Home | History | Annotate | Download | only in arm
      1 /*
      2  *  Copyright (c) 2017 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <arm_neon.h>
     12 #include <assert.h>
     13 #include <string.h>
     14 
     15 #include "./vpx_config.h"
     16 #include "./vpx_dsp_rtcd.h"
     17 #include "vpx/vpx_integer.h"
     18 #include "vpx_dsp/arm/transpose_neon.h"
     19 #include "vpx_dsp/arm/vpx_convolve8_neon.h"
     20 #include "vpx_ports/mem.h"
     21 
     22 static INLINE void scaledconvolve_horiz_w4(
     23     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
     24     const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
     25     const int x0_q4, const int x_step_q4, const int w, const int h) {
     26   DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
     27   int x, y, z;
     28 
     29   src -= SUBPEL_TAPS / 2 - 1;
     30 
     31   y = h;
     32   do {
     33     int x_q4 = x0_q4;
     34     x = 0;
     35     do {
     36       // process 4 src_x steps
     37       for (z = 0; z < 4; ++z) {
     38         const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
     39         if (x_q4 & SUBPEL_MASK) {
     40           const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
     41           const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3);
     42           const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0);
     43           uint8x8_t s[8], d;
     44           int16x8_t ss[4];
     45           int16x4_t t[8], tt;
     46 
     47           load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]);
     48           transpose_u8_8x4(&s[0], &s[1], &s[2], &s[3]);
     49 
     50           ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
     51           ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
     52           ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
     53           ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
     54           t[0] = vget_low_s16(ss[0]);
     55           t[1] = vget_low_s16(ss[1]);
     56           t[2] = vget_low_s16(ss[2]);
     57           t[3] = vget_low_s16(ss[3]);
     58           t[4] = vget_high_s16(ss[0]);
     59           t[5] = vget_high_s16(ss[1]);
     60           t[6] = vget_high_s16(ss[2]);
     61           t[7] = vget_high_s16(ss[3]);
     62 
     63           tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7],
     64                            filters, filter3, filter4);
     65           d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
     66           vst1_lane_u32((uint32_t *)&temp[4 * z], vreinterpret_u32_u8(d), 0);
     67         } else {
     68           int i;
     69           for (i = 0; i < 4; ++i) {
     70             temp[z * 4 + i] = src_x[i * src_stride + 3];
     71           }
     72         }
     73         x_q4 += x_step_q4;
     74       }
     75 
     76       // transpose the 4x4 filters values back to dst
     77       {
     78         const uint8x8x4_t d4 = vld4_u8(temp);
     79         vst1_lane_u32((uint32_t *)&dst[x + 0 * dst_stride],
     80                       vreinterpret_u32_u8(d4.val[0]), 0);
     81         vst1_lane_u32((uint32_t *)&dst[x + 1 * dst_stride],
     82                       vreinterpret_u32_u8(d4.val[1]), 0);
     83         vst1_lane_u32((uint32_t *)&dst[x + 2 * dst_stride],
     84                       vreinterpret_u32_u8(d4.val[2]), 0);
     85         vst1_lane_u32((uint32_t *)&dst[x + 3 * dst_stride],
     86                       vreinterpret_u32_u8(d4.val[3]), 0);
     87       }
     88       x += 4;
     89     } while (x < w);
     90 
     91     src += src_stride * 4;
     92     dst += dst_stride * 4;
     93     y -= 4;
     94   } while (y > 0);
     95 }
     96 
     97 static INLINE void scaledconvolve_horiz_w8(
     98     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
     99     const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
    100     const int x0_q4, const int x_step_q4, const int w, const int h) {
    101   DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
    102   int x, y, z;
    103   src -= SUBPEL_TAPS / 2 - 1;
    104 
    105   // This function processes 8x8 areas. The intermediate height is not always
    106   // a multiple of 8, so force it to be a multiple of 8 here.
    107   y = (h + 7) & ~7;
    108 
    109   do {
    110     int x_q4 = x0_q4;
    111     x = 0;
    112     do {
    113       uint8x8_t d[8];
    114       // process 8 src_x steps
    115       for (z = 0; z < 8; ++z) {
    116         const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
    117 
    118         if (x_q4 & SUBPEL_MASK) {
    119           const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
    120           uint8x8_t s[8];
    121           load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4],
    122                       &s[5], &s[6], &s[7]);
    123           transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
    124                            &s[7]);
    125           d[0] = scale_filter_8(s, filters);
    126           vst1_u8(&temp[8 * z], d[0]);
    127         } else {
    128           int i;
    129           for (i = 0; i < 8; ++i) {
    130             temp[z * 8 + i] = src_x[i * src_stride + 3];
    131           }
    132         }
    133         x_q4 += x_step_q4;
    134       }
    135 
    136       // transpose the 8x8 filters values back to dst
    137       load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
    138                   &d[7]);
    139       transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]);
    140       vst1_u8(&dst[x + 0 * dst_stride], d[0]);
    141       vst1_u8(&dst[x + 1 * dst_stride], d[1]);
    142       vst1_u8(&dst[x + 2 * dst_stride], d[2]);
    143       vst1_u8(&dst[x + 3 * dst_stride], d[3]);
    144       vst1_u8(&dst[x + 4 * dst_stride], d[4]);
    145       vst1_u8(&dst[x + 5 * dst_stride], d[5]);
    146       vst1_u8(&dst[x + 6 * dst_stride], d[6]);
    147       vst1_u8(&dst[x + 7 * dst_stride], d[7]);
    148       x += 8;
    149     } while (x < w);
    150 
    151     src += src_stride * 8;
    152     dst += dst_stride * 8;
    153   } while (y -= 8);
    154 }
    155 
    156 static INLINE void scaledconvolve_vert_w4(
    157     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
    158     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    159     const int y0_q4, const int y_step_q4, const int w, const int h) {
    160   int y;
    161   int y_q4 = y0_q4;
    162 
    163   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
    164   y = h;
    165   do {
    166     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    167 
    168     if (y_q4 & SUBPEL_MASK) {
    169       const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
    170       const int16x4_t filter3 = vdup_lane_s16(vget_low_s16(filters), 3);
    171       const int16x4_t filter4 = vdup_lane_s16(vget_high_s16(filters), 0);
    172       uint8x8_t s[8], d;
    173       int16x4_t t[8], tt;
    174 
    175       load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
    176                   &s[6], &s[7]);
    177       t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0])));
    178       t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1])));
    179       t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2])));
    180       t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3])));
    181       t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4])));
    182       t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5])));
    183       t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6])));
    184       t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7])));
    185 
    186       tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters,
    187                        filter3, filter4);
    188       d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
    189       vst1_lane_u32((uint32_t *)dst, vreinterpret_u32_u8(d), 0);
    190     } else {
    191       memcpy(dst, &src_y[3 * src_stride], w);
    192     }
    193 
    194     dst += dst_stride;
    195     y_q4 += y_step_q4;
    196   } while (--y);
    197 }
    198 
    199 static INLINE void scaledconvolve_vert_w8(
    200     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
    201     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    202     const int y0_q4, const int y_step_q4, const int w, const int h) {
    203   int y;
    204   int y_q4 = y0_q4;
    205 
    206   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
    207   y = h;
    208   do {
    209     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    210     if (y_q4 & SUBPEL_MASK) {
    211       const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
    212       uint8x8_t s[8], d;
    213       load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
    214                   &s[6], &s[7]);
    215       d = scale_filter_8(s, filters);
    216       vst1_u8(dst, d);
    217     } else {
    218       memcpy(dst, &src_y[3 * src_stride], w);
    219     }
    220     dst += dst_stride;
    221     y_q4 += y_step_q4;
    222   } while (--y);
    223 }
    224 
    225 static INLINE void scaledconvolve_vert_w16(
    226     const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
    227     const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    228     const int y0_q4, const int y_step_q4, const int w, const int h) {
    229   int x, y;
    230   int y_q4 = y0_q4;
    231 
    232   src -= src_stride * (SUBPEL_TAPS / 2 - 1);
    233   y = h;
    234   do {
    235     const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    236     if (y_q4 & SUBPEL_MASK) {
    237       x = 0;
    238       do {
    239         const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
    240         uint8x16_t ss[8];
    241         uint8x8_t s[8], d[2];
    242         load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4],
    243                      &ss[5], &ss[6], &ss[7]);
    244         s[0] = vget_low_u8(ss[0]);
    245         s[1] = vget_low_u8(ss[1]);
    246         s[2] = vget_low_u8(ss[2]);
    247         s[3] = vget_low_u8(ss[3]);
    248         s[4] = vget_low_u8(ss[4]);
    249         s[5] = vget_low_u8(ss[5]);
    250         s[6] = vget_low_u8(ss[6]);
    251         s[7] = vget_low_u8(ss[7]);
    252         d[0] = scale_filter_8(s, filters);
    253 
    254         s[0] = vget_high_u8(ss[0]);
    255         s[1] = vget_high_u8(ss[1]);
    256         s[2] = vget_high_u8(ss[2]);
    257         s[3] = vget_high_u8(ss[3]);
    258         s[4] = vget_high_u8(ss[4]);
    259         s[5] = vget_high_u8(ss[5]);
    260         s[6] = vget_high_u8(ss[6]);
    261         s[7] = vget_high_u8(ss[7]);
    262         d[1] = scale_filter_8(s, filters);
    263         vst1q_u8(&dst[x], vcombine_u8(d[0], d[1]));
    264         src_y += 16;
    265         x += 16;
    266       } while (x < w);
    267     } else {
    268       memcpy(dst, &src_y[3 * src_stride], w);
    269     }
    270     dst += dst_stride;
    271     y_q4 += y_step_q4;
    272   } while (--y);
    273 }
    274 
    275 void vpx_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
    276                         ptrdiff_t dst_stride, const InterpKernel *filter,
    277                         int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
    278                         int w, int h) {
    279   // Note: Fixed size intermediate buffer, temp, places limits on parameters.
    280   // 2d filtering proceeds in 2 steps:
    281   //   (1) Interpolate horizontally into an intermediate buffer, temp.
    282   //   (2) Interpolate temp vertically to derive the sub-pixel result.
    283   // Deriving the maximum number of rows in the temp buffer (135):
    284   // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
    285   // --Largest block size is 64x64 pixels.
    286   // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
    287   //   original frame (in 1/16th pixel units).
    288   // --Must round-up because block may be located at sub-pixel position.
    289   // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
    290   // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
    291   // --Require an additional 8 rows for the horiz_w8 transpose tail.
    292   // When calling in frame scaling function, the smallest scaling factor is x1/4
    293   // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
    294   // big enough.
    295   DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
    296   const int intermediate_height =
    297       (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
    298 
    299   assert(w <= 64);
    300   assert(h <= 64);
    301   assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
    302   assert(x_step_q4 <= 64);
    303 
    304   if (w >= 8) {
    305     scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
    306                             src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
    307                             intermediate_height);
    308   } else {
    309     scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
    310                             src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
    311                             intermediate_height);
    312   }
    313 
    314   if (w >= 16) {
    315     scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
    316                             dst_stride, filter, y0_q4, y_step_q4, w, h);
    317   } else if (w == 8) {
    318     scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
    319                            dst_stride, filter, y0_q4, y_step_q4, w, h);
    320   } else {
    321     scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
    322                            dst_stride, filter, y0_q4, y_step_q4, w, h);
    323   }
    324 }
    325