Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
     15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
     16 
     17 #include "CGCall.h"
     18 #include "clang/AST/GlobalDecl.h"
     19 #include "clang/CodeGen/CGFunctionInfo.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/IR/Module.h"
     22 #include <vector>
     23 
     24 namespace llvm {
     25 class FunctionType;
     26 class Module;
     27 class DataLayout;
     28 class Type;
     29 class LLVMContext;
     30 class StructType;
     31 }
     32 
     33 namespace clang {
     34 class ASTContext;
     35 template <typename> class CanQual;
     36 class CXXConstructorDecl;
     37 class CXXDestructorDecl;
     38 class CXXMethodDecl;
     39 class CodeGenOptions;
     40 class FieldDecl;
     41 class FunctionProtoType;
     42 class ObjCInterfaceDecl;
     43 class ObjCIvarDecl;
     44 class PointerType;
     45 class QualType;
     46 class RecordDecl;
     47 class TagDecl;
     48 class TargetInfo;
     49 class Type;
     50 typedef CanQual<Type> CanQualType;
     51 
     52 namespace CodeGen {
     53 class ABIInfo;
     54 class CGCXXABI;
     55 class CGRecordLayout;
     56 class CodeGenModule;
     57 class RequiredArgs;
     58 
     59 enum class StructorType {
     60   Complete, // constructor or destructor
     61   Base,     // constructor or destructor
     62   Deleting  // destructor only
     63 };
     64 
     65 inline CXXCtorType toCXXCtorType(StructorType T) {
     66   switch (T) {
     67   case StructorType::Complete:
     68     return Ctor_Complete;
     69   case StructorType::Base:
     70     return Ctor_Base;
     71   case StructorType::Deleting:
     72     llvm_unreachable("cannot have a deleting ctor");
     73   }
     74   llvm_unreachable("not a StructorType");
     75 }
     76 
     77 inline StructorType getFromCtorType(CXXCtorType T) {
     78   switch (T) {
     79   case Ctor_Complete:
     80     return StructorType::Complete;
     81   case Ctor_Base:
     82     return StructorType::Base;
     83   case Ctor_Comdat:
     84     llvm_unreachable("not expecting a COMDAT");
     85   case Ctor_CopyingClosure:
     86   case Ctor_DefaultClosure:
     87     llvm_unreachable("not expecting a closure");
     88   }
     89   llvm_unreachable("not a CXXCtorType");
     90 }
     91 
     92 inline CXXDtorType toCXXDtorType(StructorType T) {
     93   switch (T) {
     94   case StructorType::Complete:
     95     return Dtor_Complete;
     96   case StructorType::Base:
     97     return Dtor_Base;
     98   case StructorType::Deleting:
     99     return Dtor_Deleting;
    100   }
    101   llvm_unreachable("not a StructorType");
    102 }
    103 
    104 inline StructorType getFromDtorType(CXXDtorType T) {
    105   switch (T) {
    106   case Dtor_Deleting:
    107     return StructorType::Deleting;
    108   case Dtor_Complete:
    109     return StructorType::Complete;
    110   case Dtor_Base:
    111     return StructorType::Base;
    112   case Dtor_Comdat:
    113     llvm_unreachable("not expecting a COMDAT");
    114   }
    115   llvm_unreachable("not a CXXDtorType");
    116 }
    117 
    118 /// This class organizes the cross-module state that is used while lowering
    119 /// AST types to LLVM types.
    120 class CodeGenTypes {
    121   CodeGenModule &CGM;
    122   // Some of this stuff should probably be left on the CGM.
    123   ASTContext &Context;
    124   llvm::Module &TheModule;
    125   const TargetInfo &Target;
    126   CGCXXABI &TheCXXABI;
    127 
    128   // This should not be moved earlier, since its initialization depends on some
    129   // of the previous reference members being already initialized
    130   const ABIInfo &TheABIInfo;
    131 
    132   /// The opaque type map for Objective-C interfaces. All direct
    133   /// manipulation is done by the runtime interfaces, which are
    134   /// responsible for coercing to the appropriate type; these opaque
    135   /// types are never refined.
    136   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
    137 
    138   /// Maps clang struct type with corresponding record layout info.
    139   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
    140 
    141   /// Contains the LLVM IR type for any converted RecordDecl.
    142   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
    143 
    144   /// Hold memoized CGFunctionInfo results.
    145   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
    146 
    147   /// This set keeps track of records that we're currently converting
    148   /// to an IR type.  For example, when converting:
    149   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
    150   /// types will be in this set.
    151   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
    152 
    153   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
    154 
    155   /// True if we didn't layout a function due to a being inside
    156   /// a recursive struct conversion, set this to true.
    157   bool SkippedLayout;
    158 
    159   SmallVector<const RecordDecl *, 8> DeferredRecords;
    160 
    161   /// This map keeps cache of llvm::Types and maps clang::Type to
    162   /// corresponding llvm::Type.
    163   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
    164 
    165   llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;
    166 
    167   unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
    168 
    169 public:
    170   CodeGenTypes(CodeGenModule &cgm);
    171   ~CodeGenTypes();
    172 
    173   const llvm::DataLayout &getDataLayout() const {
    174     return TheModule.getDataLayout();
    175   }
    176   ASTContext &getContext() const { return Context; }
    177   const ABIInfo &getABIInfo() const { return TheABIInfo; }
    178   const TargetInfo &getTarget() const { return Target; }
    179   CGCXXABI &getCXXABI() const { return TheCXXABI; }
    180   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
    181 
    182   /// ConvertType - Convert type T into a llvm::Type.
    183   llvm::Type *ConvertType(QualType T);
    184 
    185   /// \brief Converts the GlobalDecl into an llvm::Type. This should be used
    186   /// when we know the target of the function we want to convert.  This is
    187   /// because some functions (explicitly, those with pass_object_size
    188   /// parameters) may not have the same signature as their type portrays, and
    189   /// can only be called directly.
    190   llvm::Type *ConvertFunctionType(QualType FT,
    191                                   const FunctionDecl *FD = nullptr);
    192 
    193   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
    194   /// ConvertType in that it is used to convert to the memory representation for
    195   /// a type.  For example, the scalar representation for _Bool is i1, but the
    196   /// memory representation is usually i8 or i32, depending on the target.
    197   llvm::Type *ConvertTypeForMem(QualType T);
    198 
    199   /// GetFunctionType - Get the LLVM function type for \arg Info.
    200   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
    201 
    202   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
    203 
    204   /// isFuncTypeConvertible - Utility to check whether a function type can
    205   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
    206   /// type).
    207   bool isFuncTypeConvertible(const FunctionType *FT);
    208   bool isFuncParamTypeConvertible(QualType Ty);
    209 
    210   /// Determine if a C++ inheriting constructor should have parameters matching
    211   /// those of its inherited constructor.
    212   bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
    213                                CXXCtorType Type);
    214 
    215   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
    216   /// given a CXXMethodDecl. If the method to has an incomplete return type,
    217   /// and/or incomplete argument types, this will return the opaque type.
    218   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
    219 
    220   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
    221 
    222   /// UpdateCompletedType - When we find the full definition for a TagDecl,
    223   /// replace the 'opaque' type we previously made for it if applicable.
    224   void UpdateCompletedType(const TagDecl *TD);
    225 
    226   /// \brief Remove stale types from the type cache when an inheritance model
    227   /// gets assigned to a class.
    228   void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
    229 
    230   // The arrangement methods are split into three families:
    231   //   - those meant to drive the signature and prologue/epilogue
    232   //     of a function declaration or definition,
    233   //   - those meant for the computation of the LLVM type for an abstract
    234   //     appearance of a function, and
    235   //   - those meant for performing the IR-generation of a call.
    236   // They differ mainly in how they deal with optional (i.e. variadic)
    237   // arguments, as well as unprototyped functions.
    238   //
    239   // Key points:
    240   // - The CGFunctionInfo for emitting a specific call site must include
    241   //   entries for the optional arguments.
    242   // - The function type used at the call site must reflect the formal
    243   //   signature of the declaration being called, or else the call will
    244   //   go awry.
    245   // - For the most part, unprototyped functions are called by casting to
    246   //   a formal signature inferred from the specific argument types used
    247   //   at the call-site.  However, some targets (e.g. x86-64) screw with
    248   //   this for compatibility reasons.
    249 
    250   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
    251 
    252   /// Given a function info for a declaration, return the function info
    253   /// for a call with the given arguments.
    254   ///
    255   /// Often this will be able to simply return the declaration info.
    256   const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
    257                                     const CallArgList &args);
    258 
    259   /// Free functions are functions that are compatible with an ordinary
    260   /// C function pointer type.
    261   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
    262   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
    263                                                 const FunctionType *Ty,
    264                                                 bool ChainCall);
    265   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty,
    266                                                 const FunctionDecl *FD);
    267   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
    268 
    269   /// A nullary function is a freestanding function of type 'void ()'.
    270   /// This method works for both calls and declarations.
    271   const CGFunctionInfo &arrangeNullaryFunction();
    272 
    273   /// A builtin function is a freestanding function using the default
    274   /// C conventions.
    275   const CGFunctionInfo &
    276   arrangeBuiltinFunctionDeclaration(QualType resultType,
    277                                     const FunctionArgList &args);
    278   const CGFunctionInfo &
    279   arrangeBuiltinFunctionDeclaration(CanQualType resultType,
    280                                     ArrayRef<CanQualType> argTypes);
    281   const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
    282                                                    const CallArgList &args);
    283 
    284   /// Objective-C methods are C functions with some implicit parameters.
    285   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
    286   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    287                                                         QualType receiverType);
    288   const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
    289                                                      QualType returnType,
    290                                                      const CallArgList &args);
    291 
    292   /// Block invocation functions are C functions with an implicit parameter.
    293   const CGFunctionInfo &arrangeBlockFunctionDeclaration(
    294                                                  const FunctionProtoType *type,
    295                                                  const FunctionArgList &args);
    296   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
    297                                                  const FunctionType *type);
    298 
    299   /// C++ methods have some special rules and also have implicit parameters.
    300   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
    301   const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
    302                                                       StructorType Type);
    303   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
    304                                                   const CXXConstructorDecl *D,
    305                                                   CXXCtorType CtorKind,
    306                                                   unsigned ExtraArgs);
    307 
    308   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
    309                                              const FunctionProtoType *type,
    310                                              RequiredArgs required);
    311   const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
    312   const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
    313                                                  CXXCtorType CT);
    314   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
    315                                              const FunctionProtoType *FTP,
    316                                              const CXXMethodDecl *MD);
    317 
    318   /// "Arrange" the LLVM information for a call or type with the given
    319   /// signature.  This is largely an internal method; other clients
    320   /// should use one of the above routines, which ultimately defer to
    321   /// this.
    322   ///
    323   /// \param argTypes - must all actually be canonical as params
    324   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
    325                                                 bool instanceMethod,
    326                                                 bool chainCall,
    327                                                 ArrayRef<CanQualType> argTypes,
    328                                                 FunctionType::ExtInfo info,
    329                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
    330                                                 RequiredArgs args);
    331 
    332   /// \brief Compute a new LLVM record layout object for the given record.
    333   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
    334                                       llvm::StructType *Ty);
    335 
    336   /// addRecordTypeName - Compute a name from the given record decl with an
    337   /// optional suffix and name the given LLVM type using it.
    338   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
    339                          StringRef suffix);
    340 
    341 
    342 public:  // These are internal details of CGT that shouldn't be used externally.
    343   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    344   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
    345 
    346   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
    347   /// argument types it would be passed as. See ABIArgInfo::Expand.
    348   void getExpandedTypes(QualType Ty,
    349                         SmallVectorImpl<llvm::Type *>::iterator &TI);
    350 
    351   /// IsZeroInitializable - Return whether a type can be
    352   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
    353   bool isZeroInitializable(QualType T);
    354 
    355   /// IsZeroInitializable - Return whether a record type can be
    356   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
    357   bool isZeroInitializable(const RecordDecl *RD);
    358 
    359   bool isRecordLayoutComplete(const Type *Ty) const;
    360   bool noRecordsBeingLaidOut() const {
    361     return RecordsBeingLaidOut.empty();
    362   }
    363   bool isRecordBeingLaidOut(const Type *Ty) const {
    364     return RecordsBeingLaidOut.count(Ty);
    365   }
    366 
    367 };
    368 
    369 }  // end namespace CodeGen
    370 }  // end namespace clang
    371 
    372 #endif
    373