Home | History | Annotate | Download | only in shape_fn
      1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
      2 
      3 Licensed under the Apache License, Version 2.0 (the "License");
      4 you may not use this file except in compliance with the License.
      5 You may obtain a copy of the License at
      6 
      7     http://www.apache.org/licenses/LICENSE-2.0
      8 
      9 Unless required by applicable law or agreed to in writing, software
     10 distributed under the License is distributed on an "AS IS" BASIS,
     11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 See the License for the specific language governing permissions and
     13 limitations under the License.
     14 ==============================================================================*/
     15 
     16 #include "tensorflow/contrib/tensorrt/shape_fn/trt_shfn.h"
     17 
     18 #include <string>
     19 #include <vector>
     20 
     21 #if GOOGLE_CUDA
     22 #if GOOGLE_TENSORRT
     23 #include "tensorflow/contrib/tensorrt/log/trt_logger.h"
     24 #include "tensorflow/core/lib/core/errors.h"
     25 #include "tensorrt/include/NvInfer.h"
     26 
     27 namespace tensorflow {
     28 namespace shape_inference {
     29 
     30 tensorflow::Status TRTEngineOpShapeInference(InferenceContext* context) {
     31   tensorflow::tensorrt::Logger logger;
     32   string serialized_engine;
     33   TF_RETURN_IF_ERROR(context->GetAttr("serialized_engine", &serialized_engine));
     34   nvinfer1::IRuntime* infer = nvinfer1::createInferRuntime(logger);
     35   nvinfer1::ICudaEngine* trt_engine = infer->deserializeCudaEngine(
     36       serialized_engine.c_str(), serialized_engine.size(), nullptr);
     37 
     38   int num_batch = -1;
     39   std::vector<::tensorflow::DataType> input_type;
     40   TF_RETURN_IF_ERROR(context->GetAttr("InT", &input_type));
     41   for (size_t i = 0; i < context->num_inputs(); i++) {
     42     // Check if input shape is legit
     43     auto input_shape = context->input(i);
     44     for (int j = 0; j < context->Rank(input_shape); j++) {
     45       auto dim_handler = context->Dim(input_shape, j);
     46       if (j == 0) {
     47         if (i == 0) {
     48           num_batch = context->Value(dim_handler);
     49         } else if (num_batch != context->Value(dim_handler)) {
     50           // TODO(jie): TensorRT engine requires consistent batch between inputs
     51           //            tensors. Segmenter should be aware of this.
     52           LOG(FATAL) << "TensorRT engine requires consistent batch size";
     53         }
     54       }
     55     }
     56   }
     57 
     58   // Arrange input here
     59   std::vector<string> input_nodes;
     60   TF_RETURN_IF_ERROR(context->GetAttr("input_nodes", &input_nodes));
     61 
     62   // Arrange output here
     63   std::vector<string> output_nodes;
     64   TF_RETURN_IF_ERROR(context->GetAttr("output_nodes", &output_nodes));
     65   for (size_t i = 0; i < output_nodes.size(); i++) {
     66     int binding_index = trt_engine->getBindingIndex(output_nodes[i].c_str());
     67     ShapeHandle output_shape;
     68     std::vector<DimensionHandle> dim_vec;
     69     dim_vec.emplace_back(context->MakeDim(num_batch));
     70     if (binding_index != -1) {
     71       auto dims = trt_engine->getBindingDimensions(binding_index);
     72       for (int j = 0; j < dims.nbDims; j++) {
     73         dim_vec.emplace_back(context->MakeDim(dims.d[j]));
     74       }
     75     } else {
     76       LOG(FATAL) << "TensorRT engine cannot find binding: " << output_nodes[i];
     77     }
     78     output_shape = context->MakeShape(dim_vec);
     79     context->set_output(i, output_shape);
     80   }
     81 
     82   return Status::OK();
     83 }
     84 
     85 }  // namespace shape_inference
     86 }  // namespace tensorflow
     87 
     88 #endif  // GOOGLE_TENSORRT
     89 #endif  // GOOGLE_CUDA
     90