Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mutex.h"
     18 
     19 #include <errno.h>
     20 #include <sys/time.h>
     21 
     22 #include "android-base/stringprintf.h"
     23 
     24 #include "base/atomic.h"
     25 #include "base/logging.h"
     26 #include "base/systrace.h"
     27 #include "base/time_utils.h"
     28 #include "base/value_object.h"
     29 #include "mutex-inl.h"
     30 #include "scoped_thread_state_change-inl.h"
     31 #include "thread-inl.h"
     32 
     33 namespace art {
     34 
     35 using android::base::StringPrintf;
     36 
     37 static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
     38 
     39 Mutex* Locks::abort_lock_ = nullptr;
     40 Mutex* Locks::alloc_tracker_lock_ = nullptr;
     41 Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
     42 Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
     43 ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
     44 ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
     45 Mutex* Locks::deoptimization_lock_ = nullptr;
     46 ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
     47 Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
     48 Mutex* Locks::intern_table_lock_ = nullptr;
     49 Mutex* Locks::jni_function_table_lock_ = nullptr;
     50 Mutex* Locks::jni_libraries_lock_ = nullptr;
     51 Mutex* Locks::logging_lock_ = nullptr;
     52 Mutex* Locks::modify_ldt_lock_ = nullptr;
     53 MutatorMutex* Locks::mutator_lock_ = nullptr;
     54 Mutex* Locks::profiler_lock_ = nullptr;
     55 ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
     56 ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
     57 Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
     58 Mutex* Locks::reference_processor_lock_ = nullptr;
     59 Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
     60 Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
     61 Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
     62 Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
     63 Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
     64 Mutex* Locks::runtime_shutdown_lock_ = nullptr;
     65 Mutex* Locks::cha_lock_ = nullptr;
     66 Mutex* Locks::subtype_check_lock_ = nullptr;
     67 Mutex* Locks::thread_list_lock_ = nullptr;
     68 ConditionVariable* Locks::thread_exit_cond_ = nullptr;
     69 Mutex* Locks::thread_suspend_count_lock_ = nullptr;
     70 Mutex* Locks::trace_lock_ = nullptr;
     71 Mutex* Locks::unexpected_signal_lock_ = nullptr;
     72 Mutex* Locks::user_code_suspension_lock_ = nullptr;
     73 Uninterruptible Roles::uninterruptible_;
     74 ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
     75 Mutex* Locks::jni_weak_globals_lock_ = nullptr;
     76 ReaderWriterMutex* Locks::dex_lock_ = nullptr;
     77 Mutex* Locks::native_debug_interface_lock_ = nullptr;
     78 std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
     79 Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
     80 
     81 struct AllMutexData {
     82   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
     83   Atomic<const BaseMutex*> all_mutexes_guard;
     84   // All created mutexes guarded by all_mutexes_guard_.
     85   std::set<BaseMutex*>* all_mutexes;
     86   AllMutexData() : all_mutexes(nullptr) {}
     87 };
     88 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
     89 
     90 #if ART_USE_FUTEXES
     91 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
     92   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
     93   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
     94   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
     95   if (result_ts->tv_nsec < 0) {
     96     result_ts->tv_sec--;
     97     result_ts->tv_nsec += one_sec;
     98   } else if (result_ts->tv_nsec > one_sec) {
     99     result_ts->tv_sec++;
    100     result_ts->tv_nsec -= one_sec;
    101   }
    102   return result_ts->tv_sec < 0;
    103 }
    104 #endif
    105 
    106 // Wait for an amount of time that roughly increases in the argument i.
    107 // Spin for small arguments and yield/sleep for longer ones.
    108 static void BackOff(uint32_t i) {
    109   static constexpr uint32_t kSpinMax = 10;
    110   static constexpr uint32_t kYieldMax = 20;
    111   if (i <= kSpinMax) {
    112     // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
    113     // test-and-test-and-set loop in the caller.  Possibly skip entirely on a uniprocessor.
    114     volatile uint32_t x = 0;
    115     const uint32_t spin_count = 10 * i;
    116     for (uint32_t spin = 0; spin < spin_count; ++spin) {
    117       ++x;  // Volatile; hence should not be optimized away.
    118     }
    119     // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
    120   } else if (i <= kYieldMax) {
    121     sched_yield();
    122   } else {
    123     NanoSleep(1000ull * (i - kYieldMax));
    124   }
    125 }
    126 
    127 class ScopedAllMutexesLock FINAL {
    128  public:
    129   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
    130     for (uint32_t i = 0;
    131          !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(0, mutex);
    132          ++i) {
    133       BackOff(i);
    134     }
    135   }
    136 
    137   ~ScopedAllMutexesLock() {
    138     DCHECK_EQ(gAllMutexData->all_mutexes_guard.LoadRelaxed(), mutex_);
    139     gAllMutexData->all_mutexes_guard.StoreRelease(0);
    140   }
    141 
    142  private:
    143   const BaseMutex* const mutex_;
    144 };
    145 
    146 class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
    147  public:
    148   explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
    149     for (uint32_t i = 0;
    150          !Locks::expected_mutexes_on_weak_ref_access_guard_.CompareAndSetWeakAcquire(0, mutex);
    151          ++i) {
    152       BackOff(i);
    153     }
    154   }
    155 
    156   ~ScopedExpectedMutexesOnWeakRefAccessLock() {
    157     DCHECK_EQ(Locks::expected_mutexes_on_weak_ref_access_guard_.LoadRelaxed(), mutex_);
    158     Locks::expected_mutexes_on_weak_ref_access_guard_.StoreRelease(0);
    159   }
    160 
    161  private:
    162   const BaseMutex* const mutex_;
    163 };
    164 
    165 // Scoped class that generates events at the beginning and end of lock contention.
    166 class ScopedContentionRecorder FINAL : public ValueObject {
    167  public:
    168   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
    169       : mutex_(kLogLockContentions ? mutex : nullptr),
    170         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
    171         owner_tid_(kLogLockContentions ? owner_tid : 0),
    172         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
    173     if (ATRACE_ENABLED()) {
    174       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
    175                                      mutex->GetName(), owner_tid);
    176       ATRACE_BEGIN(msg.c_str());
    177     }
    178   }
    179 
    180   ~ScopedContentionRecorder() {
    181     ATRACE_END();
    182     if (kLogLockContentions) {
    183       uint64_t end_nano_time = NanoTime();
    184       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
    185     }
    186   }
    187 
    188  private:
    189   BaseMutex* const mutex_;
    190   const uint64_t blocked_tid_;
    191   const uint64_t owner_tid_;
    192   const uint64_t start_nano_time_;
    193 };
    194 
    195 BaseMutex::BaseMutex(const char* name, LockLevel level)
    196     : level_(level),
    197       name_(name),
    198       should_respond_to_empty_checkpoint_request_(false) {
    199   if (kLogLockContentions) {
    200     ScopedAllMutexesLock mu(this);
    201     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
    202     if (*all_mutexes_ptr == nullptr) {
    203       // We leak the global set of all mutexes to avoid ordering issues in global variable
    204       // construction/destruction.
    205       *all_mutexes_ptr = new std::set<BaseMutex*>();
    206     }
    207     (*all_mutexes_ptr)->insert(this);
    208   }
    209 }
    210 
    211 BaseMutex::~BaseMutex() {
    212   if (kLogLockContentions) {
    213     ScopedAllMutexesLock mu(this);
    214     gAllMutexData->all_mutexes->erase(this);
    215   }
    216 }
    217 
    218 void BaseMutex::DumpAll(std::ostream& os) {
    219   if (kLogLockContentions) {
    220     os << "Mutex logging:\n";
    221     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
    222     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
    223     if (all_mutexes == nullptr) {
    224       // No mutexes have been created yet during at startup.
    225       return;
    226     }
    227     typedef std::set<BaseMutex*>::const_iterator It;
    228     os << "(Contended)\n";
    229     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    230       BaseMutex* mutex = *it;
    231       if (mutex->HasEverContended()) {
    232         mutex->Dump(os);
    233         os << "\n";
    234       }
    235     }
    236     os << "(Never contented)\n";
    237     for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
    238       BaseMutex* mutex = *it;
    239       if (!mutex->HasEverContended()) {
    240         mutex->Dump(os);
    241         os << "\n";
    242       }
    243     }
    244   }
    245 }
    246 
    247 void BaseMutex::CheckSafeToWait(Thread* self) {
    248   if (self == nullptr) {
    249     CheckUnattachedThread(level_);
    250     return;
    251   }
    252   if (kDebugLocking) {
    253     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
    254         << "Waiting on unacquired mutex: " << name_;
    255     bool bad_mutexes_held = false;
    256     for (int i = kLockLevelCount - 1; i >= 0; --i) {
    257       if (i != level_) {
    258         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
    259         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
    260         // are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
    261         // gc or some other internal process is suspending the thread while it is trying to suspend
    262         // some other thread. So long as the current thread is not being suspended by a
    263         // SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
    264         // fine.
    265         if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
    266           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
    267           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
    268           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
    269           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
    270             return self->GetUserCodeSuspendCount() != 0;
    271           };
    272           if (is_suspending_for_user_code()) {
    273             LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    274                       << "(level " << LockLevel(i) << ") while performing wait on "
    275                       << "\"" << name_ << "\" (level " << level_ << ") "
    276                       << "with SuspendReason::kForUserCode pending suspensions";
    277             bad_mutexes_held = true;
    278           }
    279         } else if (held_mutex != nullptr) {
    280           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    281                      << "(level " << LockLevel(i) << ") while performing wait on "
    282                      << "\"" << name_ << "\" (level " << level_ << ")";
    283           bad_mutexes_held = true;
    284         }
    285       }
    286     }
    287     if (gAborting == 0) {  // Avoid recursive aborts.
    288       CHECK(!bad_mutexes_held) << this;
    289     }
    290   }
    291 }
    292 
    293 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
    294   if (kLogLockContentions) {
    295     // Atomically add value to wait_time.
    296     wait_time.FetchAndAddSequentiallyConsistent(value);
    297   }
    298 }
    299 
    300 void BaseMutex::RecordContention(uint64_t blocked_tid,
    301                                  uint64_t owner_tid,
    302                                  uint64_t nano_time_blocked) {
    303   if (kLogLockContentions) {
    304     ContentionLogData* data = contention_log_data_;
    305     ++(data->contention_count);
    306     data->AddToWaitTime(nano_time_blocked);
    307     ContentionLogEntry* log = data->contention_log;
    308     // This code is intentionally racy as it is only used for diagnostics.
    309     uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
    310     if (log[slot].blocked_tid == blocked_tid &&
    311         log[slot].owner_tid == blocked_tid) {
    312       ++log[slot].count;
    313     } else {
    314       uint32_t new_slot;
    315       do {
    316         slot = data->cur_content_log_entry.LoadRelaxed();
    317         new_slot = (slot + 1) % kContentionLogSize;
    318       } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
    319       log[new_slot].blocked_tid = blocked_tid;
    320       log[new_slot].owner_tid = owner_tid;
    321       log[new_slot].count.StoreRelaxed(1);
    322     }
    323   }
    324 }
    325 
    326 void BaseMutex::DumpContention(std::ostream& os) const {
    327   if (kLogLockContentions) {
    328     const ContentionLogData* data = contention_log_data_;
    329     const ContentionLogEntry* log = data->contention_log;
    330     uint64_t wait_time = data->wait_time.LoadRelaxed();
    331     uint32_t contention_count = data->contention_count.LoadRelaxed();
    332     if (contention_count == 0) {
    333       os << "never contended";
    334     } else {
    335       os << "contended " << contention_count
    336          << " total wait of contender " << PrettyDuration(wait_time)
    337          << " average " << PrettyDuration(wait_time / contention_count);
    338       SafeMap<uint64_t, size_t> most_common_blocker;
    339       SafeMap<uint64_t, size_t> most_common_blocked;
    340       for (size_t i = 0; i < kContentionLogSize; ++i) {
    341         uint64_t blocked_tid = log[i].blocked_tid;
    342         uint64_t owner_tid = log[i].owner_tid;
    343         uint32_t count = log[i].count.LoadRelaxed();
    344         if (count > 0) {
    345           auto it = most_common_blocked.find(blocked_tid);
    346           if (it != most_common_blocked.end()) {
    347             most_common_blocked.Overwrite(blocked_tid, it->second + count);
    348           } else {
    349             most_common_blocked.Put(blocked_tid, count);
    350           }
    351           it = most_common_blocker.find(owner_tid);
    352           if (it != most_common_blocker.end()) {
    353             most_common_blocker.Overwrite(owner_tid, it->second + count);
    354           } else {
    355             most_common_blocker.Put(owner_tid, count);
    356           }
    357         }
    358       }
    359       uint64_t max_tid = 0;
    360       size_t max_tid_count = 0;
    361       for (const auto& pair : most_common_blocked) {
    362         if (pair.second > max_tid_count) {
    363           max_tid = pair.first;
    364           max_tid_count = pair.second;
    365         }
    366       }
    367       if (max_tid != 0) {
    368         os << " sample shows most blocked tid=" << max_tid;
    369       }
    370       max_tid = 0;
    371       max_tid_count = 0;
    372       for (const auto& pair : most_common_blocker) {
    373         if (pair.second > max_tid_count) {
    374           max_tid = pair.first;
    375           max_tid_count = pair.second;
    376         }
    377       }
    378       if (max_tid != 0) {
    379         os << " sample shows tid=" << max_tid << " owning during this time";
    380       }
    381     }
    382   }
    383 }
    384 
    385 
    386 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
    387     : BaseMutex(name, level), exclusive_owner_(0), recursive_(recursive), recursion_count_(0) {
    388 #if ART_USE_FUTEXES
    389   DCHECK_EQ(0, state_.LoadRelaxed());
    390   DCHECK_EQ(0, num_contenders_.LoadRelaxed());
    391 #else
    392   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
    393 #endif
    394 }
    395 
    396 // Helper to allow checking shutdown while locking for thread safety.
    397 static bool IsSafeToCallAbortSafe() {
    398   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    399   return Locks::IsSafeToCallAbortRacy();
    400 }
    401 
    402 Mutex::~Mutex() {
    403   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
    404 #if ART_USE_FUTEXES
    405   if (state_.LoadRelaxed() != 0) {
    406     LOG(safe_to_call_abort ? FATAL : WARNING)
    407         << "destroying mutex with owner: " << GetExclusiveOwnerTid();
    408   } else {
    409     if (GetExclusiveOwnerTid() != 0) {
    410       LOG(safe_to_call_abort ? FATAL : WARNING)
    411           << "unexpectedly found an owner on unlocked mutex " << name_;
    412     }
    413     if (num_contenders_.LoadSequentiallyConsistent() != 0) {
    414       LOG(safe_to_call_abort ? FATAL : WARNING)
    415           << "unexpectedly found a contender on mutex " << name_;
    416     }
    417   }
    418 #else
    419   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    420   // may still be using locks.
    421   int rc = pthread_mutex_destroy(&mutex_);
    422   if (rc != 0) {
    423     errno = rc;
    424     PLOG(safe_to_call_abort ? FATAL : WARNING)
    425         << "pthread_mutex_destroy failed for " << name_;
    426   }
    427 #endif
    428 }
    429 
    430 void Mutex::ExclusiveLock(Thread* self) {
    431   DCHECK(self == nullptr || self == Thread::Current());
    432   if (kDebugLocking && !recursive_) {
    433     AssertNotHeld(self);
    434   }
    435   if (!recursive_ || !IsExclusiveHeld(self)) {
    436 #if ART_USE_FUTEXES
    437     bool done = false;
    438     do {
    439       int32_t cur_state = state_.LoadRelaxed();
    440       if (LIKELY(cur_state == 0)) {
    441         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    442         done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, 1 /* new state */);
    443       } else {
    444         // Failed to acquire, hang up.
    445         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    446         num_contenders_++;
    447         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    448           self->CheckEmptyCheckpointFromMutex();
    449         }
    450         if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
    451           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    452           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    453           if ((errno != EAGAIN) && (errno != EINTR)) {
    454             PLOG(FATAL) << "futex wait failed for " << name_;
    455           }
    456         }
    457         num_contenders_--;
    458       }
    459     } while (!done);
    460     DCHECK_EQ(state_.LoadRelaxed(), 1);
    461 #else
    462     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
    463 #endif
    464     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    465     exclusive_owner_.StoreRelaxed(SafeGetTid(self));
    466     RegisterAsLocked(self);
    467   }
    468   recursion_count_++;
    469   if (kDebugLocking) {
    470     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    471         << name_ << " " << recursion_count_;
    472     AssertHeld(self);
    473   }
    474 }
    475 
    476 bool Mutex::ExclusiveTryLock(Thread* self) {
    477   DCHECK(self == nullptr || self == Thread::Current());
    478   if (kDebugLocking && !recursive_) {
    479     AssertNotHeld(self);
    480   }
    481   if (!recursive_ || !IsExclusiveHeld(self)) {
    482 #if ART_USE_FUTEXES
    483     bool done = false;
    484     do {
    485       int32_t cur_state = state_.LoadRelaxed();
    486       if (cur_state == 0) {
    487         // Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
    488         done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, 1 /* new state */);
    489       } else {
    490         return false;
    491       }
    492     } while (!done);
    493     DCHECK_EQ(state_.LoadRelaxed(), 1);
    494 #else
    495     int result = pthread_mutex_trylock(&mutex_);
    496     if (result == EBUSY) {
    497       return false;
    498     }
    499     if (result != 0) {
    500       errno = result;
    501       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    502     }
    503 #endif
    504     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    505     exclusive_owner_.StoreRelaxed(SafeGetTid(self));
    506     RegisterAsLocked(self);
    507   }
    508   recursion_count_++;
    509   if (kDebugLocking) {
    510     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    511         << name_ << " " << recursion_count_;
    512     AssertHeld(self);
    513   }
    514   return true;
    515 }
    516 
    517 void Mutex::ExclusiveUnlock(Thread* self) {
    518   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
    519     std::string name1 = "<null>";
    520     std::string name2 = "<null>";
    521     if (self != nullptr) {
    522       self->GetThreadName(name1);
    523     }
    524     if (Thread::Current() != nullptr) {
    525       Thread::Current()->GetThreadName(name2);
    526     }
    527     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
    528                << " Thread::Current()=" << name2;
    529   }
    530   AssertHeld(self);
    531   DCHECK_NE(GetExclusiveOwnerTid(), 0);
    532   recursion_count_--;
    533   if (!recursive_ || recursion_count_ == 0) {
    534     if (kDebugLocking) {
    535       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
    536           << name_ << " " << recursion_count_;
    537     }
    538     RegisterAsUnlocked(self);
    539 #if ART_USE_FUTEXES
    540     bool done = false;
    541     do {
    542       int32_t cur_state = state_.LoadRelaxed();
    543       if (LIKELY(cur_state == 1)) {
    544         // We're no longer the owner.
    545         exclusive_owner_.StoreRelaxed(0);
    546         // Change state to 0 and impose load/store ordering appropriate for lock release.
    547         // Note, the relaxed loads below mustn't reorder before the CompareAndSet.
    548         // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    549         // a status bit into the state on contention.
    550         done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, 0 /* new state */);
    551         if (LIKELY(done)) {  // Spurious fail?
    552           // Wake a contender.
    553           if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    554             futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    555           }
    556         }
    557       } else {
    558         // Logging acquires the logging lock, avoid infinite recursion in that case.
    559         if (this != Locks::logging_lock_) {
    560           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
    561         } else {
    562           LogHelper::LogLineLowStack(__FILE__,
    563                                      __LINE__,
    564                                      ::android::base::FATAL_WITHOUT_ABORT,
    565                                      StringPrintf("Unexpected state_ %d in unlock for %s",
    566                                                   cur_state, name_).c_str());
    567           _exit(1);
    568         }
    569       }
    570     } while (!done);
    571 #else
    572     exclusive_owner_.StoreRelaxed(0);
    573     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
    574 #endif
    575   }
    576 }
    577 
    578 void Mutex::Dump(std::ostream& os) const {
    579   os << (recursive_ ? "recursive " : "non-recursive ")
    580       << name_
    581       << " level=" << static_cast<int>(level_)
    582       << " rec=" << recursion_count_
    583       << " owner=" << GetExclusiveOwnerTid() << " ";
    584   DumpContention(os);
    585 }
    586 
    587 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
    588   mu.Dump(os);
    589   return os;
    590 }
    591 
    592 void Mutex::WakeupToRespondToEmptyCheckpoint() {
    593 #if ART_USE_FUTEXES
    594   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    595   DCHECK(should_respond_to_empty_checkpoint_request_);
    596   if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
    597     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    598   }
    599 #else
    600   LOG(FATAL) << "Non futex case isn't supported.";
    601 #endif
    602 }
    603 
    604 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
    605     : BaseMutex(name, level)
    606 #if ART_USE_FUTEXES
    607     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
    608 #endif
    609 {
    610 #if !ART_USE_FUTEXES
    611   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
    612 #endif
    613   exclusive_owner_.StoreRelaxed(0);
    614 }
    615 
    616 ReaderWriterMutex::~ReaderWriterMutex() {
    617 #if ART_USE_FUTEXES
    618   CHECK_EQ(state_.LoadRelaxed(), 0);
    619   CHECK_EQ(GetExclusiveOwnerTid(), 0);
    620   CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
    621   CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
    622 #else
    623   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    624   // may still be using locks.
    625   int rc = pthread_rwlock_destroy(&rwlock_);
    626   if (rc != 0) {
    627     errno = rc;
    628     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    629     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
    630   }
    631 #endif
    632 }
    633 
    634 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
    635   DCHECK(self == nullptr || self == Thread::Current());
    636   AssertNotExclusiveHeld(self);
    637 #if ART_USE_FUTEXES
    638   bool done = false;
    639   do {
    640     int32_t cur_state = state_.LoadRelaxed();
    641     if (LIKELY(cur_state == 0)) {
    642       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    643       done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
    644     } else {
    645       // Failed to acquire, hang up.
    646       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    647       ++num_pending_writers_;
    648       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    649         self->CheckEmptyCheckpointFromMutex();
    650       }
    651       if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    652         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    653         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    654         if ((errno != EAGAIN) && (errno != EINTR)) {
    655           PLOG(FATAL) << "futex wait failed for " << name_;
    656         }
    657       }
    658       --num_pending_writers_;
    659     }
    660   } while (!done);
    661   DCHECK_EQ(state_.LoadRelaxed(), -1);
    662 #else
    663   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
    664 #endif
    665   DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    666   exclusive_owner_.StoreRelaxed(SafeGetTid(self));
    667   RegisterAsLocked(self);
    668   AssertExclusiveHeld(self);
    669 }
    670 
    671 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
    672   DCHECK(self == nullptr || self == Thread::Current());
    673   AssertExclusiveHeld(self);
    674   RegisterAsUnlocked(self);
    675   DCHECK_NE(GetExclusiveOwnerTid(), 0);
    676 #if ART_USE_FUTEXES
    677   bool done = false;
    678   do {
    679     int32_t cur_state = state_.LoadRelaxed();
    680     if (LIKELY(cur_state == -1)) {
    681       // We're no longer the owner.
    682       exclusive_owner_.StoreRelaxed(0);
    683       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
    684       // Note, the relaxed loads below musn't reorder before the CompareAndSet.
    685       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    686       // a status bit into the state on contention.
    687       done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
    688       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
    689         // Wake any waiters.
    690         if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    691                      num_pending_writers_.LoadRelaxed() > 0)) {
    692           futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    693         }
    694       }
    695     } else {
    696       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
    697     }
    698   } while (!done);
    699 #else
    700   exclusive_owner_.StoreRelaxed(0);
    701   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
    702 #endif
    703 }
    704 
    705 #if HAVE_TIMED_RWLOCK
    706 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
    707   DCHECK(self == nullptr || self == Thread::Current());
    708 #if ART_USE_FUTEXES
    709   bool done = false;
    710   timespec end_abs_ts;
    711   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
    712   do {
    713     int32_t cur_state = state_.LoadRelaxed();
    714     if (cur_state == 0) {
    715       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    716       done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
    717     } else {
    718       // Failed to acquire, hang up.
    719       timespec now_abs_ts;
    720       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
    721       timespec rel_ts;
    722       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
    723         return false;  // Timed out.
    724       }
    725       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    726       ++num_pending_writers_;
    727       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    728         self->CheckEmptyCheckpointFromMutex();
    729       }
    730       if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
    731         if (errno == ETIMEDOUT) {
    732           --num_pending_writers_;
    733           return false;  // Timed out.
    734         } else if ((errno != EAGAIN) && (errno != EINTR)) {
    735           // EAGAIN and EINTR both indicate a spurious failure,
    736           // recompute the relative time out from now and try again.
    737           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
    738           PLOG(FATAL) << "timed futex wait failed for " << name_;
    739         }
    740       }
    741       --num_pending_writers_;
    742     }
    743   } while (!done);
    744 #else
    745   timespec ts;
    746   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
    747   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
    748   if (result == ETIMEDOUT) {
    749     return false;
    750   }
    751   if (result != 0) {
    752     errno = result;
    753     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
    754   }
    755 #endif
    756   exclusive_owner_.StoreRelaxed(SafeGetTid(self));
    757   RegisterAsLocked(self);
    758   AssertSharedHeld(self);
    759   return true;
    760 }
    761 #endif
    762 
    763 #if ART_USE_FUTEXES
    764 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
    765   // Owner holds it exclusively, hang up.
    766   ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    767   ++num_pending_readers_;
    768   if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    769     self->CheckEmptyCheckpointFromMutex();
    770   }
    771   if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
    772     if (errno != EAGAIN && errno != EINTR) {
    773       PLOG(FATAL) << "futex wait failed for " << name_;
    774     }
    775   }
    776   --num_pending_readers_;
    777 }
    778 #endif
    779 
    780 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
    781   DCHECK(self == nullptr || self == Thread::Current());
    782 #if ART_USE_FUTEXES
    783   bool done = false;
    784   do {
    785     int32_t cur_state = state_.LoadRelaxed();
    786     if (cur_state >= 0) {
    787       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
    788       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
    789     } else {
    790       // Owner holds it exclusively.
    791       return false;
    792     }
    793   } while (!done);
    794 #else
    795   int result = pthread_rwlock_tryrdlock(&rwlock_);
    796   if (result == EBUSY) {
    797     return false;
    798   }
    799   if (result != 0) {
    800     errno = result;
    801     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    802   }
    803 #endif
    804   RegisterAsLocked(self);
    805   AssertSharedHeld(self);
    806   return true;
    807 }
    808 
    809 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
    810   DCHECK(self == nullptr || self == Thread::Current());
    811   bool result;
    812   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
    813     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
    814   } else {
    815     result = (self->GetHeldMutex(level_) == this);
    816   }
    817   return result;
    818 }
    819 
    820 void ReaderWriterMutex::Dump(std::ostream& os) const {
    821   os << name_
    822       << " level=" << static_cast<int>(level_)
    823       << " owner=" << GetExclusiveOwnerTid()
    824 #if ART_USE_FUTEXES
    825       << " state=" << state_.LoadSequentiallyConsistent()
    826       << " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
    827       << " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
    828 #endif
    829       << " ";
    830   DumpContention(os);
    831 }
    832 
    833 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
    834   mu.Dump(os);
    835   return os;
    836 }
    837 
    838 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
    839   mu.Dump(os);
    840   return os;
    841 }
    842 
    843 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
    844 #if ART_USE_FUTEXES
    845   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    846   DCHECK(should_respond_to_empty_checkpoint_request_);
    847   if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
    848                num_pending_writers_.LoadRelaxed() > 0)) {
    849     futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
    850   }
    851 #else
    852   LOG(FATAL) << "Non futex case isn't supported.";
    853 #endif
    854 }
    855 
    856 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
    857     : name_(name), guard_(guard) {
    858 #if ART_USE_FUTEXES
    859   DCHECK_EQ(0, sequence_.LoadRelaxed());
    860   num_waiters_ = 0;
    861 #else
    862   pthread_condattr_t cond_attrs;
    863   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
    864 #if !defined(__APPLE__)
    865   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
    866   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
    867 #endif
    868   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
    869 #endif
    870 }
    871 
    872 ConditionVariable::~ConditionVariable() {
    873 #if ART_USE_FUTEXES
    874   if (num_waiters_!= 0) {
    875     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    876     LOG(is_safe_to_call_abort ? FATAL : WARNING)
    877         << "ConditionVariable::~ConditionVariable for " << name_
    878         << " called with " << num_waiters_ << " waiters.";
    879   }
    880 #else
    881   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    882   // may still be using condition variables.
    883   int rc = pthread_cond_destroy(&cond_);
    884   if (rc != 0) {
    885     errno = rc;
    886     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    887     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
    888   }
    889 #endif
    890 }
    891 
    892 void ConditionVariable::Broadcast(Thread* self) {
    893   DCHECK(self == nullptr || self == Thread::Current());
    894   // TODO: enable below, there's a race in thread creation that causes false failures currently.
    895   // guard_.AssertExclusiveHeld(self);
    896   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
    897 #if ART_USE_FUTEXES
    898   if (num_waiters_ > 0) {
    899     sequence_++;  // Indicate the broadcast occurred.
    900     bool done = false;
    901     do {
    902       int32_t cur_sequence = sequence_.LoadRelaxed();
    903       // Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
    904       // mutex unlocks will awaken the requeued waiter thread.
    905       done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
    906                    reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
    907                    guard_.state_.Address(), cur_sequence) != -1;
    908       if (!done) {
    909         if (errno != EAGAIN && errno != EINTR) {
    910           PLOG(FATAL) << "futex cmp requeue failed for " << name_;
    911         }
    912       }
    913     } while (!done);
    914   }
    915 #else
    916   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
    917 #endif
    918 }
    919 
    920 void ConditionVariable::Signal(Thread* self) {
    921   DCHECK(self == nullptr || self == Thread::Current());
    922   guard_.AssertExclusiveHeld(self);
    923 #if ART_USE_FUTEXES
    924   if (num_waiters_ > 0) {
    925     sequence_++;  // Indicate a signal occurred.
    926     // Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
    927     // to avoid this, however, requeueing can only move all waiters.
    928     int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
    929     // Check something was woken or else we changed sequence_ before they had chance to wait.
    930     CHECK((num_woken == 0) || (num_woken == 1));
    931   }
    932 #else
    933   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
    934 #endif
    935 }
    936 
    937 void ConditionVariable::Wait(Thread* self) {
    938   guard_.CheckSafeToWait(self);
    939   WaitHoldingLocks(self);
    940 }
    941 
    942 void ConditionVariable::WaitHoldingLocks(Thread* self) {
    943   DCHECK(self == nullptr || self == Thread::Current());
    944   guard_.AssertExclusiveHeld(self);
    945   unsigned int old_recursion_count = guard_.recursion_count_;
    946 #if ART_USE_FUTEXES
    947   num_waiters_++;
    948   // Ensure the Mutex is contended so that requeued threads are awoken.
    949   guard_.num_contenders_++;
    950   guard_.recursion_count_ = 1;
    951   int32_t cur_sequence = sequence_.LoadRelaxed();
    952   guard_.ExclusiveUnlock(self);
    953   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
    954     // Futex failed, check it is an expected error.
    955     // EAGAIN == EWOULDBLK, so we let the caller try again.
    956     // EINTR implies a signal was sent to this thread.
    957     if ((errno != EINTR) && (errno != EAGAIN)) {
    958       PLOG(FATAL) << "futex wait failed for " << name_;
    959     }
    960   }
    961   if (self != nullptr) {
    962     JNIEnvExt* const env = self->GetJniEnv();
    963     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
    964       CHECK(self->IsDaemon());
    965       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
    966       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
    967       // --host and --gdb.
    968       // After we wake up, the runtime may have been shutdown, which means that this condition may
    969       // have been deleted. It is not safe to retry the wait.
    970       SleepForever();
    971     }
    972   }
    973   guard_.ExclusiveLock(self);
    974   CHECK_GE(num_waiters_, 0);
    975   num_waiters_--;
    976   // We awoke and so no longer require awakes from the guard_'s unlock.
    977   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
    978   guard_.num_contenders_--;
    979 #else
    980   pid_t old_owner = guard_.GetExclusiveOwnerTid();
    981   guard_.exclusive_owner_.StoreRelaxed(0);
    982   guard_.recursion_count_ = 0;
    983   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
    984   guard_.exclusive_owner_.StoreRelaxed(old_owner);
    985 #endif
    986   guard_.recursion_count_ = old_recursion_count;
    987 }
    988 
    989 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
    990   DCHECK(self == nullptr || self == Thread::Current());
    991   bool timed_out = false;
    992   guard_.AssertExclusiveHeld(self);
    993   guard_.CheckSafeToWait(self);
    994   unsigned int old_recursion_count = guard_.recursion_count_;
    995 #if ART_USE_FUTEXES
    996   timespec rel_ts;
    997   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
    998   num_waiters_++;
    999   // Ensure the Mutex is contended so that requeued threads are awoken.
   1000   guard_.num_contenders_++;
   1001   guard_.recursion_count_ = 1;
   1002   int32_t cur_sequence = sequence_.LoadRelaxed();
   1003   guard_.ExclusiveUnlock(self);
   1004   if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
   1005     if (errno == ETIMEDOUT) {
   1006       // Timed out we're done.
   1007       timed_out = true;
   1008     } else if ((errno == EAGAIN) || (errno == EINTR)) {
   1009       // A signal or ConditionVariable::Signal/Broadcast has come in.
   1010     } else {
   1011       PLOG(FATAL) << "timed futex wait failed for " << name_;
   1012     }
   1013   }
   1014   guard_.ExclusiveLock(self);
   1015   CHECK_GE(num_waiters_, 0);
   1016   num_waiters_--;
   1017   // We awoke and so no longer require awakes from the guard_'s unlock.
   1018   CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
   1019   guard_.num_contenders_--;
   1020 #else
   1021 #if !defined(__APPLE__)
   1022   int clock = CLOCK_MONOTONIC;
   1023 #else
   1024   int clock = CLOCK_REALTIME;
   1025 #endif
   1026   pid_t old_owner = guard_.GetExclusiveOwnerTid();
   1027   guard_.exclusive_owner_.StoreRelaxed(0);
   1028   guard_.recursion_count_ = 0;
   1029   timespec ts;
   1030   InitTimeSpec(true, clock, ms, ns, &ts);
   1031   int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
   1032   if (rc == ETIMEDOUT) {
   1033     timed_out = true;
   1034   } else if (rc != 0) {
   1035     errno = rc;
   1036     PLOG(FATAL) << "TimedWait failed for " << name_;
   1037   }
   1038   guard_.exclusive_owner_.StoreRelaxed(old_owner);
   1039 #endif
   1040   guard_.recursion_count_ = old_recursion_count;
   1041   return timed_out;
   1042 }
   1043 
   1044 void Locks::Init() {
   1045   if (logging_lock_ != nullptr) {
   1046     // Already initialized.
   1047     if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
   1048       DCHECK(modify_ldt_lock_ != nullptr);
   1049     } else {
   1050       DCHECK(modify_ldt_lock_ == nullptr);
   1051     }
   1052     DCHECK(abort_lock_ != nullptr);
   1053     DCHECK(alloc_tracker_lock_ != nullptr);
   1054     DCHECK(allocated_monitor_ids_lock_ != nullptr);
   1055     DCHECK(allocated_thread_ids_lock_ != nullptr);
   1056     DCHECK(breakpoint_lock_ != nullptr);
   1057     DCHECK(classlinker_classes_lock_ != nullptr);
   1058     DCHECK(deoptimization_lock_ != nullptr);
   1059     DCHECK(heap_bitmap_lock_ != nullptr);
   1060     DCHECK(oat_file_manager_lock_ != nullptr);
   1061     DCHECK(verifier_deps_lock_ != nullptr);
   1062     DCHECK(host_dlopen_handles_lock_ != nullptr);
   1063     DCHECK(intern_table_lock_ != nullptr);
   1064     DCHECK(jni_function_table_lock_ != nullptr);
   1065     DCHECK(jni_libraries_lock_ != nullptr);
   1066     DCHECK(logging_lock_ != nullptr);
   1067     DCHECK(mutator_lock_ != nullptr);
   1068     DCHECK(profiler_lock_ != nullptr);
   1069     DCHECK(cha_lock_ != nullptr);
   1070     DCHECK(subtype_check_lock_ != nullptr);
   1071     DCHECK(thread_list_lock_ != nullptr);
   1072     DCHECK(thread_suspend_count_lock_ != nullptr);
   1073     DCHECK(trace_lock_ != nullptr);
   1074     DCHECK(unexpected_signal_lock_ != nullptr);
   1075     DCHECK(user_code_suspension_lock_ != nullptr);
   1076     DCHECK(dex_lock_ != nullptr);
   1077     DCHECK(native_debug_interface_lock_ != nullptr);
   1078   } else {
   1079     // Create global locks in level order from highest lock level to lowest.
   1080     LockLevel current_lock_level = kInstrumentEntrypointsLock;
   1081     DCHECK(instrument_entrypoints_lock_ == nullptr);
   1082     instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
   1083 
   1084     #define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
   1085       if ((new_level) >= current_lock_level) { \
   1086         /* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
   1087         fprintf(stderr, "New local level %d is not less than current level %d\n", \
   1088                 new_level, current_lock_level); \
   1089         exit(1); \
   1090       } \
   1091       current_lock_level = new_level;
   1092 
   1093     UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
   1094     DCHECK(user_code_suspension_lock_ == nullptr);
   1095     user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
   1096 
   1097     UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
   1098     DCHECK(mutator_lock_ == nullptr);
   1099     mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
   1100 
   1101     UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
   1102     DCHECK(heap_bitmap_lock_ == nullptr);
   1103     heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
   1104 
   1105     UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
   1106     DCHECK(trace_lock_ == nullptr);
   1107     trace_lock_ = new Mutex("trace lock", current_lock_level);
   1108 
   1109     UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
   1110     DCHECK(runtime_shutdown_lock_ == nullptr);
   1111     runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
   1112 
   1113     UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
   1114     DCHECK(profiler_lock_ == nullptr);
   1115     profiler_lock_ = new Mutex("profiler lock", current_lock_level);
   1116 
   1117     UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
   1118     DCHECK(deoptimization_lock_ == nullptr);
   1119     deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
   1120 
   1121     UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
   1122     DCHECK(alloc_tracker_lock_ == nullptr);
   1123     alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
   1124 
   1125     UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
   1126     DCHECK(thread_list_lock_ == nullptr);
   1127     thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
   1128 
   1129     UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
   1130     DCHECK(jni_libraries_lock_ == nullptr);
   1131     jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
   1132 
   1133     UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
   1134     DCHECK(breakpoint_lock_ == nullptr);
   1135     breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
   1136 
   1137     UPDATE_CURRENT_LOCK_LEVEL(kSubtypeCheckLock);
   1138     DCHECK(subtype_check_lock_ == nullptr);
   1139     subtype_check_lock_ = new Mutex("SubtypeCheck lock", current_lock_level);
   1140 
   1141     UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
   1142     DCHECK(cha_lock_ == nullptr);
   1143     cha_lock_ = new Mutex("CHA lock", current_lock_level);
   1144 
   1145     UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
   1146     DCHECK(classlinker_classes_lock_ == nullptr);
   1147     classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
   1148                                                       current_lock_level);
   1149 
   1150     UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
   1151     DCHECK(allocated_monitor_ids_lock_ == nullptr);
   1152     allocated_monitor_ids_lock_ =  new Mutex("allocated monitor ids lock", current_lock_level);
   1153 
   1154     UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
   1155     DCHECK(allocated_thread_ids_lock_ == nullptr);
   1156     allocated_thread_ids_lock_ =  new Mutex("allocated thread ids lock", current_lock_level);
   1157 
   1158     if (kRuntimeISA == InstructionSet::kX86 || kRuntimeISA == InstructionSet::kX86_64) {
   1159       UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
   1160       DCHECK(modify_ldt_lock_ == nullptr);
   1161       modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
   1162     }
   1163 
   1164     UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
   1165     DCHECK(dex_lock_ == nullptr);
   1166     dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
   1167 
   1168     UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
   1169     DCHECK(oat_file_manager_lock_ == nullptr);
   1170     oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
   1171 
   1172     UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
   1173     DCHECK(verifier_deps_lock_ == nullptr);
   1174     verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
   1175 
   1176     UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
   1177     DCHECK(host_dlopen_handles_lock_ == nullptr);
   1178     host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
   1179 
   1180     UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
   1181     DCHECK(intern_table_lock_ == nullptr);
   1182     intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
   1183 
   1184     UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
   1185     DCHECK(reference_processor_lock_ == nullptr);
   1186     reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
   1187 
   1188     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
   1189     DCHECK(reference_queue_cleared_references_lock_ == nullptr);
   1190     reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1191 
   1192     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
   1193     DCHECK(reference_queue_weak_references_lock_ == nullptr);
   1194     reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
   1195 
   1196     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
   1197     DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
   1198     reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
   1199 
   1200     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
   1201     DCHECK(reference_queue_phantom_references_lock_ == nullptr);
   1202     reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
   1203 
   1204     UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
   1205     DCHECK(reference_queue_soft_references_lock_ == nullptr);
   1206     reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
   1207 
   1208     UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
   1209     DCHECK(jni_globals_lock_ == nullptr);
   1210     jni_globals_lock_ =
   1211         new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
   1212 
   1213     UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
   1214     DCHECK(jni_weak_globals_lock_ == nullptr);
   1215     jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
   1216 
   1217     UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
   1218     DCHECK(jni_function_table_lock_ == nullptr);
   1219     jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
   1220 
   1221     UPDATE_CURRENT_LOCK_LEVEL(kNativeDebugInterfaceLock);
   1222     DCHECK(native_debug_interface_lock_ == nullptr);
   1223     native_debug_interface_lock_ = new Mutex("Native debug interface lock", current_lock_level);
   1224 
   1225     UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
   1226     DCHECK(abort_lock_ == nullptr);
   1227     abort_lock_ = new Mutex("abort lock", current_lock_level, true);
   1228 
   1229     UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
   1230     DCHECK(thread_suspend_count_lock_ == nullptr);
   1231     thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
   1232 
   1233     UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
   1234     DCHECK(unexpected_signal_lock_ == nullptr);
   1235     unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
   1236 
   1237     UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
   1238     DCHECK(logging_lock_ == nullptr);
   1239     logging_lock_ = new Mutex("logging lock", current_lock_level, true);
   1240 
   1241     #undef UPDATE_CURRENT_LOCK_LEVEL
   1242 
   1243     // List of mutexes that we may hold when accessing a weak ref.
   1244     AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
   1245     AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
   1246     AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
   1247 
   1248     InitConditions();
   1249   }
   1250 }
   1251 
   1252 void Locks::InitConditions() {
   1253   thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
   1254 }
   1255 
   1256 void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
   1257   safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
   1258 }
   1259 
   1260 // Helper to allow checking shutdown while ignoring locking requirements.
   1261 bool Locks::IsSafeToCallAbortRacy() {
   1262   Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
   1263   return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
   1264 }
   1265 
   1266 void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1267   if (need_lock) {
   1268     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1269     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1270     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1271   } else {
   1272     mutex->SetShouldRespondToEmptyCheckpointRequest(true);
   1273     expected_mutexes_on_weak_ref_access_.push_back(mutex);
   1274   }
   1275 }
   1276 
   1277 void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
   1278   if (need_lock) {
   1279     ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1280     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1281     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1282     auto it = std::find(list.begin(), list.end(), mutex);
   1283     DCHECK(it != list.end());
   1284     list.erase(it);
   1285   } else {
   1286     mutex->SetShouldRespondToEmptyCheckpointRequest(false);
   1287     std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1288     auto it = std::find(list.begin(), list.end(), mutex);
   1289     DCHECK(it != list.end());
   1290     list.erase(it);
   1291   }
   1292 }
   1293 
   1294 bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
   1295   ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
   1296   std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
   1297   return std::find(list.begin(), list.end(), mutex) != list.end();
   1298 }
   1299 
   1300 }  // namespace art
   1301