Home | History | Annotate | Download | only in squashfs
      1 /*
      2  * Squashfs - a compressed read only filesystem for Linux
      3  *
      4  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
      5  * Phillip Lougher <phillip (at) lougher.demon.co.uk>
      6  *
      7  * This program is free software; you can redistribute it and/or
      8  * modify it under the terms of the GNU General Public License
      9  * as published by the Free Software Foundation; either version 2,
     10  * or (at your option) any later version.
     11  *
     12  * This program is distributed in the hope that it will be useful,
     13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15  * GNU General Public License for more details.
     16  *
     17  * You should have received a copy of the GNU General Public License
     18  * along with this program; if not, write to the Free Software
     19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
     20  *
     21  * cache.c
     22  */
     23 
     24 /*
     25  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
     26  * recently accessed data Squashfs uses two small metadata and fragment caches.
     27  *
     28  * This file implements a generic cache implementation used for both caches,
     29  * plus functions layered ontop of the generic cache implementation to
     30  * access the metadata and fragment caches.
     31  *
     32  * To avoid out of memory and fragmentation isssues with vmalloc the cache
     33  * uses sequences of kmalloced PAGE_CACHE_SIZE buffers.
     34  *
     35  * It should be noted that the cache is not used for file datablocks, these
     36  * are decompressed and cached in the page-cache in the normal way.  The
     37  * cache is only used to temporarily cache fragment and metadata blocks
     38  * which have been read as as a result of a metadata (i.e. inode or
     39  * directory) or fragment access.  Because metadata and fragments are packed
     40  * together into blocks (to gain greater compression) the read of a particular
     41  * piece of metadata or fragment will retrieve other metadata/fragments which
     42  * have been packed with it, these because of locality-of-reference may be read
     43  * in the near future. Temporarily caching them ensures they are available for
     44  * near future access without requiring an additional read and decompress.
     45  */
     46 
     47 #include <linux/fs.h>
     48 #include <linux/vfs.h>
     49 #include <linux/slab.h>
     50 #include <linux/vmalloc.h>
     51 #include <linux/sched.h>
     52 #include <linux/spinlock.h>
     53 #include <linux/wait.h>
     54 #include <linux/zlib.h>
     55 #include <linux/pagemap.h>
     56 
     57 #include "squashfs_fs.h"
     58 #include "squashfs_fs_sb.h"
     59 #include "squashfs_fs_i.h"
     60 #include "squashfs.h"
     61 
     62 /*
     63  * Look-up block in cache, and increment usage count.  If not in cache, read
     64  * and decompress it from disk.
     65  */
     66 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
     67 	struct squashfs_cache *cache, u64 block, int length)
     68 {
     69 	int i, n;
     70 	struct squashfs_cache_entry *entry;
     71 
     72 	spin_lock(&cache->lock);
     73 
     74 	while (1) {
     75 		for (i = 0; i < cache->entries; i++)
     76 			if (cache->entry[i].block == block)
     77 				break;
     78 
     79 		if (i == cache->entries) {
     80 			/*
     81 			 * Block not in cache, if all cache entries are used
     82 			 * go to sleep waiting for one to become available.
     83 			 */
     84 			if (cache->unused == 0) {
     85 				cache->num_waiters++;
     86 				spin_unlock(&cache->lock);
     87 				wait_event(cache->wait_queue, cache->unused);
     88 				spin_lock(&cache->lock);
     89 				cache->num_waiters--;
     90 				continue;
     91 			}
     92 
     93 			/*
     94 			 * At least one unused cache entry.  A simple
     95 			 * round-robin strategy is used to choose the entry to
     96 			 * be evicted from the cache.
     97 			 */
     98 			i = cache->next_blk;
     99 			for (n = 0; n < cache->entries; n++) {
    100 				if (cache->entry[i].refcount == 0)
    101 					break;
    102 				i = (i + 1) % cache->entries;
    103 			}
    104 
    105 			cache->next_blk = (i + 1) % cache->entries;
    106 			entry = &cache->entry[i];
    107 
    108 			/*
    109 			 * Initialise choosen cache entry, and fill it in from
    110 			 * disk.
    111 			 */
    112 			cache->unused--;
    113 			entry->block = block;
    114 			entry->refcount = 1;
    115 			entry->pending = 1;
    116 			entry->num_waiters = 0;
    117 			entry->error = 0;
    118 			spin_unlock(&cache->lock);
    119 
    120 			entry->length = squashfs_read_data(sb, entry->data,
    121 				block, length, &entry->next_index,
    122 				cache->block_size);
    123 
    124 			spin_lock(&cache->lock);
    125 
    126 			if (entry->length < 0)
    127 				entry->error = entry->length;
    128 
    129 			entry->pending = 0;
    130 
    131 			/*
    132 			 * While filling this entry one or more other processes
    133 			 * have looked it up in the cache, and have slept
    134 			 * waiting for it to become available.
    135 			 */
    136 			if (entry->num_waiters) {
    137 				spin_unlock(&cache->lock);
    138 				wake_up_all(&entry->wait_queue);
    139 			} else
    140 				spin_unlock(&cache->lock);
    141 
    142 			goto out;
    143 		}
    144 
    145 		/*
    146 		 * Block already in cache.  Increment refcount so it doesn't
    147 		 * get reused until we're finished with it, if it was
    148 		 * previously unused there's one less cache entry available
    149 		 * for reuse.
    150 		 */
    151 		entry = &cache->entry[i];
    152 		if (entry->refcount == 0)
    153 			cache->unused--;
    154 		entry->refcount++;
    155 
    156 		/*
    157 		 * If the entry is currently being filled in by another process
    158 		 * go to sleep waiting for it to become available.
    159 		 */
    160 		if (entry->pending) {
    161 			entry->num_waiters++;
    162 			spin_unlock(&cache->lock);
    163 			wait_event(entry->wait_queue, !entry->pending);
    164 		} else
    165 			spin_unlock(&cache->lock);
    166 
    167 		goto out;
    168 	}
    169 
    170 out:
    171 	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
    172 		cache->name, i, entry->block, entry->refcount, entry->error);
    173 
    174 	if (entry->error)
    175 		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
    176 							block);
    177 	return entry;
    178 }
    179 
    180 
    181 /*
    182  * Release cache entry, once usage count is zero it can be reused.
    183  */
    184 void squashfs_cache_put(struct squashfs_cache_entry *entry)
    185 {
    186 	struct squashfs_cache *cache = entry->cache;
    187 
    188 	spin_lock(&cache->lock);
    189 	entry->refcount--;
    190 	if (entry->refcount == 0) {
    191 		cache->unused++;
    192 		/*
    193 		 * If there's any processes waiting for a block to become
    194 		 * available, wake one up.
    195 		 */
    196 		if (cache->num_waiters) {
    197 			spin_unlock(&cache->lock);
    198 			wake_up(&cache->wait_queue);
    199 			return;
    200 		}
    201 	}
    202 	spin_unlock(&cache->lock);
    203 }
    204 
    205 /*
    206  * Delete cache reclaiming all kmalloced buffers.
    207  */
    208 void squashfs_cache_delete(struct squashfs_cache *cache)
    209 {
    210 	int i, j;
    211 
    212 	if (cache == NULL)
    213 		return;
    214 
    215 	for (i = 0; i < cache->entries; i++) {
    216 		if (cache->entry[i].data) {
    217 			for (j = 0; j < cache->pages; j++)
    218 				kfree(cache->entry[i].data[j]);
    219 			kfree(cache->entry[i].data);
    220 		}
    221 	}
    222 
    223 	kfree(cache->entry);
    224 	kfree(cache);
    225 }
    226 
    227 
    228 /*
    229  * Initialise cache allocating the specified number of entries, each of
    230  * size block_size.  To avoid vmalloc fragmentation issues each entry
    231  * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers.
    232  */
    233 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
    234 	int block_size)
    235 {
    236 	int i, j;
    237 	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
    238 
    239 	if (cache == NULL) {
    240 		ERROR("Failed to allocate %s cache\n", name);
    241 		return NULL;
    242 	}
    243 
    244 	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
    245 	if (cache->entry == NULL) {
    246 		ERROR("Failed to allocate %s cache\n", name);
    247 		goto cleanup;
    248 	}
    249 
    250 	cache->next_blk = 0;
    251 	cache->unused = entries;
    252 	cache->entries = entries;
    253 	cache->block_size = block_size;
    254 	cache->pages = block_size >> PAGE_CACHE_SHIFT;
    255 	cache->name = name;
    256 	cache->num_waiters = 0;
    257 	spin_lock_init(&cache->lock);
    258 	init_waitqueue_head(&cache->wait_queue);
    259 
    260 	for (i = 0; i < entries; i++) {
    261 		struct squashfs_cache_entry *entry = &cache->entry[i];
    262 
    263 		init_waitqueue_head(&cache->entry[i].wait_queue);
    264 		entry->cache = cache;
    265 		entry->block = SQUASHFS_INVALID_BLK;
    266 		entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
    267 		if (entry->data == NULL) {
    268 			ERROR("Failed to allocate %s cache entry\n", name);
    269 			goto cleanup;
    270 		}
    271 
    272 		for (j = 0; j < cache->pages; j++) {
    273 			entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
    274 			if (entry->data[j] == NULL) {
    275 				ERROR("Failed to allocate %s buffer\n", name);
    276 				goto cleanup;
    277 			}
    278 		}
    279 	}
    280 
    281 	return cache;
    282 
    283 cleanup:
    284 	squashfs_cache_delete(cache);
    285 	return NULL;
    286 }
    287 
    288 
    289 /*
    290  * Copy upto length bytes from cache entry to buffer starting at offset bytes
    291  * into the cache entry.  If there's not length bytes then copy the number of
    292  * bytes available.  In all cases return the number of bytes copied.
    293  */
    294 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
    295 		int offset, int length)
    296 {
    297 	int remaining = length;
    298 
    299 	if (length == 0)
    300 		return 0;
    301 	else if (buffer == NULL)
    302 		return min(length, entry->length - offset);
    303 
    304 	while (offset < entry->length) {
    305 		void *buff = entry->data[offset / PAGE_CACHE_SIZE]
    306 				+ (offset % PAGE_CACHE_SIZE);
    307 		int bytes = min_t(int, entry->length - offset,
    308 				PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE));
    309 
    310 		if (bytes >= remaining) {
    311 			memcpy(buffer, buff, remaining);
    312 			remaining = 0;
    313 			break;
    314 		}
    315 
    316 		memcpy(buffer, buff, bytes);
    317 		buffer += bytes;
    318 		remaining -= bytes;
    319 		offset += bytes;
    320 	}
    321 
    322 	return length - remaining;
    323 }
    324 
    325 
    326 /*
    327  * Read length bytes from metadata position <block, offset> (block is the
    328  * start of the compressed block on disk, and offset is the offset into
    329  * the block once decompressed).  Data is packed into consecutive blocks,
    330  * and length bytes may require reading more than one block.
    331  */
    332 int squashfs_read_metadata(struct super_block *sb, void *buffer,
    333 		u64 *block, int *offset, int length)
    334 {
    335 	struct squashfs_sb_info *msblk = sb->s_fs_info;
    336 	int bytes, copied = length;
    337 	struct squashfs_cache_entry *entry;
    338 
    339 	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
    340 
    341 	while (length) {
    342 		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
    343 		if (entry->error)
    344 			return entry->error;
    345 		else if (*offset >= entry->length)
    346 			return -EIO;
    347 
    348 		bytes = squashfs_copy_data(buffer, entry, *offset, length);
    349 		if (buffer)
    350 			buffer += bytes;
    351 		length -= bytes;
    352 		*offset += bytes;
    353 
    354 		if (*offset == entry->length) {
    355 			*block = entry->next_index;
    356 			*offset = 0;
    357 		}
    358 
    359 		squashfs_cache_put(entry);
    360 	}
    361 
    362 	return copied;
    363 }
    364 
    365 
    366 /*
    367  * Look-up in the fragmment cache the fragment located at <start_block> in the
    368  * filesystem.  If necessary read and decompress it from disk.
    369  */
    370 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
    371 				u64 start_block, int length)
    372 {
    373 	struct squashfs_sb_info *msblk = sb->s_fs_info;
    374 
    375 	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
    376 		length);
    377 }
    378 
    379 
    380 /*
    381  * Read and decompress the datablock located at <start_block> in the
    382  * filesystem.  The cache is used here to avoid duplicating locking and
    383  * read/decompress code.
    384  */
    385 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
    386 				u64 start_block, int length)
    387 {
    388 	struct squashfs_sb_info *msblk = sb->s_fs_info;
    389 
    390 	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
    391 }
    392 
    393 
    394 /*
    395  * Read a filesystem table (uncompressed sequence of bytes) from disk
    396  */
    397 int squashfs_read_table(struct super_block *sb, void *buffer, u64 block,
    398 	int length)
    399 {
    400 	int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
    401 	int i, res;
    402 	void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
    403 	if (data == NULL)
    404 		return -ENOMEM;
    405 
    406 	for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE)
    407 		data[i] = buffer;
    408 	res = squashfs_read_data(sb, data, block, length |
    409 		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length);
    410 	kfree(data);
    411 	return res;
    412 }
    413