Home | History | Annotate | Download | only in special
      1 /*
      2  * Licensed to the Apache Software Foundation (ASF) under one or more
      3  * contributor license agreements.  See the NOTICE file distributed with
      4  * this work for additional information regarding copyright ownership.
      5  * The ASF licenses this file to You under the Apache License, Version 2.0
      6  * (the "License"); you may not use this file except in compliance with
      7  * the License.  You may obtain a copy of the License at
      8  *
      9  *      http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 package org.apache.commons.math.special;
     18 
     19 import org.apache.commons.math.MathException;
     20 import org.apache.commons.math.MaxIterationsExceededException;
     21 import org.apache.commons.math.util.ContinuedFraction;
     22 import org.apache.commons.math.util.FastMath;
     23 
     24 /**
     25  * This is a utility class that provides computation methods related to the
     26  * Gamma family of functions.
     27  *
     28  * @version $Revision: 1042510 $ $Date: 2010-12-06 02:54:18 +0100 (lun. 06 dc. 2010) $
     29  */
     30 public class Gamma {
     31 
     32     /**
     33      * <a href="http://en.wikipedia.org/wiki/Euler-Mascheroni_constant">Euler-Mascheroni constant</a>
     34      * @since 2.0
     35      */
     36     public static final double GAMMA = 0.577215664901532860606512090082;
     37 
     38     /** Maximum allowed numerical error. */
     39     private static final double DEFAULT_EPSILON = 10e-15;
     40 
     41     /** Lanczos coefficients */
     42     private static final double[] LANCZOS =
     43     {
     44         0.99999999999999709182,
     45         57.156235665862923517,
     46         -59.597960355475491248,
     47         14.136097974741747174,
     48         -0.49191381609762019978,
     49         .33994649984811888699e-4,
     50         .46523628927048575665e-4,
     51         -.98374475304879564677e-4,
     52         .15808870322491248884e-3,
     53         -.21026444172410488319e-3,
     54         .21743961811521264320e-3,
     55         -.16431810653676389022e-3,
     56         .84418223983852743293e-4,
     57         -.26190838401581408670e-4,
     58         .36899182659531622704e-5,
     59     };
     60 
     61     /** Avoid repeated computation of log of 2 PI in logGamma */
     62     private static final double HALF_LOG_2_PI = 0.5 * FastMath.log(2.0 * FastMath.PI);
     63 
     64     // limits for switching algorithm in digamma
     65     /** C limit. */
     66     private static final double C_LIMIT = 49;
     67 
     68     /** S limit. */
     69     private static final double S_LIMIT = 1e-5;
     70 
     71     /**
     72      * Default constructor.  Prohibit instantiation.
     73      */
     74     private Gamma() {
     75         super();
     76     }
     77 
     78     /**
     79      * Returns the natural logarithm of the gamma function &#915;(x).
     80      *
     81      * The implementation of this method is based on:
     82      * <ul>
     83      * <li><a href="http://mathworld.wolfram.com/GammaFunction.html">
     84      * Gamma Function</a>, equation (28).</li>
     85      * <li><a href="http://mathworld.wolfram.com/LanczosApproximation.html">
     86      * Lanczos Approximation</a>, equations (1) through (5).</li>
     87      * <li><a href="http://my.fit.edu/~gabdo/gamma.txt">Paul Godfrey, A note on
     88      * the computation of the convergent Lanczos complex Gamma approximation
     89      * </a></li>
     90      * </ul>
     91      *
     92      * @param x the value.
     93      * @return log(&#915;(x))
     94      */
     95     public static double logGamma(double x) {
     96         double ret;
     97 
     98         if (Double.isNaN(x) || (x <= 0.0)) {
     99             ret = Double.NaN;
    100         } else {
    101             double g = 607.0 / 128.0;
    102 
    103             double sum = 0.0;
    104             for (int i = LANCZOS.length - 1; i > 0; --i) {
    105                 sum = sum + (LANCZOS[i] / (x + i));
    106             }
    107             sum = sum + LANCZOS[0];
    108 
    109             double tmp = x + g + .5;
    110             ret = ((x + .5) * FastMath.log(tmp)) - tmp +
    111                 HALF_LOG_2_PI + FastMath.log(sum / x);
    112         }
    113 
    114         return ret;
    115     }
    116 
    117     /**
    118      * Returns the regularized gamma function P(a, x).
    119      *
    120      * @param a the a parameter.
    121      * @param x the value.
    122      * @return the regularized gamma function P(a, x)
    123      * @throws MathException if the algorithm fails to converge.
    124      */
    125     public static double regularizedGammaP(double a, double x)
    126         throws MathException
    127     {
    128         return regularizedGammaP(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
    129     }
    130 
    131 
    132     /**
    133      * Returns the regularized gamma function P(a, x).
    134      *
    135      * The implementation of this method is based on:
    136      * <ul>
    137      * <li>
    138      * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
    139      * Regularized Gamma Function</a>, equation (1).</li>
    140      * <li>
    141      * <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">
    142      * Incomplete Gamma Function</a>, equation (4).</li>
    143      * <li>
    144      * <a href="http://mathworld.wolfram.com/ConfluentHypergeometricFunctionoftheFirstKind.html">
    145      * Confluent Hypergeometric Function of the First Kind</a>, equation (1).
    146      * </li>
    147      * </ul>
    148      *
    149      * @param a the a parameter.
    150      * @param x the value.
    151      * @param epsilon When the absolute value of the nth item in the
    152      *                series is less than epsilon the approximation ceases
    153      *                to calculate further elements in the series.
    154      * @param maxIterations Maximum number of "iterations" to complete.
    155      * @return the regularized gamma function P(a, x)
    156      * @throws MathException if the algorithm fails to converge.
    157      */
    158     public static double regularizedGammaP(double a,
    159                                            double x,
    160                                            double epsilon,
    161                                            int maxIterations)
    162         throws MathException
    163     {
    164         double ret;
    165 
    166         if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
    167             ret = Double.NaN;
    168         } else if (x == 0.0) {
    169             ret = 0.0;
    170         } else if (x >= a + 1) {
    171             // use regularizedGammaQ because it should converge faster in this
    172             // case.
    173             ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations);
    174         } else {
    175             // calculate series
    176             double n = 0.0; // current element index
    177             double an = 1.0 / a; // n-th element in the series
    178             double sum = an; // partial sum
    179             while (FastMath.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) {
    180                 // compute next element in the series
    181                 n = n + 1.0;
    182                 an = an * (x / (a + n));
    183 
    184                 // update partial sum
    185                 sum = sum + an;
    186             }
    187             if (n >= maxIterations) {
    188                 throw new MaxIterationsExceededException(maxIterations);
    189             } else if (Double.isInfinite(sum)) {
    190                 ret = 1.0;
    191             } else {
    192                 ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * sum;
    193             }
    194         }
    195 
    196         return ret;
    197     }
    198 
    199     /**
    200      * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
    201      *
    202      * @param a the a parameter.
    203      * @param x the value.
    204      * @return the regularized gamma function Q(a, x)
    205      * @throws MathException if the algorithm fails to converge.
    206      */
    207     public static double regularizedGammaQ(double a, double x)
    208         throws MathException
    209     {
    210         return regularizedGammaQ(a, x, DEFAULT_EPSILON, Integer.MAX_VALUE);
    211     }
    212 
    213     /**
    214      * Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
    215      *
    216      * The implementation of this method is based on:
    217      * <ul>
    218      * <li>
    219      * <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html">
    220      * Regularized Gamma Function</a>, equation (1).</li>
    221      * <li>
    222      * <a href="http://functions.wolfram.com/GammaBetaErf/GammaRegularized/10/0003/">
    223      * Regularized incomplete gamma function: Continued fraction representations  (formula 06.08.10.0003)</a></li>
    224      * </ul>
    225      *
    226      * @param a the a parameter.
    227      * @param x the value.
    228      * @param epsilon When the absolute value of the nth item in the
    229      *                series is less than epsilon the approximation ceases
    230      *                to calculate further elements in the series.
    231      * @param maxIterations Maximum number of "iterations" to complete.
    232      * @return the regularized gamma function P(a, x)
    233      * @throws MathException if the algorithm fails to converge.
    234      */
    235     public static double regularizedGammaQ(final double a,
    236                                            double x,
    237                                            double epsilon,
    238                                            int maxIterations)
    239         throws MathException
    240     {
    241         double ret;
    242 
    243         if (Double.isNaN(a) || Double.isNaN(x) || (a <= 0.0) || (x < 0.0)) {
    244             ret = Double.NaN;
    245         } else if (x == 0.0) {
    246             ret = 1.0;
    247         } else if (x < a + 1.0) {
    248             // use regularizedGammaP because it should converge faster in this
    249             // case.
    250             ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations);
    251         } else {
    252             // create continued fraction
    253             ContinuedFraction cf = new ContinuedFraction() {
    254 
    255                 @Override
    256                 protected double getA(int n, double x) {
    257                     return ((2.0 * n) + 1.0) - a + x;
    258                 }
    259 
    260                 @Override
    261                 protected double getB(int n, double x) {
    262                     return n * (a - n);
    263                 }
    264             };
    265 
    266             ret = 1.0 / cf.evaluate(x, epsilon, maxIterations);
    267             ret = FastMath.exp(-x + (a * FastMath.log(x)) - logGamma(a)) * ret;
    268         }
    269 
    270         return ret;
    271     }
    272 
    273 
    274     /**
    275      * <p>Computes the digamma function of x.</p>
    276      *
    277      * <p>This is an independently written implementation of the algorithm described in
    278      * Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
    279      *
    280      * <p>Some of the constants have been changed to increase accuracy at the moderate expense
    281      * of run-time.  The result should be accurate to within 10^-8 absolute tolerance for
    282      * x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
    283      *
    284      * <p>Performance for large negative values of x will be quite expensive (proportional to
    285      * |x|).  Accuracy for negative values of x should be about 10^-8 absolute for results
    286      * less than 10^5 and 10^-8 relative for results larger than that.</p>
    287      *
    288      * @param x  the argument
    289      * @return   digamma(x) to within 10-8 relative or absolute error whichever is smaller
    290      * @see <a href="http://en.wikipedia.org/wiki/Digamma_function"> Digamma at wikipedia </a>
    291      * @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf"> Bernardo&apos;s original article </a>
    292      * @since 2.0
    293      */
    294     public static double digamma(double x) {
    295         if (x > 0 && x <= S_LIMIT) {
    296             // use method 5 from Bernardo AS103
    297             // accurate to O(x)
    298             return -GAMMA - 1 / x;
    299         }
    300 
    301         if (x >= C_LIMIT) {
    302             // use method 4 (accurate to O(1/x^8)
    303             double inv = 1 / (x * x);
    304             //            1       1        1         1
    305             // log(x) -  --- - ------ + ------- - -------
    306             //           2 x   12 x^2   120 x^4   252 x^6
    307             return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252));
    308         }
    309 
    310         return digamma(x + 1) - 1 / x;
    311     }
    312 
    313     /**
    314      * <p>Computes the trigamma function of x.  This function is derived by taking the derivative of
    315      * the implementation of digamma.</p>
    316      *
    317      * @param x  the argument
    318      * @return   trigamma(x) to within 10-8 relative or absolute error whichever is smaller
    319      * @see <a href="http://en.wikipedia.org/wiki/Trigamma_function"> Trigamma at wikipedia </a>
    320      * @see Gamma#digamma(double)
    321      * @since 2.0
    322      */
    323     public static double trigamma(double x) {
    324         if (x > 0 && x <= S_LIMIT) {
    325             return 1 / (x * x);
    326         }
    327 
    328         if (x >= C_LIMIT) {
    329             double inv = 1 / (x * x);
    330             //  1    1      1       1       1
    331             //  - + ---- + ---- - ----- + -----
    332             //  x      2      3       5       7
    333             //      2 x    6 x    30 x    42 x
    334             return 1 / x + inv / 2 + inv / x * (1.0 / 6 - inv * (1.0 / 30 + inv / 42));
    335         }
    336 
    337         return trigamma(x + 1) + 1 / (x * x);
    338     }
    339 }
    340