-0;      patch-1;      patch-2]
    138  *
    139  * Patch: [(src-0, patch-0) = tgt-0; (src-1, patch-1) = tgt-1; (src-2, patch-2) = tgt-2]
    140  * Concatenate: [tgt-0 + tgt-1 + tgt-2 = tgt_image]
    141  */
    142 
    143 #include "applypatch/imgdiff.h"
    144 
    145 #include <errno.h>
    146 #include <fcntl.h>
    147 #include <getopt.h>
    148 #include <stdio.h>
    149 #include <stdlib.h>
    150 #include <string.h>
    151 #include <sys/stat.h>
    152 #include <sys/types.h>
    153 #include <unistd.h>
    154 
    155 #include <algorithm>
    156 #include <string>
    157 #include <vector>
    158 
    159 #include <android-base/file.h>
    160 #include <android-base/logging.h>
    161 #include <android-base/memory.h>
    162 #include <android-base/parseint.h>
    163 #include <android-base/stringprintf.h>
    164 #include <android-base/strings.h>
    165 #include <android-base/unique_fd.h>
    166 #include <bsdiff/bsdiff.h>
    167 #include <ziparchive/zip_archive.h>
    168 #include <zlib.h>
    169 
    170 #include "applypatch/imgdiff_image.h"
    171 #include "otautil/rangeset.h"
    172 
    173 using android::base::get_unaligned;
    174 
    175 static constexpr size_t VERSION = 2;
    176 
    177 // We assume the header "IMGDIFF#" is 8 bytes.
    178 static_assert(VERSION <= 9, "VERSION occupies more than one byte");
    179 
    180 static constexpr size_t BLOCK_SIZE = 4096;
    181 static constexpr size_t BUFFER_SIZE = 0x8000;
    182 
    183 // If we use this function to write the offset and length (type size_t), their values should not
    184 // exceed 2^63; because the signed bit will be casted away.
    185 static inline bool Write8(int fd, int64_t value) {
    186   return android::base::WriteFully(fd, &value, sizeof(int64_t));
    187 }
    188 
    189 // Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk
    190 // size).
    191 static inline bool Write4(int fd, int32_t value) {
    192   return android::base::WriteFully(fd, &value, sizeof(int32_t));
    193 }
    194 
    195 // Trim the head or tail to align with the block size. Return false if the chunk has nothing left
    196 // after alignment.
    197 static bool AlignHead(size_t* start, size_t* length) {
    198   size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
    199 
    200   if (*length <= residual) {
    201     *length = 0;
    202     return false;
    203   }
    204 
    205   // Trim the data in the beginning.
    206   *start += residual;
    207   *length -= residual;
    208   return true;
    209 }
    210 
    211 static bool AlignTail(size_t* start, size_t* length) {
    212   size_t residual = (*start + *length) % BLOCK_SIZE;
    213   if (*length <= residual) {
    214     *length = 0;
    215     return false;
    216   }
    217 
    218   // Trim the data in the end.
    219   *length -= residual;
    220   return true;
    221 }
    222 
    223 // Remove the used blocks from the source chunk to make sure the source ranges are mutually
    224 // exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
    225 // a case, we'll skip the entire source chunk.
    226 static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
    227   if (!used_ranges.Overlaps(*start, *length)) {
    228     return true;
    229   }
    230 
    231   // TODO find the largest non-overlap chunk.
    232   LOG(INFO) << "Removing block " << used_ranges.ToString() << " from " << *start << " - "
    233             << *start + *length - 1;
    234 
    235   // If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
    236   // trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
    237   if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
    238     return true;
    239   }
    240   if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
    241     return true;
    242   }
    243 
    244   LOG(WARNING) << "Failed to remove the overlapped block ranges; skip the source";
    245   return false;
    246 }
    247 
    248 static const struct option OPTIONS[] = {
    249   { "zip-mode", no_argument, nullptr, 'z' },
    250   { "bonus-file", required_argument, nullptr, 'b' },
    251   { "block-limit", required_argument, nullptr, 0 },
    252   { "debug-dir", required_argument, nullptr, 0 },
    253   { "split-info", required_argument, nullptr, 0 },
    254   { "verbose", no_argument, nullptr, 'v' },
    255   { nullptr, 0, nullptr, 0 },
    256 };
    257 
    258 ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
    259                        size_t raw_data_len, std::string entry_name)
    260     : type_(type),
    261       start_(start),
    262       input_file_ptr_(file_content),
    263       raw_data_len_(raw_data_len),
    264       compress_level_(6),
    265       entry_name_(std::move(entry_name)) {
    266   CHECK(file_content != nullptr) << "input file container can't be nullptr";
    267 }
    268 
    269 const uint8_t* ImageChunk::GetRawData() const {
    270   CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
    271   return input_file_ptr_->data() + start_;
    272 }
    273 
    274 const uint8_t * ImageChunk::DataForPatch() const {
    275   if (type_ == CHUNK_DEFLATE) {
    276     return uncompressed_data_.data();
    277   }
    278   return GetRawData();
    279 }
    280 
    281 size_t ImageChunk::DataLengthForPatch() const {
    282   if (type_ == CHUNK_DEFLATE) {
    283     return uncompressed_data_.size();
    284   }
    285   return raw_data_len_;
    286 }
    287 
    288 void ImageChunk::Dump(size_t index) const {
    289   LOG(INFO) << "chunk: " << index << ", type: " << type_ << ", start: " << start_
    290             << ", len: " << DataLengthForPatch() << ", name: " << entry_name_;
    291 }
    292 
    293 bool ImageChunk::operator==(const ImageChunk& other) const {
    294   if (type_ != other.type_) {
    295     return false;
    296   }
    297   return (raw_data_len_ == other.raw_data_len_ &&
    298           memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
    299 }
    300 
    301 void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
    302   uncompressed_data_ = std::move(data);
    303 }
    304 
    305 bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
    306   if (type_ != CHUNK_DEFLATE) {
    307     return false;
    308   }
    309   uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
    310   return true;
    311 }
    312 
    313 void ImageChunk::ChangeDeflateChunkToNormal() {
    314   if (type_ != CHUNK_DEFLATE) return;
    315   type_ = CHUNK_NORMAL;
    316   // No need to clear the entry name.
    317   uncompressed_data_.clear();
    318 }
    319 
    320 bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
    321   if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
    322     return false;
    323   }
    324   return (other.start_ == start_ + raw_data_len_);
    325 }
    326 
    327 void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
    328   CHECK(IsAdjacentNormal(other));
    329   raw_data_len_ = raw_data_len_ + other.raw_data_len_;
    330 }
    331 
    332 bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
    333                            std::vector<uint8_t>* patch_data,
    334                            bsdiff::SuffixArrayIndexInterface** bsdiff_cache) {
    335 #if defined(__ANDROID__)
    336   char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
    337 #else
    338   char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
    339 #endif
    340 
    341   int fd = mkstemp(ptemp);
    342   if (fd == -1) {
    343     PLOG(ERROR) << "MakePatch failed to create a temporary file";
    344     return false;
    345   }
    346   close(fd);
    347 
    348   int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
    349                          tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
    350   if (r != 0) {
    351     LOG(ERROR) << "bsdiff() failed: " << r;
    352     return false;
    353   }
    354 
    355   android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
    356   if (patch_fd == -1) {
    357     PLOG(ERROR) << "Failed to open " << ptemp;
    358     return false;
    359   }
    360   struct stat st;
    361   if (fstat(patch_fd, &st) != 0) {
    362     PLOG(ERROR) << "Failed to stat patch file " << ptemp;
    363     return false;
    364   }
    365 
    366   size_t sz = static_cast<size_t>(st.st_size);
    367 
    368   patch_data->resize(sz);
    369   if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
    370     PLOG(ERROR) << "Failed to read " << ptemp;
    371     unlink(ptemp);
    372     return false;
    373   }
    374 
    375   unlink(ptemp);
    376 
    377   return true;
    378 }
    379 
    380 bool ImageChunk::ReconstructDeflateChunk() {
    381   if (type_ != CHUNK_DEFLATE) {
    382     LOG(ERROR) << "Attempted to reconstruct non-deflate chunk";
    383     return false;
    384   }
    385 
    386   // We only check two combinations of encoder parameters:  level 6 (the default) and level 9
    387   // (the maximum).
    388   for (int level = 6; level <= 9; level += 3) {
    389     if (TryReconstruction(level)) {
    390       compress_level_ = level;
    391       return true;
    392     }
    393   }
    394 
    395   return false;
    396 }
    397 
    398 /*
    399  * Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
    400  * in the chunk, and checks that it matches exactly the compressed data we started with (also
    401  * stored in the chunk).
    402  */
    403 bool ImageChunk::TryReconstruction(int level) {
    404   z_stream strm;
    405   strm.zalloc = Z_NULL;
    406   strm.zfree = Z_NULL;
    407   strm.opaque = Z_NULL;
    408   strm.avail_in = uncompressed_data_.size();
    409   strm.next_in = uncompressed_data_.data();
    410   int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
    411   if (ret < 0) {
    412     LOG(ERROR) << "Failed to initialize deflate: " << ret;
    413     return false;
    414   }
    415 
    416   std::vector<uint8_t> buffer(BUFFER_SIZE);
    417   size_t offset = 0;
    418   do {
    419     strm.avail_out = buffer.size();
    420     strm.next_out = buffer.data();
    421     ret = deflate(&strm, Z_FINISH);
    422     if (ret < 0) {
    423       LOG(ERROR) << "Failed to deflate: " << ret;
    424       return false;
    425     }
    426 
    427     size_t compressed_size = buffer.size() - strm.avail_out;
    428     if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
    429       // mismatch; data isn't the same.
    430       deflateEnd(&strm);
    431       return false;
    432     }
    433     offset += compressed_size;
    434   } while (ret != Z_STREAM_END);
    435   deflateEnd(&strm);
    436 
    437   if (offset != raw_data_len_) {
    438     // mismatch; ran out of data before we should have.
    439     return false;
    440   }
    441   return true;
    442 }
    443 
    444 PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
    445     : type_(tgt.GetType()),
    446       source_start_(src.GetStartOffset()),
    447       source_len_(src.GetRawDataLength()),
    448       source_uncompressed_len_(src.DataLengthForPatch()),
    449       target_start_(tgt.GetStartOffset()),
    450       target_len_(tgt.GetRawDataLength()),
    451       target_uncompressed_len_(tgt.DataLengthForPatch()),
    452       target_compress_level_(tgt.GetCompressLevel()),
    453       data_(std::move(data)) {}
    454 
    455 // Construct a CHUNK_RAW patch from the target data directly.
    456 PatchChunk::PatchChunk(const ImageChunk& tgt)
    457     : type_(CHUNK_RAW),
    458       source_start_(0),
    459       source_len_(0),
    460       source_uncompressed_len_(0),
    461       target_start_(tgt.GetStartOffset()),
    462       target_len_(tgt.GetRawDataLength()),
    463       target_uncompressed_len_(tgt.DataLengthForPatch()),
    464       target_compress_level_(tgt.GetCompressLevel()),
    465       data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
    466 
    467 // Return true if raw data is smaller than the patch size.
    468 bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
    469   size_t target_len = tgt.GetRawDataLength();
    470   return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
    471 }
    472 
    473 void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
    474   if (type_ == CHUNK_DEFLATE) {
    475     source_start_ = src_range.GetOffsetInRangeSet(source_start_);
    476   }
    477 }
    478 
    479 // Header size:
    480 // header_type    4 bytes
    481 // CHUNK_NORMAL   8*3 = 24 bytes
    482 // CHUNK_DEFLATE  8*5 + 4*5 = 60 bytes
    483 // CHUNK_RAW      4 bytes + patch_size
    484 size_t PatchChunk::GetHeaderSize() const {
    485   switch (type_) {
    486     case CHUNK_NORMAL:
    487       return 4 + 8 * 3;
    488     case CHUNK_DEFLATE:
    489       return 4 + 8 * 5 + 4 * 5;
    490     case CHUNK_RAW:
    491       return 4 + 4 + data_.size();
    492     default:
    493       CHECK(false) << "unexpected chunk type: " << type_;  // Should not reach here.
    494       return 0;
    495   }
    496 }
    497 
    498 // Return the offset of the next patch into the patch data.
    499 size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset, size_t index) const {
    500   Write4(fd, type_);
    501   switch (type_) {
    502     case CHUNK_NORMAL:
    503       LOG(INFO) << android::base::StringPrintf("chunk %zu: normal   (%10zu, %10zu)  %10zu", index,
    504                                                target_start_, target_len_, data_.size());
    505       Write8(fd, static_cast<int64_t>(source_start_));
    506       Write8(fd, static_cast<int64_t>(source_len_));
    507       Write8(fd, static_cast<int64_t>(offset));
    508       return offset + data_.size();
    509     case CHUNK_DEFLATE:
    510       LOG(INFO) << android::base::StringPrintf("chunk %zu: deflate  (%10zu, %10zu)  %10zu", index,
    511                                                target_start_, target_len_, data_.size());
    512       Write8(fd, static_cast<int64_t>(source_start_));
    513       Write8(fd, static_cast<int64_t>(source_len_));
    514       Write8(fd, static_cast<int64_t>(offset));
    515       Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
    516       Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
    517       Write4(fd, target_compress_level_);
    518       Write4(fd, ImageChunk::METHOD);
    519       Write4(fd, ImageChunk::WINDOWBITS);
    520       Write4(fd, ImageChunk::MEMLEVEL);
    521       Write4(fd, ImageChunk::STRATEGY);
    522       return offset + data_.size();
    523     case CHUNK_RAW:
    524       LOG(INFO) << android::base::StringPrintf("chunk %zu: raw      (%10zu, %10zu)", index,
    525                                                target_start_, target_len_);
    526       Write4(fd, static_cast<int32_t>(data_.size()));
    527       if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
    528         CHECK(false) << "Failed to write " << data_.size() << " bytes patch";
    529       }
    530       return offset;
    531     default:
    532       CHECK(false) << "unexpected chunk type: " << type_;
    533       return offset;
    534   }
    535 }
    536 
    537 size_t PatchChunk::PatchSize() const {
    538   if (type_ == CHUNK_RAW) {
    539     return GetHeaderSize();
    540   }
    541   return GetHeaderSize() + data_.size();
    542 }
    543 
    544 // Write the contents of |patch_chunks| to |patch_fd|.
    545 bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
    546   // Figure out how big the imgdiff file header is going to be, so that we can correctly compute
    547   // the offset of each bsdiff patch within the file.
    548   size_t total_header_size = 12;
    549   for (const auto& patch : patch_chunks) {
    550     total_header_size += patch.GetHeaderSize();
    551   }
    552 
    553   size_t offset = total_header_size;
    554 
    555   // Write out the headers.
    556   if (!android::base::WriteStringToFd("IMGDIFF" + std::to_string(VERSION), patch_fd)) {
    557     PLOG(ERROR) << "Failed to write \"IMGDIFF" << VERSION << "\"";
    558     return false;
    559   }
    560 
    561   Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
    562   LOG(INFO) << "Writing " << patch_chunks.size() << " patch headers...";
    563   for (size_t i = 0; i < patch_chunks.size(); ++i) {
    564     offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset, i);
    565   }
    566 
    567   // Append each chunk's bsdiff patch, in order.
    568   for (const auto& patch : patch_chunks) {
    569     if (patch.type_ == CHUNK_RAW) {
    570       continue;
    571     }
    572     if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
    573       PLOG(ERROR) << "Failed to write " << patch.data_.size() << " bytes patch to patch_fd";
    574       return false;
    575     }
    576   }
    577 
    578   return true;
    579 }
    580 
    581 ImageChunk& Image::operator[](size_t i) {
    582   CHECK_LT(i, chunks_.size());
    583   return chunks_[i];
    584 }
    585 
    586 const ImageChunk& Image::operator[](size_t i) const {
    587   CHECK_LT(i, chunks_.size());
    588   return chunks_[i];
    589 }
    590 
    591 void Image::MergeAdjacentNormalChunks() {
    592   size_t merged_last = 0, cur = 0;
    593   while (cur < chunks_.size()) {
    594     // Look for normal chunks adjacent to the current one. If such chunk exists, extend the
    595     // length of the current normal chunk.
    596     size_t to_check = cur + 1;
    597     while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
    598       chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
    599       to_check++;
    600     }
    601 
    602     if (merged_last != cur) {
    603       chunks_[merged_last] = std::move(chunks_[cur]);
    604     }
    605     merged_last++;
    606     cur = to_check;
    607   }
    608   if (merged_last < chunks_.size()) {
    609     chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
    610   }
    611 }
    612 
    613 void Image::DumpChunks() const {
    614   std::string type = is_source_ ? "source" : "target";
    615   LOG(INFO) << "Dumping chunks for " << type;
    616   for (size_t i = 0; i < chunks_.size(); ++i) {
    617     chunks_[i].Dump(i);
    618   }
    619 }
    620 
    621 bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
    622   CHECK(file_content != nullptr);
    623 
    624   android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
    625   if (fd == -1) {
    626     PLOG(ERROR) << "Failed to open " << filename;
    627     return false;
    628   }
    629   struct stat st;
    630   if (fstat(fd, &st) != 0) {
    631     PLOG(ERROR) << "Failed to stat " << filename;
    632     return false;
    633   }
    634 
    635   size_t sz = static_cast<size_t>(st.st_size);
    636   file_content->resize(sz);
    637   if (!android::base::ReadFully(fd, file_content->data(), sz)) {
    638     PLOG(ERROR) << "Failed to read " << filename;
    639     return false;
    640   }
    641   fd.reset();
    642 
    643   return true;
    644 }
    645 
    646 bool ZipModeImage::Initialize(const std::string& filename) {
    647   if (!ReadFile(filename, &file_content_)) {
    648     return false;
    649   }
    650 
    651   // Omit the trailing zeros before we pass the file to ziparchive handler.
    652   size_t zipfile_size;
    653   if (!GetZipFileSize(&zipfile_size)) {
    654     LOG(ERROR) << "Failed to parse the actual size of " << filename;
    655     return false;
    656   }
    657   ZipArchiveHandle handle;
    658   int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
    659                                   filename.c_str(), &handle);
    660   if (err != 0) {
    661     LOG(ERROR) << "Failed to open zip file " << filename << ": " << ErrorCodeString(err);
    662     CloseArchive(handle);
    663     return false;
    664   }
    665 
    666   if (!InitializeChunks(filename, handle)) {
    667     CloseArchive(handle);
    668     return false;
    669   }
    670 
    671   CloseArchive(handle);
    672   return true;
    673 }
    674 
    675 // Iterate the zip entries and compose the image chunks accordingly.
    676 bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
    677   void* cookie;
    678   int ret = StartIteration(handle, &cookie, nullptr, nullptr);
    679   if (ret != 0) {
    680     LOG(ERROR) << "Failed to iterate over entries in " << filename << ": " << ErrorCodeString(ret);
    681     return false;
    682   }
    683 
    684   // Create a list of deflated zip entries, sorted by offset.
    685   std::vector<std::pair<std::string, ZipEntry>> temp_entries;
    686   ZipString name;
    687   ZipEntry entry;
    688   while ((ret = Next(cookie, &entry, &name)) == 0) {
    689     if (entry.method == kCompressDeflated || limit_ > 0) {
    690       std::string entry_name(name.name, name.name + name.name_length);
    691       temp_entries.emplace_back(entry_name, entry);
    692     }
    693   }
    694 
    695   if (ret != -1) {
    696     LOG(ERROR) << "Error while iterating over zip entries: " << ErrorCodeString(ret);
    697     return false;
    698   }
    699   std::sort(temp_entries.begin(), temp_entries.end(),
    700             [](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
    701 
    702   EndIteration(cookie);
    703 
    704   // For source chunks, we don't need to compose chunks for the metadata.
    705   if (is_source_) {
    706     for (auto& entry : temp_entries) {
    707       if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
    708         LOG(ERROR) << "Failed to add " << entry.first << " to source chunks";
    709         return false;
    710       }
    711     }
    712 
    713     // Add the end of zip file (mainly central directory) as a normal chunk.
    714     size_t entries_end = 0;
    715     if (!temp_entries.empty()) {
    716       entries_end = static_cast<size_t>(temp_entries.back().second.offset +
    717                                         temp_entries.back().second.compressed_length);
    718     }
    719     CHECK_LT(entries_end, file_content_.size());
    720     chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
    721                          file_content_.size() - entries_end);
    722 
    723     return true;
    724   }
    725 
    726   // For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
    727   // deflate entries as CHUNK_NORMAL.
    728   size_t pos = 0;
    729   size_t nextentry = 0;
    730   while (pos < file_content_.size()) {
    731     if (nextentry < temp_entries.size() &&
    732         static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
    733       // Add the next zip entry.
    734       std::string entry_name = temp_entries[nextentry].first;
    735       if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
    736         LOG(ERROR) << "Failed to add " << entry_name << " to target chunks";
    737         return false;
    738       }
    739 
    740       pos += temp_entries[nextentry].second.compressed_length;
    741       ++nextentry;
    742       continue;
    743     }
    744 
    745     // Use a normal chunk to take all the data up to the start of the next entry.
    746     size_t raw_data_len;
    747     if (nextentry < temp_entries.size()) {
    748       raw_data_len = temp_entries[nextentry].second.offset - pos;
    749     } else {
    750       raw_data_len = file_content_.size() - pos;
    751     }
    752     chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
    753 
    754     pos += raw_data_len;
    755   }
    756 
    757   return true;
    758 }
    759 
    760 bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
    761                                        ZipEntry* entry) {
    762   size_t compressed_len = entry->compressed_length;
    763   if (compressed_len == 0) return true;
    764 
    765   // Split the entry into several normal chunks if it's too large.
    766   if (limit_ > 0 && compressed_len > limit_) {
    767     int count = 0;
    768     while (compressed_len > 0) {
    769       size_t length = std::min(limit_, compressed_len);
    770       std::string name = entry_name + "-" + std::to_string(count);
    771       chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
    772                            name);
    773 
    774       count++;
    775       compressed_len -= length;
    776     }
    777   } else if (entry->method == kCompressDeflated) {
    778     size_t uncompressed_len = entry->uncompressed_length;
    779     std::vector<uint8_t> uncompressed_data(uncompressed_len);
    780     int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
    781     if (ret != 0) {
    782       LOG(ERROR) << "Failed to extract " << entry_name << " with size " << uncompressed_len << ": "
    783                  << ErrorCodeString(ret);
    784       return false;
    785     }
    786     ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
    787     curr.SetUncompressedData(std::move(uncompressed_data));
    788     chunks_.push_back(std::move(curr));
    789   } else {
    790     chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
    791   }
    792 
    793   return true;
    794 }
    795 
    796 // EOCD record
    797 // offset 0: signature 0x06054b50, 4 bytes
    798 // offset 4: number of this disk, 2 bytes
    799 // ...
    800 // offset 20: comment length, 2 bytes
    801 // offset 22: comment, n bytes
    802 bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
    803   if (file_content_.size() < 22) {
    804     LOG(ERROR) << "File is too small to be a zip file";
    805     return false;
    806   }
    807 
    808   // Look for End of central directory record of the zip file, and calculate the actual
    809   // zip_file size.
    810   for (int i = file_content_.size() - 22; i >= 0; i--) {
    811     if (file_content_[i] == 0x50) {
    812       if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
    813         // double-check: this archive consists of a single "disk".
    814         CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
    815 
    816         uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
    817         size_t file_size = i + 22 + comment_length;
    818         CHECK_LE(file_size, file_content_.size());
    819         *input_file_size = file_size;
    820         return true;
    821       }
    822     }
    823   }
    824 
    825   // EOCD not found, this file is likely not a valid zip file.
    826   return false;
    827 }
    828 
    829 ImageChunk ZipModeImage::PseudoSource() const {
    830   CHECK(is_source_);
    831   return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
    832 }
    833 
    834 const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
    835   if (name.empty()) {
    836     return nullptr;
    837   }
    838   for (auto& chunk : chunks_) {
    839     if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
    840       continue;
    841     }
    842 
    843     if (chunk.GetEntryName() == name) {
    844       return &chunk;
    845     }
    846 
    847     // Edge case when target chunk is split due to size limit but source chunk isn't.
    848     if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
    849       return &chunk;
    850     }
    851 
    852     // TODO handle the .so files with incremental version number.
    853     // (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
    854   }
    855 
    856   return nullptr;
    857 }
    858 
    859 ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
    860   return const_cast<ImageChunk*>(
    861       static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
    862 }
    863 
    864 bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
    865   for (auto& tgt_chunk : *tgt_image) {
    866     if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
    867       continue;
    868     }
    869 
    870     ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
    871     if (src_chunk == nullptr) {
    872       tgt_chunk.ChangeDeflateChunkToNormal();
    873     } else if (tgt_chunk == *src_chunk) {
    874       // If two deflate chunks are identical (eg, the kernel has not changed between two builds),
    875       // treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
    876       // patch to the compressed data, rather than uncompressing and recompressing to apply the
    877       // trivial patch to the uncompressed data.
    878       tgt_chunk.ChangeDeflateChunkToNormal();
    879       src_chunk->ChangeDeflateChunkToNormal();
    880     } else if (!tgt_chunk.ReconstructDeflateChunk()) {
    881       // We cannot recompress the data and get exactly the same bits as are in the input target
    882       // image. Treat the chunk as a normal non-deflated chunk.
    883       LOG(WARNING) << "Failed to reconstruct target deflate chunk [" << tgt_chunk.GetEntryName()
    884                    << "]; treating as normal";
    885 
    886       tgt_chunk.ChangeDeflateChunkToNormal();
    887       src_chunk->ChangeDeflateChunkToNormal();
    888     }
    889   }
    890 
    891   // For zips, we only need merge normal chunks for the target:  deflated chunks are matched via
    892   // filename, and normal chunks are patched using the entire source file as the source.
    893   if (tgt_image->limit_ == 0) {
    894     tgt_image->MergeAdjacentNormalChunks();
    895     tgt_image->DumpChunks();
    896   }
    897 
    898   return true;
    899 }
    900 
    901 // For each target chunk, look for the corresponding source chunk by the zip_entry name. If
    902 // found, add the range of this chunk in the original source file to the block aligned source
    903 // ranges. Construct the split src & tgt image once the size of source range reaches limit.
    904 bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
    905                                               const ZipModeImage& src_image,
    906                                               std::vector<ZipModeImage>* split_tgt_images,
    907                                               std::vector<ZipModeImage>* split_src_images,
    908                                               std::vector<SortedRangeSet>* split_src_ranges) {
    909   CHECK_EQ(tgt_image.limit_, src_image.limit_);
    910   size_t limit = tgt_image.limit_;
    911 
    912   src_image.DumpChunks();
    913   LOG(INFO) << "Splitting " << tgt_image.NumOfChunks() << " tgt chunks...";
    914 
    915   SortedRangeSet used_src_ranges;  // ranges used for previous split source images.
    916 
    917   // Reserve the central directory in advance for the last split image.
    918   const auto& central_directory = src_image.cend() - 1;
    919   CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
    920   used_src_ranges.Insert(central_directory->GetStartOffset(),
    921                          central_directory->DataLengthForPatch());
    922 
    923   SortedRangeSet src_ranges;
    924   std::vector<ImageChunk> split_src_chunks;
    925   std::vector<ImageChunk> split_tgt_chunks;
    926   for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
    927     const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
    928     if (src == nullptr) {
    929       split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
    930                                     tgt->GetRawDataLength());
    931       continue;
    932     }
    933 
    934     size_t src_offset = src->GetStartOffset();
    935     size_t src_length = src->GetRawDataLength();
    936 
    937     CHECK(src_length > 0);
    938     CHECK_LE(src_length, limit);
    939 
    940     // Make sure this source range hasn't been used before so that the src_range pieces don't
    941     // overlap with each other.
    942     if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
    943       split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
    944                                     tgt->GetRawDataLength());
    945     } else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
    946       src_ranges.Insert(src_offset, src_length);
    947 
    948       // Add the deflate source chunk if it hasn't been aligned.
    949       if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
    950         split_src_chunks.push_back(*src);
    951         split_tgt_chunks.push_back(*tgt);
    952       } else {
    953         // TODO split smarter to avoid alignment of large deflate chunks
    954         split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
    955                                       tgt->GetRawDataLength());
    956       }
    957     } else {
    958       bool added_image = ZipModeImage::AddSplitImageFromChunkList(
    959           tgt_image, src_image, src_ranges, split_tgt_chunks, split_src_chunks, split_tgt_images,
    960           split_src_images);
    961 
    962       split_tgt_chunks.clear();
    963       split_src_chunks.clear();
    964       // No need to update the split_src_ranges if we don't update the split source images.
    965       if (added_image) {
    966         used_src_ranges.Insert(src_ranges);
    967         split_src_ranges->push_back(std::move(src_ranges));
    968       }
    969       src_ranges.Clear();
    970 
    971       // We don't have enough space for the current chunk; start a new split image and handle
    972       // this chunk there.
    973       tgt--;
    974     }
    975   }
    976 
    977   // TODO Trim it in case the CD exceeds limit too much.
    978   src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
    979   bool added_image = ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges,
    980                                                               split_tgt_chunks, split_src_chunks,
    981                                                               split_tgt_images, split_src_images);
    982   if (added_image) {
    983     split_src_ranges->push_back(std::move(src_ranges));
    984   }
    985 
    986   ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
    987                       tgt_image.file_content_.size());
    988 
    989   return true;
    990 }
    991 
    992 bool ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
    993                                               const ZipModeImage& src_image,
    994                                               const SortedRangeSet& split_src_ranges,
    995                                               const std::vector<ImageChunk>& split_tgt_chunks,
    996                                               const std::vector<ImageChunk>& split_src_chunks,
    997                                               std::vector<ZipModeImage>* split_tgt_images,
    998                                               std::vector<ZipModeImage>* split_src_images) {
    999   CHECK(!split_tgt_chunks.empty());
   1000 
   1001   std::vector<ImageChunk> aligned_tgt_chunks;
   1002 
   1003   // Align the target chunks in the beginning with BLOCK_SIZE.
   1004   size_t i = 0;
   1005   while (i < split_tgt_chunks.size()) {
   1006     size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
   1007     size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
   1008 
   1009     // Current ImageChunk is long enough to align.
   1010     if (AlignHead(&tgt_start, &tgt_length)) {
   1011       aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
   1012                                       tgt_length);
   1013       break;
   1014     }
   1015 
   1016     i++;
   1017   }
   1018 
   1019   // Nothing left after alignment in the current split tgt chunks; skip adding the split_tgt_image.
   1020   if (i == split_tgt_chunks.size()) {
   1021     return false;
   1022   }
   1023 
   1024   aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
   1025                             split_tgt_chunks.end());
   1026   CHECK(!aligned_tgt_chunks.empty());
   1027 
   1028   // Add a normal chunk to align the contents in the end.
   1029   size_t end_offset =
   1030       aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
   1031   if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
   1032     size_t tail_block_length = std::min<size_t>(tgt_image.file_content_.size() - end_offset,
   1033                                                 BLOCK_SIZE - (end_offset % BLOCK_SIZE));
   1034     aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
   1035                                     tail_block_length);
   1036   }
   1037 
   1038   ZipModeImage split_tgt_image(false);
   1039   split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
   1040   split_tgt_image.MergeAdjacentNormalChunks();
   1041 
   1042   // Construct the dummy source file based on the src_ranges.
   1043   std::vector<uint8_t> src_content;
   1044   for (const auto& r : split_src_ranges) {
   1045     size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
   1046     src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
   1047                        src_image.file_content_.begin() + end);
   1048   }
   1049 
   1050   // We should not have an empty src in our design; otherwise we will encounter an error in
   1051   // bsdiff since src_content.data() == nullptr.
   1052   CHECK(!src_content.empty());
   1053 
   1054   ZipModeImage split_src_image(true);
   1055   split_src_image.Initialize(split_src_chunks, std::move(src_content));
   1056 
   1057   split_tgt_images->push_back(std::move(split_tgt_image));
   1058   split_src_images->push_back(std::move(split_src_image));
   1059 
   1060   return true;
   1061 }
   1062 
   1063 void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
   1064                                        const std::vector<ZipModeImage>& split_src_images,
   1065                                        std::vector<SortedRangeSet>& split_src_ranges,
   1066                                        size_t total_tgt_size) {
   1067   CHECK_EQ(split_tgt_images.size(), split_src_images.size());
   1068 
   1069   LOG(INFO) << "Validating " << split_tgt_images.size() << " images";
   1070 
   1071   // Verify that the target image pieces is continuous and can add up to the total size.
   1072   size_t last_offset = 0;
   1073   for (const auto& tgt_image : split_tgt_images) {
   1074     CHECK(!tgt_image.chunks_.empty());
   1075 
   1076     CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
   1077     CHECK(last_offset % BLOCK_SIZE == 0);
   1078 
   1079     // Check the target chunks within the split image are continuous.
   1080     for (const auto& chunk : tgt_image.chunks_) {
   1081       CHECK_EQ(last_offset, chunk.GetStartOffset());
   1082       last_offset += chunk.GetRawDataLength();
   1083     }
   1084   }
   1085   CHECK_EQ(total_tgt_size, last_offset);
   1086 
   1087   // Verify that the source ranges are mutually exclusive.
   1088   CHECK_EQ(split_src_images.size(), split_src_ranges.size());
   1089   SortedRangeSet used_src_ranges;
   1090   for (size_t i = 0; i < split_src_ranges.size(); i++) {
   1091     CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
   1092         << "src range " << split_src_ranges[i].ToString() << " overlaps "
   1093         << used_src_ranges.ToString();
   1094     used_src_ranges.Insert(split_src_ranges[i]);
   1095   }
   1096 }
   1097 
   1098 bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
   1099                                            const ZipModeImage& src_image,
   1100                                            std::vector<PatchChunk>* patch_chunks) {
   1101   LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
   1102   patch_chunks->clear();
   1103 
   1104   bsdiff::SuffixArrayIndexInterface* bsdiff_cache = nullptr;
   1105   for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
   1106     const auto& tgt_chunk = tgt_image[i];
   1107 
   1108     if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
   1109       patch_chunks->emplace_back(tgt_chunk);
   1110       continue;
   1111     }
   1112 
   1113     const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
   1114                                       ? nullptr
   1115                                       : src_image.FindChunkByName(tgt_chunk.GetEntryName());
   1116 
   1117     const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
   1118     bsdiff::SuffixArrayIndexInterface** bsdiff_cache_ptr =
   1119         (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
   1120 
   1121     std::vector<uint8_t> patch_data;
   1122     if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
   1123       LOG(ERROR) << "Failed to generate patch, name: " << tgt_chunk.GetEntryName();
   1124       return false;
   1125     }
   1126 
   1127     LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
   1128               << tgt_chunk.GetRawDataLength() << ")";
   1129 
   1130     if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
   1131       patch_chunks->emplace_back(tgt_chunk);
   1132     } else {
   1133       patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
   1134     }
   1135   }
   1136   delete bsdiff_cache;
   1137 
   1138   CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
   1139   return true;
   1140 }
   1141 
   1142 bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
   1143                                    const std::string& patch_name) {
   1144   std::vector<PatchChunk> patch_chunks;
   1145 
   1146   ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
   1147 
   1148   CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
   1149 
   1150   android::base::unique_fd patch_fd(
   1151       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1152   if (patch_fd == -1) {
   1153     PLOG(ERROR) << "Failed to open " << patch_name;
   1154     return false;
   1155   }
   1156 
   1157   return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
   1158 }
   1159 
   1160 bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
   1161                                    const std::vector<ZipModeImage>& split_src_images,
   1162                                    const std::vector<SortedRangeSet>& split_src_ranges,
   1163                                    const std::string& patch_name,
   1164                                    const std::string& split_info_file,
   1165                                    const std::string& debug_dir) {
   1166   LOG(INFO) << "Constructing patches for " << split_tgt_images.size() << " split images...";
   1167 
   1168   android::base::unique_fd patch_fd(
   1169       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1170   if (patch_fd == -1) {
   1171     PLOG(ERROR) << "Failed to open " << patch_name;
   1172     return false;
   1173   }
   1174 
   1175   std::vector<std::string> split_info_list;
   1176   for (size_t i = 0; i < split_tgt_images.size(); i++) {
   1177     std::vector<PatchChunk> patch_chunks;
   1178     if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
   1179                                                &patch_chunks)) {
   1180       LOG(ERROR) << "Failed to generate split patch";
   1181       return false;
   1182     }
   1183 
   1184     size_t total_patch_size = 12;
   1185     for (auto& p : patch_chunks) {
   1186       p.UpdateSourceOffset(split_src_ranges[i]);
   1187       total_patch_size += p.PatchSize();
   1188     }
   1189 
   1190     if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
   1191       return false;
   1192     }
   1193 
   1194     size_t split_tgt_size = split_tgt_images[i].chunks_.back().GetStartOffset() +
   1195                             split_tgt_images[i].chunks_.back().GetRawDataLength() -
   1196                             split_tgt_images[i].chunks_.front().GetStartOffset();
   1197     std::string split_info = android::base::StringPrintf(
   1198         "%zu %zu %s", total_patch_size, split_tgt_size, split_src_ranges[i].ToString().c_str());
   1199     split_info_list.push_back(split_info);
   1200 
   1201     // Write the split source & patch into the debug directory.
   1202     if (!debug_dir.empty()) {
   1203       std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
   1204       android::base::unique_fd fd(
   1205           open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1206 
   1207       if (fd == -1) {
   1208         PLOG(ERROR) << "Failed to open " << src_name;
   1209         return false;
   1210       }
   1211       if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
   1212                                      split_src_images[i].PseudoSource().DataLengthForPatch())) {
   1213         PLOG(ERROR) << "Failed to write split source data into " << src_name;
   1214         return false;
   1215       }
   1216 
   1217       std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
   1218       fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1219 
   1220       if (fd == -1) {
   1221         PLOG(ERROR) << "Failed to open " << patch_name;
   1222         return false;
   1223       }
   1224       if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
   1225         return false;
   1226       }
   1227     }
   1228   }
   1229 
   1230   // Store the split in the following format:
   1231   // Line 0:   imgdiff version#
   1232   // Line 1:   number of pieces
   1233   // Line 2:   patch_size_1 tgt_size_1 src_range_1
   1234   // ...
   1235   // Line n+1: patch_size_n tgt_size_n src_range_n
   1236   std::string split_info_string = android::base::StringPrintf(
   1237       "%zu\n%zu\n", VERSION, split_info_list.size()) + android::base::Join(split_info_list, '\n');
   1238   if (!android::base::WriteStringToFile(split_info_string, split_info_file)) {
   1239     PLOG(ERROR) << "Failed to write split info to " << split_info_file;
   1240     return false;
   1241   }
   1242 
   1243   return true;
   1244 }
   1245 
   1246 bool ImageModeImage::Initialize(const std::string& filename) {
   1247   if (!ReadFile(filename, &file_content_)) {
   1248     return false;
   1249   }
   1250 
   1251   size_t sz = file_content_.size();
   1252   size_t pos = 0;
   1253   while (pos < sz) {
   1254     // 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
   1255     if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
   1256       // 'pos' is the offset of the start of a gzip chunk.
   1257       size_t chunk_offset = pos;
   1258 
   1259       // The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
   1260       if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
   1261         chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
   1262         break;
   1263       }
   1264 
   1265       // We need three chunks for the deflated image in total, one normal chunk for the header,
   1266       // one deflated chunk for the body, and another normal chunk for the footer.
   1267       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
   1268       pos += GZIP_HEADER_LEN;
   1269 
   1270       // We must decompress this chunk in order to discover where it ends, and so we can update
   1271       // the uncompressed_data of the image body and its length.
   1272 
   1273       z_stream strm;
   1274       strm.zalloc = Z_NULL;
   1275       strm.zfree = Z_NULL;
   1276       strm.opaque = Z_NULL;
   1277       strm.avail_in = sz - pos;
   1278       strm.next_in = file_content_.data() + pos;
   1279 
   1280       // -15 means we are decoding a 'raw' deflate stream; zlib will
   1281       // not expect zlib headers.
   1282       int ret = inflateInit2(&strm, -15);
   1283       if (ret < 0) {
   1284         LOG(ERROR) << "Failed to initialize inflate: " << ret;
   1285         return false;
   1286       }
   1287 
   1288       size_t allocated = BUFFER_SIZE;
   1289       std::vector<uint8_t> uncompressed_data(allocated);
   1290       size_t uncompressed_len = 0, raw_data_len = 0;
   1291       do {
   1292         strm.avail_out = allocated - uncompressed_len;
   1293         strm.next_out = uncompressed_data.data() + uncompressed_len;
   1294         ret = inflate(&strm, Z_NO_FLUSH);
   1295         if (ret < 0) {
   1296           LOG(WARNING) << "Inflate failed [" << strm.msg << "] at offset [" << chunk_offset
   1297                        << "]; treating as a normal chunk";
   1298           break;
   1299         }
   1300         uncompressed_len = allocated - strm.avail_out;
   1301         if (strm.avail_out == 0) {
   1302           allocated *= 2;
   1303           uncompressed_data.resize(allocated);
   1304         }
   1305       } while (ret != Z_STREAM_END);
   1306 
   1307       raw_data_len = sz - strm.avail_in - pos;
   1308       inflateEnd(&strm);
   1309 
   1310       if (ret < 0) {
   1311         continue;
   1312       }
   1313 
   1314       // The footer contains the size of the uncompressed data.  Double-check to make sure that it
   1315       // matches the size of the data we got when we actually did the decompression.
   1316       size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
   1317       if (sz - footer_index < 4) {
   1318         LOG(WARNING) << "invalid footer position; treating as a normal chunk";
   1319         continue;
   1320       }
   1321       size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
   1322       if (footer_size != uncompressed_len) {
   1323         LOG(WARNING) << "footer size " << footer_size << " != " << uncompressed_len
   1324                      << "; treating as a normal chunk";
   1325         continue;
   1326       }
   1327 
   1328       ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
   1329       uncompressed_data.resize(uncompressed_len);
   1330       body.SetUncompressedData(std::move(uncompressed_data));
   1331       chunks_.push_back(std::move(body));
   1332 
   1333       pos += raw_data_len;
   1334 
   1335       // create a normal chunk for the footer
   1336       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
   1337 
   1338       pos += GZIP_FOOTER_LEN;
   1339     } else {
   1340       // Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
   1341       // the number of chunks to be small (5 for typical boot and recovery images).
   1342 
   1343       // Scan forward until we find a gzip header.
   1344       size_t data_len = 0;
   1345       while (data_len + pos < sz) {
   1346         if (data_len + pos + 4 <= sz &&
   1347             get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
   1348           break;
   1349         }
   1350         data_len++;
   1351       }
   1352       chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
   1353 
   1354       pos += data_len;
   1355     }
   1356   }
   1357 
   1358   return true;
   1359 }
   1360 
   1361 bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
   1362   CHECK(is_source_);
   1363   if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
   1364     LOG(ERROR) << "Failed to set bonus data";
   1365     DumpChunks();
   1366     return false;
   1367   }
   1368 
   1369   LOG(INFO) << "  using " << bonus_data.size() << " bytes of bonus data";
   1370   return true;
   1371 }
   1372 
   1373 // In Image Mode, verify that the source and target images have the same chunk structure (ie, the
   1374 // same sequence of deflate and normal chunks).
   1375 bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
   1376   // In image mode, merge the gzip header and footer in with any adjacent normal chunks.
   1377   tgt_image->MergeAdjacentNormalChunks();
   1378   src_image->MergeAdjacentNormalChunks();
   1379 
   1380   if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
   1381     LOG(ERROR) << "Source and target don't have same number of chunks!";
   1382     tgt_image->DumpChunks();
   1383     src_image->DumpChunks();
   1384     return false;
   1385   }
   1386   for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
   1387     if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
   1388       LOG(ERROR) << "Source and target don't have same chunk structure! (chunk " << i << ")";
   1389       tgt_image->DumpChunks();
   1390       src_image->DumpChunks();
   1391       return false;
   1392     }
   1393   }
   1394 
   1395   for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
   1396     auto& tgt_chunk = (*tgt_image)[i];
   1397     auto& src_chunk = (*src_image)[i];
   1398     if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
   1399       continue;
   1400     }
   1401 
   1402     // If two deflate chunks are identical treat them as normal chunks.
   1403     if (tgt_chunk == src_chunk) {
   1404       tgt_chunk.ChangeDeflateChunkToNormal();
   1405       src_chunk.ChangeDeflateChunkToNormal();
   1406     } else if (!tgt_chunk.ReconstructDeflateChunk()) {
   1407       // We cannot recompress the data and get exactly the same bits as are in the input target
   1408       // image, fall back to normal
   1409       LOG(WARNING) << "Failed to reconstruct target deflate chunk " << i << " ["
   1410                    << tgt_chunk.GetEntryName() << "]; treating as normal";
   1411       tgt_chunk.ChangeDeflateChunkToNormal();
   1412       src_chunk.ChangeDeflateChunkToNormal();
   1413     }
   1414   }
   1415 
   1416   // For images, we need to maintain the parallel structure of the chunk lists, so do the merging
   1417   // in both the source and target lists.
   1418   tgt_image->MergeAdjacentNormalChunks();
   1419   src_image->MergeAdjacentNormalChunks();
   1420   if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
   1421     // This shouldn't happen.
   1422     LOG(ERROR) << "Merging normal chunks went awry";
   1423     return false;
   1424   }
   1425 
   1426   return true;
   1427 }
   1428 
   1429 // In image mode, generate patches against the given source chunks and bonus_data; write the
   1430 // result to |patch_name|.
   1431 bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
   1432                                      const ImageModeImage& src_image,
   1433                                      const std::string& patch_name) {
   1434   LOG(INFO) << "Constructing patches for " << tgt_image.NumOfChunks() << " chunks...";
   1435   std::vector<PatchChunk> patch_chunks;
   1436   patch_chunks.reserve(tgt_image.NumOfChunks());
   1437 
   1438   for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
   1439     const auto& tgt_chunk = tgt_image[i];
   1440     const auto& src_chunk = src_image[i];
   1441 
   1442     if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
   1443       patch_chunks.emplace_back(tgt_chunk);
   1444       continue;
   1445     }
   1446 
   1447     std::vector<uint8_t> patch_data;
   1448     if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
   1449       LOG(ERROR) << "Failed to generate patch for target chunk " << i;
   1450       return false;
   1451     }
   1452     LOG(INFO) << "patch " << i << " is " << patch_data.size() << " bytes (of "
   1453               << tgt_chunk.GetRawDataLength() << ")";
   1454 
   1455     if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
   1456       patch_chunks.emplace_back(tgt_chunk);
   1457     } else {
   1458       patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
   1459     }
   1460   }
   1461 
   1462   CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
   1463 
   1464   android::base::unique_fd patch_fd(
   1465       open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
   1466   if (patch_fd == -1) {
   1467     PLOG(ERROR) << "Failed to open " << patch_name;
   1468     return false;
   1469   }
   1470 
   1471   return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
   1472 }
   1473 
   1474 int imgdiff(int argc, const char** argv) {
   1475   bool verbose = false;
   1476   bool zip_mode = false;
   1477   std::vector<uint8_t> bonus_data;
   1478   size_t blocks_limit = 0;
   1479   std::string split_info_file;
   1480   std::string debug_dir;
   1481 
   1482   int opt;
   1483   int option_index;
   1484   optind = 0;  // Reset the getopt state so that we can call it multiple times for test.
   1485 
   1486   while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:v", OPTIONS, &option_index)) !=
   1487          -1) {
   1488     switch (opt) {
   1489       case 'z':
   1490         zip_mode = true;
   1491         break;
   1492       case 'b': {
   1493         android::base::unique_fd fd(open(optarg, O_RDONLY));
   1494         if (fd == -1) {
   1495           PLOG(ERROR) << "Failed to open bonus file " << optarg;
   1496           return 1;
   1497         }
   1498         struct stat st;
   1499         if (fstat(fd, &st) != 0) {
   1500           PLOG(ERROR) << "Failed to stat bonus file " << optarg;
   1501           return 1;
   1502         }
   1503 
   1504         size_t bonus_size = st.st_size;
   1505         bonus_data.resize(bonus_size);
   1506         if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
   1507           PLOG(ERROR) << "Failed to read bonus file " << optarg;
   1508           return 1;
   1509         }
   1510         break;
   1511       }
   1512       case 'v':
   1513         verbose = true;
   1514         break;
   1515       case 0: {
   1516         std::string name = OPTIONS[option_index].name;
   1517         if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
   1518           LOG(ERROR) << "Failed to parse size blocks_limit: " << optarg;
   1519           return 1;
   1520         } else if (name == "split-info") {
   1521           split_info_file = optarg;
   1522         } else if (name == "debug-dir") {
   1523           debug_dir = optarg;
   1524         }
   1525         break;
   1526       }
   1527       default:
   1528         LOG(ERROR) << "unexpected opt: " << static_cast<char>(opt);
   1529         return 2;
   1530     }
   1531   }
   1532 
   1533   if (!verbose) {
   1534     android::base::SetMinimumLogSeverity(android::base::WARNING);
   1535   }
   1536 
   1537   if (argc - optind != 3) {
   1538     LOG(ERROR) << "usage: " << argv[0] << " [options] <src-img> <tgt-img> <patch-file>";
   1539     LOG(ERROR)
   1540         << "  -z <zip-mode>,    Generate patches in zip mode, src and tgt should be zip files.\n"
   1541            "  -b <bonus-file>,  Bonus file in addition to src, image mode only.\n"
   1542            "  --block-limit,    For large zips, split the src and tgt based on the block limit;\n"
   1543            "                    and generate patches between each pair of pieces. Concatenate "
   1544            "these\n"
   1545            "                    patches together and output them into <patch-file>.\n"
   1546            "  --split-info,     Output the split information (patch_size, tgt_size, src_ranges);\n"
   1547            "                    zip mode with block-limit only.\n"
   1548            "  --debug-dir,      Debug directory to put the split srcs and patches, zip mode only.\n"
   1549            "  -v, --verbose,    Enable verbose logging.";
   1550     return 2;
   1551   }
   1552 
   1553   if (zip_mode) {
   1554     ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
   1555     ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
   1556 
   1557     if (!src_image.Initialize(argv[optind])) {
   1558       return 1;
   1559     }
   1560     if (!tgt_image.Initialize(argv[optind + 1])) {
   1561       return 1;
   1562     }
   1563 
   1564     if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
   1565       return 1;
   1566     }
   1567 
   1568     // Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
   1569     // deflate chunks).
   1570     if (blocks_limit > 0) {
   1571       if (split_info_file.empty()) {
   1572         LOG(ERROR) << "split-info path cannot be empty when generating patches with a block-limit";
   1573         return 1;
   1574       }
   1575 
   1576       std::vector<ZipModeImage> split_tgt_images;
   1577       std::vector<ZipModeImage> split_src_images;
   1578       std::vector<SortedRangeSet> split_src_ranges;
   1579       ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
   1580                                                &split_src_images, &split_src_ranges);
   1581 
   1582       if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
   1583                                          argv[optind + 2], split_info_file, debug_dir)) {
   1584         return 1;
   1585       }
   1586 
   1587     } else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
   1588       return 1;
   1589     }
   1590   } else {
   1591     ImageModeImage src_image(true);
   1592     ImageModeImage tgt_image(false);
   1593 
   1594     if (!src_image.Initialize(argv[optind])) {
   1595       return 1;
   1596     }
   1597     if (!tgt_image.Initialize(argv[optind + 1])) {
   1598       return 1;
   1599     }
   1600 
   1601     if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
   1602       return 1;
   1603     }
   1604 
   1605     if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
   1606       return 1;
   1607     }
   1608 
   1609     if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
   1610       return 1;
   1611     }
   1612   }
   1613 
   1614   return 0;
   1615 }
   1616